
z/OS

Cryptographic Services
Integrated Cryptographic Service Facility
Application Programmer's Guide
Version 2 Release 1

SC14-7508-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 943.

This edition applies to ICSF FMID HCR77A1 and Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent
releases and modifications until otherwise indicated in new editions.

This edition replaces SA22-7522-15

© Copyright IBM Corporation 1997, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures xiii

Tables xv

About this information. xxi
Who should use this information xxi
How to use this information xxi
Where to find more information xxiii

Related Publications xxiii

How to send your comments to IBM xxv
If you have a technical problem xxv

Summary of Changes xxvii
Changes made in Cryptographic Support for
z/OS V1R13-V2R1 (FMID HCR77A1) xxvii
Changes made in Cryptographic Support for z/OS
V1R12-R13 (FMID HCR77A0). xxix
Changes made in Cryptographic Support for z/OS
V1R11-R13 (FMID HCR7790) xxx

Part 1. IBM CCA Programming. . . . 1

Chapter 1. Introducing Programming for
the IBM CCA. 3
ICSF Callable Services Naming Conventions 3
Callable Service Syntax 3

Callable Services with ALET Parameters 5
Rules for Defining Parameters and Attributes . . 5
Parameter Definitions 6
Invocation Requirements 9
Security Considerations. 9

Performance Considerations 10
Special Secure Mode 10
Using the Callable Services 10

When the Call Succeeds 11
When the Call Does Not Succeed 11

Linking a Program with the ICSF Callable Services 12

Chapter 2. Introducing Symmetric Key
Cryptography and Using Symmetric
Key Callable Services 13
Functions of the Symmetric Cryptographic Keys . . 13

Key Separation 13
Master Key Variant for Fixed-length Tokens . . 14
Transport Key Variant for Fixed-length Tokens . 14
Key Forms. 14
Key Token 15
Key Wrapping 17
Payload Format 17
Control Vector for DES Keys. 18
Types of Keys 18

Key Strength and Wrapping of Key 23

Key Strength and Key Wrapping Access Control
Points 23
DES Master Key 24

Generating and Managing Symmetric Keys 25
Key Generator Utility Program 25
Common Cryptographic Architecture DES Key
Management Services 25
Common Cryptographic Architecture AES Key
Management Services 29
Common Cryptographic Architecture HMAC Key
Management Services 30
ECC Diffie-Hellman Key Agreement Models . . 31
Improved remote key distribution 32
Diversifying keys 45
Callable Services for Dynamic CKDS Update . . 45
Callable Services that Support Secure Sockets
Layer (SSL) 47

Enciphering and Deciphering Data 48
Encoding and Decoding Data (CSNBECO,
CSNEECO, CSNBDCO, and CSNEDCO). 48
Translating Ciphertext (CSNBCTT2 or CSNBCTT3
and CSNECTT2 or CSNECTT3). 49
Managing Data Integrity and Message
Authentication 49

Message Authentication Code Processing . . . 49
Hashing Functions 51

Managing Personal Authentication 52
Verifying Credit Card Data 52

ANSI TR-31 key block support 55
TR-31 Export Callable Service (CSNBT31X and
CSNET31X) 55
TR-31 Import Callable Service (CSNBT31I and
CSNET31I) 55
TR-31 Parse Callable Service (CSNBT31P and
CSNET31P) 55
TR-31 Optional Data Read Callable Service
(CSNBT31R and CSNET31R) 55
TR-31 Optional Data Build Callable Service
(CSNBT31O and CSNET31O) 56

Secure Messaging 56
Trusted Key Entry (TKE) Support 56
Utilities. 57

Character/Nibble Conversion Callable Services
(CSNBXBC and CSNBXCB) 57
Code Conversion Callable Services (CSNBXEA
and CSNBXAE) 57
X9.9 Data Editing Callable Service (CSNB9ED) . 57
ICSF Query Algorithm Callable Service (CSFIQA) 57
ICSF Query Facility Callable Service (CSFIQF) . . 57
ICSF Query Facility2 Callable Service (CSFIQF2) 57

Typical Sequences of ICSF Callable Services . . . 58
Key Forms and Types Used in the Key Generate
Callable Service 58

Generating an Operational Key 58
Generating an Importable Key 59
Generating an Exportable Key 59

© Copyright IBM Corp. 1997, 2013 iii

||

||

Examples of Single-Length Keys in One Form
Only. 59
Examples of OPIM Single-Length,
Double-Length, and Triple-Length Keys in Two
Forms 60
Examples of OPEX Single-Length,
Double-Length, and Triple-Length Keys in Two
Forms 60
Examples of IMEX Single-Length and
Double-Length Keys in Two Forms 61
Examples of EXEX Single-Length and
Double-Length Keys in Two Forms 61

Using the Ciphertext Translate2 Callable Service . . 61
Summary of Callable Services 62

Chapter 3. Introducing PKA
Cryptography and Using PKA Callable
Services 73
PKA Key Algorithms 73
PKA Master Keys 73

Operational private keys 74
Key Strength and Wrapping of Key 74

Key Strength and Key Wrapping Access Control
Points 75
RSA Private Key Tokens 76

PKA Callable Services 76
Callable Services Supporting Digital Signatures 76
Callable Services for PKA Key Management . . 77
Callable Services to Update the Public Key Data
Set (PKDS) 78
Callable Services for Working with Retained
Private Keys 78
Callable Services for SET Secure Electronic
Transaction 79

PKA Key Tokens 80
PKA Key Management 81
Security and Integrity of the Token 82
Key Identifier for PKA Key Token 82

Key Label 82
Key Token 83

The Transaction Security System and ICSF
Portability 83
Summary of the PKA Callable Services 84

Chapter 4. Introducing PKCS #11 and
using PKCS #11 callable services . . . 87
PKCS #11 Services 87
Attribute List 88
Handles 89

Part 2. CCA Callable Services . . . 91

Chapter 5. Managing Symmetric
Cryptographic Keys 93
Clear Key Import (CSNBCKI and CSNECKI) . . . 94

Format 94
Parameters 94
Access Control Points 95
Required Hardware. 95

Control Vector Generate (CSNBCVG and
CSNECVG) 96

Format 96
Parameters 96
Usage Notes. 100
Required Hardware 100

Control Vector Translate (CSNBCVT and
CSNECVT) 101

Format 101
Parameters 101
Restrictions 104
Usage Notes. 104
Access Control Point 104
Required Hardware 104

Cryptographic Variable Encipher (CSNBCVE and
CSNECVE) 104

Format 105
Parameters 105
Restrictions 106
Usage Notes. 106
Access Control Point 106
Required Hardware 106

Data Key Export (CSNBDKX and CSNEDKX) . . 107
Format 107
Parameters 107
Restrictions 109
Usage Notes. 109
Access Control Points 109
Required Hardware 109

Data Key Import (CSNBDKM and CSNEDKM) . . 110
Format 110
Parameters 110
Restrictions 112
Usage Notes 112
Access Control Points. 112
Required Hardware 112

Diversified Key Generate (CSNBDKG and
CSNEDKG) 113

Format 114
Parameters 114
Restrictions 118
Usage Notes 118
Access Control Points. 118
Required Hardware 119

ECC Diffie-Hellman (CSNDEDH and CSNFEDH) 119
Format 120
Parameters 120
Restrictions 125
Usage Notes. 126
Access Control Points 127
Required Hardware 127

Key Export (CSNBKEX and CSNEKEX) 128
Format 128
Parameters 128
Restrictions 130
Usage Notes. 130
Access Control Points 131
Required Hardware 131

Key Generate (CSNBKGN and CSNEKGN) . . . 132
Format 132
Parameters 133

iv z/OS ICSF Application Programmer's Guide

||

||

Restrictions 139
Usage Notes. 139
Usage Notes — Key type and key form
combinations 140
Access Control Points 142
Required Hardware 143

Key Generate2 (CSNBKGN2 and CSNEKGN2) . . 143
Format 144
Parameters 144
Usage Notes. 150
Access Control Points 153
Required Hardware 153

Key Import (CSNBKIM and CSNEKIM) 154
Format 154
Parameters 154
Restrictions 156
Usage Notes. 156
Access Control Points 157
Required Hardware 157

Key Part Import (CSNBKPI and CSNEKPI) . . . 158
Format 159
Parameters 159
Restrictions 161
Access Control Points 161
Required Hardware 162
Related Information 162

Key Part Import2 (CSNBKPI2 and CSNEKPI2) . . 162
Format 163
Parameters 163
Usage Notes. 165
Access Control Points 165
Required Hardware 166

Key Test (CSNBKYT and CSNEKYT) 166
Format 167
Parameters 167
Restrictions 169
Usage Notes. 169
Access Control Points 170
Required Hardware 170

Key Test2 (CSNBKYT2 and CSNEKYT2) 170
Format 171
Parameters 171
Usage Notes. 174
Access Control Point 174
Required Hardware 175

Key Test Extended (CSNBKYTX and CSNEKTX) 175
Format 176
Parameters 176
Restrictions 178
Usage Notes. 178
Access Control Point 178
Required Hardware 178

Key Token Build (CSNBKTB and CSNEKTB) . . . 179
Format 179
Parameters 180
Restrictions 186
Usage Notes. 186
Required Hardware 188

Key Token Build2 (CSNBKTB2 and CSNEKTB2) 189
Format 189
Parameters 189

Required Hardware 196
Key Translate (CSNBKTR and CSNEKTR) 196

Format 196
Parameters 197
Restrictions 198
Usage Notes. 198
Access Control Points 198
Required Hardware 198

Key Translate2 (CSNBKTR2 and CSNEKTR2). . . 199
Format 200
Parameters 200
Restrictions 204
Usage Notes. 204
Access Control Points 205
Required Hardware 205

Multiple Clear Key Import (CSNBCKM and
CSNECKM) 206

Format 206
Parameters 206
Access Control Points 208
Required Hardware 209

Multiple Secure Key Import (CSNBSKM and
CSNESKM) 210

Format 210
Parameters 210
Usage Notes. 214
Access Control Points 214
Required Hardware 214

PKA Decrypt (CSNDPKD and CSNFPKD). . . . 216
Format 216
Parameters 216
Restrictions 219
Authorization 219
Usage Notes. 219
Access Control Points 219
Required Hardware 219

PKA Encrypt (CSNDPKE and CSNFPKE) 221
Format 221
Parameters 221
Restrictions 223
Usage Notes. 224
Access Control Point 224
Required Hardware 224

Prohibit Export (CSNBPEX and CSNEPEX) . . . 225
Format 225
Parameters 225
Usage Notes. 226
Access Control Point 226
Required Hardware 226

Prohibit Export Extended (CSNBPEXX and
CSNEPEXX) 227

Format 227
Parameters 227
Restrictions 228
Usage Notes. 228
Access Control Point 229
Required Hardware 229

Random Number Generate (CSNBRNG,
CSNERNG, CSNBRNGL and CSNERNGL) . . . 229

Format 229
Parameters 230

Contents v

||

||
||
||
||
||
||
||

Usage Notes. 232
Required Hardware 232

Remote Key Export (CSNDRKX and CSNFRKX) 233
Format 234
Parameters 234
Usage Notes. 241
Access Control Points 241
Required Hardware 242

Restrict Key Attribute (CSNBRKA and CSNERKA) 243
Format 243
Parameters 243
Access Control Points 247
Required Hardware 247

Secure Key Import (CSNBSKI and CSNESKI) . . . 247
Format 248
Parameters 248
Usage Notes. 250
Access Control Points 250
Required Hardware 250

Secure Key Import2 (CSNBSKI2 and CSNESKI2) 251
Format 251
Parameters 252
Access Control Points 255
Required Hardware 255

Symmetric Key Export (CSNDSYX and CSNFSYX) 256
Format 256
Parameters 256
Usage Notes. 259
Access Control Points 260
Required Hardware 260

Symmetric Key Export with Data (CSNDSXD and
CSNFSXD) 262

Format 262
Parameters 262
Usage Notes. 265
Access Control Points 265
Required Hardware 265

Symmetric Key Generate (CSNDSYG and
CSNFSYG) 266

Format 266
Parameters 267
Usage Notes. 270
Access Control Points 271
Required Hardware 272

Symmetric Key Import (CSNDSYI and CSNFSYI) 273
Format 273
Parameters 273
Restrictions 276
Usage Notes. 276
Access Control Points 276
Required Hardware 277

Symmetric Key Import2 (CSNDSYI2 and
CSNFSYI2) 278

Format 278
Parameters 279
Restrictions 282
Usage Notes. 282
Access Control Points 282
Required Hardware 283

Trusted Block Create (CSNDTBC and CSNFTBC) 283
Format 284

Parameters 284
Usage Notes. 286
Access Control Points 286
Required Hardware 286

TR-31 Export (CSNBT31X and CSNET31X) . . . 287
Format 287
Parameters 288
Restrictions 293
Usage Notes. 293
Access Control Points 294
Required Hardware 301

TR-31 Import (CSNBT31I and CSNET31I) 301
Format 301
Parameters 302
Restrictions 308
Usage Notes. 308
Access Control Points 309
Required Hardware 314

TR-31 Optional Data Build (CSNBT31O and
CSNET31O) 315

Format 315
Parameters 315
Restrictions 317
Usage Notes. 318
Required Hardware 318

TR-31 Optional Data Read (CSNBT31R and
CSNET31R) 318

Format 319
Parameters 319
Restrictions 321
Usage Notes. 322
Required Hardware 322

TR-31 Parse (CSNBT31P and CSNET31P) 322
Format 323
Parameters 323
Restrictions 325
Usage Notes. 326
Required Hardware 326

Unique Key Derive (CSNBUKD and CSNEUKD) 326
Format 327
Parameters 327
Restrictions 333
Usage Notes. 334
Access Control Points 334
Required Hardware 334

Chapter 6. Protecting Data. 337
Modes of Operation 337

Electronic Code Book (ECB) Mode 338
Cipher Block Chaining (CBC) Mode 338
Cipher Feedback (CFB) Mode 338
Output Feedback (OFB) Mode 338
Galois/Counter Mode (GCM) 338
Triple DES Encryption 339

Ciphertext Translate2 (CSNBCTT2, CSNBCTT3,
CSNECTT2, CSNECTT3) 340

Choosing Between CSNBCTT2 and CSNBCTT3 340
Format 340
Parameters 341
Usage Notes. 347
Access Control Points 351

vi z/OS ICSF Application Programmer's Guide

|
||
||
||
||
||
||

||

Required Hardware 352
Decipher (CSNBDEC or CSNBDEC1 and
CSNEDEC or CSNEDEC1) 352

Choosing Between CSNBDEC and CSNBDEC1 353
Format 354
Parameters 354
Restrictions 358
Usage Notes. 358
Access Control Point 358
Required Hardware 358

Decode (CSNBDCO and CSNEDCO) 359
Considerations 359
Format 359
Parameters 359
Required Hardware 360

Encipher (CSNBENC or CSNBENC1 and
CSNEENC or CSNEENC1) 361

Choosing between CSNBENC and CSNBENC1 362
Format 363
Parameters 363
Restrictions 367
Usage Notes. 367
Access Control Point 368
Required Hardware 368

Encode (CSNBECO and CSNEECO) 368
Considerations 369
Format 369
Parameters 369
Required Hardware 370

Symmetric Algorithm Decipher (CSNBSAD or
CSNBSAD1 and CSNESAD or CSNESAD1) . . . 370

Choosing Between CSNBSAD and CSNBSAD1
or CSNESAD and CSNESAD1. 371
Format 371
Parameters 372
Usage Notes. 376
Access Control Point 376
Required Hardware 376

Symmetric Algorithm Encipher (CSNBSAE or
CSNBSAE1 and CSNESAE or CSNESAE1). . . . 377

Choosing between CSNBSAE and CSNBSAE1 or
CSNESAE and CSNESAE1 377
Format 378
Parameters 378
Usage Notes. 383
Access Control Point 383
Required Hardware 383

Symmetric Key Decipher (CSNBSYD or CSNBSYD1
and CSNESYD or CSNESYD1). 384

Choosing Between CSNBSYD and CSNBSYD1 385
Format 386
Parameters 386
Usage Notes. 392
Access Control Points 392
Required Hardware 393
Related Information 393

Symmetric Key Encipher (CSNBSYE or CSNBSYE1
and CSNESYE or CSNESYE1) 394

Choosing between CSNBSYE and CSNBSYE1 395
Format 395
Parameters 396

Usage Notes. 402
Access Control Points 402
Required Hardware 402
Related Information 403

Chapter 7. Verifying Data Integrity and
Authenticating Messages 405
How MACs are Used. 405
How Hashing Functions Are Used 406

How MDCs Are Used 406
HMAC Generate (CSNBHMG or CSNBHMG1 and
CSNEHMG or CSNEHMG1) 407

Choosing Between CSNBHMG and CSNBHMG1 407
Format 407
Parameters 408
Access Control Points. 411
Required Hardware 411

HMAC Verify (CSNBHMV or CSNBHMV1 and
CSNEHMV or CSNEHMV1) 412

Choosing Between CSNBHMV and CSNBHMV1 412
Format 412
Parameters 413
Access Control Points 415
Required Hardware 416

MAC Generate (CSNBMGN or CSNBMGN1 and
CSNEMGN or CSNEMGN1) 416

Choosing Between CSNBMGN and CSNBMGN1 417
Format 417
Parameters 417
Usage Notes. 420
Access Control Point 420
Required Hardware 421
Related Information 421

MAC Verify (CSNBMVR or CSNBMVR1 and
CSNEMVR or CSNEMVR1) 421

Choosing Between CSNBMVR and CSNBMVR1 422
Format 422
Parameters 422
Usage Notes. 425
Access Control Point 426
Required Hardware 426
Related Information 426

MDC Generate (CSNBMDG or CSNBMDG1 and
CSNEMDG or CSNEMDG1) 427

Choosing Between CSNBMDG and CSNBMDG1 427
Format 427
Parameters 428
Usage Notes. 430
Required Hardware 431

One-Way Hash Generate (CSNBOWH or
CSNBOWH1 and CSNEOWH or CSNEOWH1) . . 431

Format 431
Parameters 432
Usage Notes. 435
Required Hardware 435

Symmetric MAC Generate (CSNBSMG or
CSNBSMG1 and CSNESMG or CSNESMG1) . . . 436

Choosing Between CSNBSMG and CSNBSMG1
or CSNESMG and CSNESMG1 436
Format 436
Parameters 437

Contents vii

||

||

||

Usage notes 440
Required Hardware 440

Symmetric MAC Verify (CSNBSMV or CSNBSMV1
and CSNESMV or CSNESMV1) 441

Choosing Between CSNBSMV and CSNBSMV1
or CSNESMV and CSNESMV1 441
Format 441
Parameters 442
Usage notes 445
Required Hardware 445

Chapter 8. Financial Services 447
How Personal Identification Numbers (PINs) are
Used 447
How VISA Card Verification Values Are Used . . 447
Translating Data and PINs in Networks 448
Working with Europay–MasterCard–Visa smart
cards 448
PIN Callable Services. 449

Generating a PIN 449
Encrypting a PIN 449
Generating a PIN Validation Value from an
Encrypted PIN Block 449
Verifying a PIN. 449
Translating a PIN 449
Algorithms for Generating and Verifying a PIN 450
Using PINs on Different Systems 450
PIN-Encrypting Keys 450

ANSI X9.8 PIN Restrictions. 451
ANSI X9.8 PIN - Enforce PIN block restrictions 451
ANSI X9.8 PIN - Allow modification of PAN 452
ANSI X9.8 PIN - Allow only ANSI PIN blocks 452
ANSI X9.8 PIN – Use stored decimalization
tables only 452

The PIN Profile. 453
PIN Block Format 453
Enhanced PIN Security Mode 455
Format Control 456
Pad Digit 456
Current Key Serial Number 457
Decimalization Tables 458

Clear PIN Encrypt (CSNBCPE and CSNECPE) . . 458
Format 459
Parameters 459
Restrictions 461
Usage Notes. 461
Access Control Point 461
Required Hardware 461

Clear PIN Generate (CSNBPGN and CSNEPGN) 462
Format 462
Parameters 462
Usage Notes. 465
Access Control Points 465
Required Hardware 466
Related Information 466

Clear PIN Generate Alternate (CSNBCPA and
CSNECPA) 466

Format 467
Parameters 467
Usage Notes. 471
Access Control Points 471

Required Hardware 471
CVV Key Combine (CSNBCKC and CSNECKC) 472

Format 472
Parameters 472
Restrictions 475
Usage Notes. 475
Access Control Points 476
Required Hardware 476

Encrypted PIN Generate (CSNBEPG and
CSNEEPG) 477

Format 478
Parameters 478
Restrictions 481
Usage Notes. 481
Access Control Points 481
Required Hardware 482

Encrypted PIN Translate (CSNBPTR and
CSNEPTR) 482

Format 483
Parameters 483
Restrictions 487
Usage Notes. 487
Access Control Points 488
Required Hardware 488

Encrypted PIN Verify (CSNBPVR and CSNEPVR) 488
Format 489
Parameters 489
Usage Notes. 493
Access Control Points 493
Required Hardware 493
Related Information 494

PIN Change/Unblock (CSNBPCU and CSNEPCU) 494
Format 495
Parameters 495
Usage Notes. 500
Access Control Points 500
Required Hardware 501

Recover PIN from Offset (CSNBPFO and
CSNEPFO) 501

Format 501
Parameters 502
Usage Notes. 505
Access Control Point 505
Required Hardware 505

Secure Messaging for Keys (CSNBSKY and
CSNESKY) 505

Format 506
Parameters 506
Usage Notes. 509
Access Control Point 509
Required Hardware 509

Secure Messaging for PINs (CSNBSPN and
CSNESPN) 509

Format 510
Parameters 510
Usage Notes. 514
Access Control Point 514
Required Hardware 514

SET Block Compose (CSNDSBC and CSNFSBC) 514
Format 515
Parameters 515

viii z/OS ICSF Application Programmer's Guide

||

||

||

||

||

||

||

||

|
||
||
||
||
||
||

Restrictions 519
Usage Notes. 519
Access Control Point 519
Required Hardware 519

SET Block Decompose (CSNDSBD and CSNFSBD) 520
Format 520
Parameters 521
Restrictions 525
Usage Notes. 525
Access Control Points 525
Required Hardware 525

Transaction Validation (CSNBTRV and CSNETRV) 526
Format 526
Parameters 527
Usage Notes. 529
Access Control Points 529
Required Hardware 530

VISA CVV Service Generate (CSNBCSG and
CSNECSG) 530

Format 531
Parameters 531
Usage Notes. 534
Access Control Point 534
Required Hardware 534

VISA CVV Service Verify (CSNBCSV and
CSNECSV) 535

Format 535
Parameters 535
Usage Notes. 538
Access Control Points 538
Required Hardware 538

Authentication Parameter Generate (CSNBAPG
and CSNEAPG) 539

Format 539
Parameters 540
Usage Notes. 542
Access Control Points 542
Required Hardware 542

Chapter 9. Using Digital Signatures 545
Digital Signature Generate (CSNDDSG and
CSNFDSG) 545

Format 546
Parameters 546
Restrictions 549
Authorization 549
Usage Notes. 550
Access Control Points 550
Required Hardware 550

Digital Signature Verify (CSNDDSV and
CSNFDSV) 551

Format 551
Parameters 552
Restrictions 554
Usage Notes. 554
Access Control Point 554
Required Hardware 555

Chapter 10. Managing PKA
Cryptographic Keys 557
PKA Key Generate (CSNDPKG and CSNFPKG) 557

Format 558
Parameters 558
Restrictions 561
Usage Notes. 561
Access Control Points 561
Required Hardware 562

PKA Key Import (CSNDPKI and CSNFPKI) . . . 563
Format 563
Parameters 563
Restrictions 566
Usage Notes. 566
Access Control Points 566
Required Hardware 566

PKA Key Token Build (CSNDPKB and CSNFPKB) 567
Format 568
Parameters 568
Usage Notes. 578
Required Hardware 578

PKA Key Token Change (CSNDKTC and
CSNFKTC) 578

Format 579
Parameters 579
Usage Notes. 580
Access Control Points 581
Required Hardware 581

PKA Key Translate (CSNDPKT and CSNFPKT) . . 581
Format 582
Parameters 582
Restrictions 585
Access Control Points 585
Required Hardware 585

PKA Public Key Extract (CSNDPKX and
CSNFPKX) 586

Format 586
Parameters 586
Usage Notes. 588
Required Hardware 588

Retained Key Delete (CSNDRKD and CSNFRKD) 589
Format 589
Parameters 589
Usage Notes. 590
Access Control Point 591
Required Hardware 591

Retained Key List (CSNDRKL and CSNFRKL) . . 591
Format 591
Parameters 592
Usage Notes. 594
Access Control Points 594
Required Hardware 594

Chapter 11. Key Data Set Management 595
CKDS Key Record Create (CSNBKRC and
CSNEKRC) 595

Format 595
Parameters 595
Restrictions 596
Usage Notes. 596

Contents ix

||

||

|
||
||
||
||
||
||

||
||

Required Hardware 597
CKDS Key Record Create2 (CSNBKRC2 and
CSNEKRC2) 597

Format 597
Parameters 598
Required Hardware 599

CKDS Key Record Delete (CSNBKRD and
CSNEKRD) 599

Format 600
Parameters 600
Restrictions 601
Usage Notes. 601
Required Hardware 601

CKDS Key Record Read (CSNBKRR and
CSNEKRR) 602

Format 602
Parameters 602
Restrictions 603
Usage Notes. 603
Required Hardware 603

CKDS Key Record Read2 (CSNBKRR2 and
CSNEKRR2) 604

Format 604
Parameters 604
Required Hardware 605

CKDS Key Record Write (CSNBKRW and
CSNEKRW) 606

Format 606
Parameters 606
Restrictions 607
Usage Notes. 607
Required Hardware 608

CKDS Key Record Write2 (CSNBKRW2 and
CSNEKRW2) 608

Format 608
Parameters 609
Usage Notes. 610
Required Hardware 610

Coordinated KDS Administration (CSFCRC and
CSFCRC6) 611

Format 611
Parameters 612
Usage Notes. 614
Required Hardware 614

PKDS Key Record Create (CSNDKRC and
CSNFKRC) 615

Format 615
Parameters 615
Usage Notes. 617
Required Hardware 617

PKDS Key Record Delete (CSNDKRD and
CSNFKRD) 618

Format 618
Parameters 618
Restrictions 619
Usage Notes. 619
Required Hardware 619

PKDS Key Record Read (CSNDKRR and
CSNFKRR) 620

Format 620
Parameters 620

Usage Notes. 622
Required Hardware 622

PKDS Key Record Write (CSNDKRW and
CSNFKRW) 622

Format 623
Parameters 623
Restrictions 624
Usage Notes. 624
Required Hardware 625

Chapter 12. Utilities. 627
Character/Nibble Conversion (CSNBXBC and
CSNBXCB) 627

Format 627
Parameters 627
Usage Notes. 629
Required Hardware 629

Code Conversion (CSNBXEA and CSNBXAE) . . 629
Format 629
Parameters 630
Usage Notes. 631
Required Hardware 631

ICSF Query Algorithm (CSFIQA and CSFIQA6) 632
Format 632
Parameters 632
Usage Notes. 635
Required Hardware 636

ICSF Query Facility (CSFIQF and CSFIQF6) . . . 636
Format 637
Parameters 637
Usage Notes. 658
Required Hardware 658

ICSF Query Facility2 (CSFIQF2 and CSFIQF26) . . 659
Format 659
Parameters 659
Required Hardware 662

SAF ACEE Selection (CSFACEE and CSFACEE6) 662
Format 662
Parameters 662
Usage Notes. 663
Required Hardware 664

X9.9 Data Editing (CSNB9ED) 664
Format 664
Parameters 664
Usage Notes. 665
Required Hardware 666

Chapter 13. Trusted Key Entry
Workstation Interfaces 667
PCI Interface Callable Service (CSFPCI and
CSFPCI6) 667

Format 667
Parameters 668
Usage Notes. 672
Required Hardware 672

Part 3. PKCS #11 Callable Services 675

x z/OS ICSF Application Programmer's Guide

||

||
||
||
||
||
||
||
||
||

|
||
|
||
||
||
||
||

Chapter 14. Using PKCS #11 Tokens
and Objects 677
PKCS #11 Derive multiple keys (CSFPDMK and
CSFPDMK6). 677

Format 678
Parameters 678
Authorization 683
Usage Notes. 684

PKCS #11 Derive key (CSFPDVK and CSFPDVK6) 685
Format 685
Parameters 685
Authorization 689
Usage Notes. 690

PKCS #11 Get attribute value (CSFPGAV and
CSFPGAV6) 691

Format 691
Parameters 691
Authorization 692
Usage Notes. 693

PKCS #11 Generate key pair (CSFPGKP and
CSFPGKP6) 693

Format 694
Parameters 694
Authorization 696
Usage Notes. 696

PKCS #11 Generate secret key (CSFPGSK and
CSFPGSK6) 696

Format 696
Parameters 696
Authorization 699
Usage Notes. 699

PKCS #11 Generate HMAC (CSFPHMG and
CSFPHMG6) 699

Format 699
Parameters 700
Authorization 702
Usage Notes. 703

PKCS #11 Verify HMAC (CSFPHMV and
CSFPHMV6). 703

Format 703
Parameters 703
Authorization 706
Usage Notes. 706

PKCS #11 One-way hash, sign, or verify
(CSFPOWH and CSFPOWH6) 707

Format 707
Parameters 708
Authorization 712
Usage Notes. 713

PKCS #11 Private key sign (CSFPPKS and
CSFPPKS6) 713

Format 713
Parameters 714
Authorization 716
Usage Notes. 716

PKCS #11 Public key verify (CSFPPKV and
CSFPPKV6) 716

Format 716
Parameters 716
Authorization 718
Usage Notes. 718

PKCS #11 Pseudo-random function (CSFPPRF and
CSFPPRF6) 719

Format 719
Parameters 719
Authorization 721
Usage Notes. 721

PKCS #11 Set attribute value (CSFPSAV and
CSFPSAV6) 722

Format 722
Parameters 722
Authorization 723
Usage Notes. 724

PKCS #11 Secret key decrypt (CSFPSKD and
CSFPSKD6) 724

Format 724
Parameters 725
Authorization 729
Usage Notes. 729

PKCS #11 Secret key encrypt (CSFPSKE and
CSFPSKE6) 729

Format 729
Parameters 730
Authorization 734
Usage Notes. 734

PKCS #11 Token record create (CSFPTRC and
CSFPTRC6) 735

Format 736
Parameters 736
Authorization 738
Usage Notes. 739

PKCS #11 Token record delete (CSFPTRD and
CSFPTRD6) 739

Format 739
Parameters 739
Authorization 741
Usage Notes. 741

PKCS #11 Token record list (CSFPTRL and
CSFPTRL6) 741

Format 741
Parameters 742
Authorization 744
Usage Notes. 745

PKCS #11 Unwrap key (CSFPUWK and
CSFPUWK6). 746

Format 746
Parameters 746
Authorization 749
Usage Notes. 749

PKCS #11 Wrap key (CSFPWPK and CSFPWPK6) 749
Format 750
Parameters 750
Authorization 752
Usage Notes. 752

Part 4. Appendixes 753

Appendix A. ICSF and TSS Return and
Reason Codes 755
Return Codes and Reason Codes 755

Return Codes 755

Contents xi

Reason Codes for Return Code 0 (0) 756
Reason Codes for Return Code 4 (4) 757
Reason Codes for Return Code 8 (8) 759
Reason Codes for Return Code C (12) 788
Reason Codes for Return Code 10 (16) 798

Appendix B. Key Token Formats . . . 801
AES Key Token Formats. 802

AES Internal Key Token 802
Token Validation Value 802

DES Key Token Formats. 803
DES Internal Key Token 803
DES External Key Token. 804
External RKX DES Key Token 805
DES Null Key Token 806

Variable-length Symmetric Key Token Formats . . 807
Variable-length Symmetric Key Token 807
Variable-length Symmetric Null Key Token . . 819

PKA Key Token Formats 819
PKA Null Key Token 819
RSA Key Token Formats. 819
ECC Key Token Format 845
Trusted Block Key Token 848

Appendix C. Control Vectors and
Changing Control Vectors with the
CVT Callable Service 865
Control Vector Table 865

Specifying a Control-Vector-Base Value 870
Changing Control Vectors with the Control Vector
Translate Callable Service 875

Providing the Control Information for Testing
the Control Vectors 875
Mask Array Preparation 875
Selecting the Key-Half Processing Mode . . . 877
When the Target Key Token CV Is Null . . . 879
Control Vector Translate Example. 879

Appendix D. Coding Examples 881
C 881
COBOL 884
Assembler H 886
PL/1 888

Appendix E. Cryptographic
Algorithms and Processes. 893
PIN Formats and Algorithms 893

PIN Notation 893
PIN Block Formats 893
PIN Extraction Rules 895
IBM PIN Algorithms 896
VISA PIN Algorithms 902

Cipher Processing Rules 904
CBC and ANSI X3.106 904

ANSI X9.23 and IBM 4700 905
CUSP 906
The Information Protection System (IPS) . . . 906
PKCS Padding Method 907

Wrapping Methods for Symmetric Key Tokens . . 909
ECB Wrapping of DES Keys (Original Method) 909
CBC Wrapping of AES Keys 909
Enhanced CBC Wrapping of DES Keys
(Enhanced Method) 909
Wrapping key derivation for enhanced
wrapping of DES keys 910
Variable length token (AESKW method) . . . 911

PKA92 Key Format and Encryption Process . . . 911
Formatting Hashes and Keys in Public-Key
Cryptography 913

ANSI X9.31 Hash Format 913
PKCS #1 Formats 914

Visa and EMV-related smart card formats and
processes 914

Deriving the smart-card-specific authentication
code 915
Constructing the PIN-block for transporting an
EMV smart-card PIN 915
Deriving the CCA TDES-XOR session key . . . 916
Deriving the EMV TDESEMVn tree-based
session key 916
PIN-block self-encryption 916

Key Test Verification Pattern Algorithms 917
DES Algorithm (single- and double-length keys) 917
SHAVP1 Algorithm 917

Appendix F. EBCDIC and ASCII
Default Conversion Tables 919

Appendix G. Access Control Points
and Callable Services 921

Appendix H. Accessibility 939
Accessibility features 939
Using assistive technologies 939
Keyboard navigation of the user interface 939
Dotted decimal syntax diagrams 939

Notices 943
Policy for unsupported hardware. 944
Minimum supported hardware 945
Programming Interface Information 945
Trademarks 945

Glossary 947

Index 959

xii z/OS ICSF Application Programmer's Guide

Figures

1. Overview of trusted block contents 34
2. Simplified RKX key-token structure 38
3. Trusted block creation 38
4. Exporting keys using a trusted block 39
5. Generating keys using a trusted block. . . . 42
6. Typical flow of callable services for remote key

export 43
7. PKA Key Management 81
8. Control Vector Base Bit Map (Common Bits

and Key-Encrypting Keys) 867
9. Control Vector Base Bit Map (Data Operation

Keys) 868
10. Control Vector Base Bit Map (PIN Processing

Keys and Cryptographic Variable-Encrypting
Keys) 869

11. Control Vector Base Bit Map (Key Generating
Keys) 870

12. Control Vector Translate Callable Service
Mask_Array Processing 877

13. Control Vector Translate Callable Service 878
14. 3624 PIN Generation Algorithm 897
15. GBP PIN Generation Algorithm 898
16. PIN-Offset Generation Algorithm 899
17. PIN Verification Algorithm 901
18. GBP PIN Verification Algorithm 902
19. PVV Generation Algorithm 903

© Copyright IBM Corp. 1997, 2013 xiii

xiv z/OS ICSF Application Programmer's Guide

Tables

1. ICSF Callable Services Naming Conventions 3
2. Standard Return Code Values From ICSF

Callable Services 7
3. Descriptions of Key Types. 21
4. AES EXPORTER strength required for

exporting an HMAC key under an AES
EXPORTER 23

5. Minimum RSA modulus length to adequately
protect an AES key 23

6. Combinations of the Callable Services. . . . 58
7. Summary of ICSF Callable Services 62
8. AES EXPORTER strength required for

exporting an HMAC key under an AES
EXPORTER 74

9. Minimum RSA modulus length to adequately
protect an AES key 74

10. Summary of PKA Key Token Sections 80
11. Summary of PKA Callable Services 84
12. Summary of PKCS #11 callable services 87
13. Clear key import required hardware 96
14. Control vector generate required hardware 100
15. Keywords for Control Vector Translate 103
16. Control vector translate required hardware 104
17. Cryptographic variable encipher required

hardware 107
18. Required access control points for Data key

export 109
19. Data key export required hardware 109
20. Required access control points for Data key

import 112
21. Data key import required hardware 112
22. Rule Array Keywords for Diversified Key

Generate 115
23. Required access control points for Diversified

Key Generate 118
24. Diversified key generate required hardware 119
25. Keywords for ECC Diffie-Hellman 121
26. Valid key bit lengths and minimum curve

size required for the supported output key
types. 126

27. ECC Diffie-Hellman required hardware 127
28. Required access control points for Key Export 131
29. Key export required hardware 132
30. Key Form values for the Key Generate

callable service 134
31. Key Length values for the Key Generate

callable service 135
32. Key lengths for DES keys 135
33. Key lengths for AES keys 136
34. Key Generate Valid Key Types and Key

Forms for a Single Key 140
35. Key Generate Valid Key Types and Key

Forms for a Key Pair 140
36. Required access control points for Key

Generate 142
37. Key generate required hardware 143

38. Keywords for Key Generate2 Control
Information 145

39. Keywords and associated algorithms for
key_type_1 parameter. 147

40. Keywords and associated algorithms for
key_type_2 parameter. 147

41. Key Generate2 valid key type and key form
for one key 151

42. Key Generate2 Valid key type and key forms
for two keys 151

43. Key Generate2 Valid key forms for CIPHER
keys 151

44. AES KEK strength required for generating an
HMAC key under an AES KEK 152

45. Required access control points for Key
Generate2 153

46. Key Generate2 required hardware. 153
47. Required access control points for Key Import 157
48. Key import required hardware 157
49. Keywords for Key Part Import Control

Information 160
50. Required access control points for Key Part

Import 161
51. Key part import required hardware 162
52. Keywords for Key Part Import2 Control

Information 164
53. Required access control points for Key Part

Import2 165
54. Key Part Import2 required hardware 166
55. Keywords for Key Test Control Information 168
56. Key test required hardware 170
57. Keywords for Key Test2 Control Information 172
58. Key Test2 required hardware 175
59. Keywords for Key Test Extended Control

Information 177
60. Key test extended required hardware 179
61. Key type keywords for key token build 181
62. Keywords for Key Token Build Control

Information 182
63. Key types and field lengths for AES keys 184
64. Control Vector Generate and Key Token Build

Control Vector Keyword Combinations . . . 186
65. Key token build required hardware 188
66. Keywords for Key Token Build2 Control

Information 190
67. Key Token Build2 required hardware 196
68. Key translate required hardware 199
69. Key Translate2 Access Control Points 205
70. Key Translate2 required hardware 205
71. Keywords for Multiple Clear Key Import

Rule Array Control Information 207
72. Required access control points for Multiple

Clear Key Import 209
73. Multiple clear key import required hardware 209
74. Keywords for Multiple Secure Key Import

Rule Array Control Information 211

© Copyright IBM Corp. 1997, 2013 xv

||

||

75. Required access control points for Multiple
Secure Key Import 214

76. Multiple secure key import required
hardware 215

77. Keywords for PKA Decrypt 217
78. PKA decrypt required hardware 220
79. Keywords for PKA Encrypt 222
80. PKA encrypt required hardware 224
81. Prohibit export required hardware 226
82. Prohibit export extended required hardware 229
83. Keywords for the Form Parameter 231
84. Keywords for Random Number Generate

Control Information 231
85. Random number generate required hardware 233
86. rule_array keywords 235
87. Structure of values used by RKX 237
88. Values defined for hash algorithm identifier

at offset 24 in the structure for remote key
export 237

89. Transport_key_identifer used by RKX 238
90. Examination of key token for

source_key_identifier 239
91. Remote key export required hardware 242
92. Keywords for Restrict Key Attribute Control

Information 244
93. Restrict Key Attribute required hardware 247
94. Required access control points for Secure Key

Import 250
95. Secure key import required hardware 251
96. Keywords for Secure Key Import2 Control

Information 253
97. Required access control points for Secure Key

Import2 255
98. Secure Key Import2 required hardware 255
99. Keywords for Symmetric Key Export Control

Information 257
100. Minimum RSA modulus strength required to

contain a PKOAEP2 block when exporting an
AES key 260

101. Required access control points for Symmetric
Key Export 260

102. Symmetric key export required hardware 261
103. Keywords for Symmetric Key Export with

Data (CSNDSXD) 263
104. Required access control points for Symmetric

Key Export with Data. 265
105. Symmetric key export with data required

hardware 265
106. Keywords for Symmetric Key Generate

Control Information 268
107. Required access control points for Symmetric

Key Generate 271
108. Symmetric key generate required hardware 272
109. Keywords for Symmetric Key Import Control

Information 274
110. Required access control points for Symmetric

Key Import 276
111. Symmetric key import required hardware 277
112. Keywords for Symmetric Key Import2

Control Information 280

113. PKCS#1 OAEP encoded message layout
(PKOAEP2) 282

114. Symmetric Key Import2 Access Control
Points 282

115. Symmetric key import2 required hardware 283
116. Rule_array keywords for Trusted Block Create

(CSNDTBC) 285
117. Required access control points for Trusted

Block Create 286
118. Trusted Block Create required hardware 287
119. Keywords for TR-31 Export Rule Array

Control Information 289
120. Valid CCA to TR-31 Export Translations and

Required Access Control Points (ACPs) . . . 294
121. TR-31 export required hardware 301
122. Keywords for TR-31 Import Rule Array

Control Information 303
123. Export attributes of an imported CCA token 308
124. Valid TR-31 to CCA Import Translations and

Required Access Control Points (ACPs) . . . 309
125. TR-31 export required hardware 314
126. TR-31 Optional Data Build required hardware 318
127. Keywords for TR-31 Optional Data Read Rule

Array Control Information 320
128. TR-31 Optional Data Read required hardware 322
129. TR-31 Parse required hardware 326
130. Keywords for Unique Key Derive 328
131. Valid Control Vectors for Derived Keys 333
132. Derivation Variants 334
133. Unique Key Derive required hardware 335
134. Keywords for Ciphertext Translate2 342
135. Restrictions for ciphertext_in_length and

ciphertext_out_length 347
136. Ciphertext translate2 key usage 351
137. Ciphertext translate2 Access Control Points 351
138. Ciphertext translate2 required hardware 352
139. Keywords for the Decipher Rule Array

Control Information 356
140. Decipher required hardware 358
141. Decode required hardware 361
142. Keywords for the Encipher Rule Array

Control Information 365
143. Encipher required hardware 368
144. Encode required hardware 370
145. Symmetric Algorithm Decipher Rule Array

Keywords. 373
146. Symmetric Algorithm Decipher required

hardware 377
147. Symmetric Algorithm Encipher Rule Array

Keywords. 379
148. Symmetric Algorithm Encipher required

hardware 383
149. Symmetric Key Decipher Rule Array

Keywords. 387
150. Required access control points for Symmetric

Key Decipher 392
151. Symmetric Key Decipher required hardware 393
152. Symmetric Key Encipher Rule Array

Keywords. 397
153. Required access control points for Symmetric

Key Encipher 402

xvi z/OS ICSF Application Programmer's Guide

||
||

||

||

|
||
|
||
|
||

154. Symmetric Key Encipher required hardware 403
155. Keywords for HMAC Generate Control

Information 409
156. HMAC Generate Access Control Points 411
157. HMAC generate required hardware 411
158. Keywords for HMAC Verify Control

Information 414
159. HMAC Verify Access Control Points 416
160. HMAC generate required hardware 416
161. Keywords for MAC generate Control

Information 419
162. MAC generate required hardware. 421
163. Keywords for MAC verify Control

Information 424
164. MAC verify required hardware 426
165. Keywords for MDC Generate Control

Information 429
166. MDC generate required hardware. 431
167. Keywords for One-Way Hash Generate Rule

Array Control Information 433
168. One-way hash generate required hardware 435
169. Keywords for symmetric MAC generate

control information 439
170. Symmetric MAC generate required hardware 440
171. Keywords for symmetric MAC verify control

information 443
172. Symmetric MAC verify required hardware 445
173. ANSI X9.8 PIN - Allow only ANSI PIN blocks 452
174. Format of a PIN Profile 453
175. Format Values of PIN Blocks 453
176. PIN Block Format and PIN Extraction

Method Keywords 454
177. Callable Services Affected by Enhanced PIN

Security Mode 456
178. Format of a Pad Digit 456
179. Pad Digits for PIN Block Formats 457
180. Format of the Current Key Serial Number

Field 457
181. Process Rules for the Clear PIN Encryption

Callable Service 460
182. Clear PIN encrypt required hardware 461
183. Process Rules for the Clear PIN Generate

Callable Service 464
184. Array Elements for the Clear PIN Generate

Callable Service 464
185. Array Elements Required by the Process Rule 465
186. Required access control points for Clear PIN

Generate 466
187. Clear PIN generate required hardware 466
188. Rule Array Elements for the Clear PIN

Generate Alternate Service 469
189. Rule Array Keywords (First Element) for the

Clear PIN Generate Alternate Service . . . 469
190. Data Array Elements for the Clear PIN

Generate Alternate Service (IBM-PINO) . . . 470
191. Data Array Elements for the Clear PIN

Generate Alternate Service (VISA-PVV) . . . 471
192. Required access control points for Clear PIN

Generate Alternate 471
193. Clear PIN generate alternate required

hardware 471

194. Keywords for CVV Key Combine Rule Array
Control Information 473

195. Key type combinations for the CVV key
combine callable service 475

196. Wrapping combinations for the CVV
Combine Callable Service 476

197. TR-31 export required hardware 477
198. Process Rules for the Encrypted PIN Generate

Callable Service 479
199. Array Elements for the Encrypted PIN

Generate Callable Service 480
200. Array Elements Required by the Process Rule 480
201. Required access control points for Encrypted

PIN Generate 481
202. Encrypted PIN generate required hardware 482
203. Keywords for Encrypted PIN Translate 485
204. Additional Names for PIN Formats 487
205. Required access control points for Encrypted

PIN Translate 488
206. Encrypted PIN translate required hardware 488
207. Keywords for Encrypted PIN Verify 491
208. Array Elements for the Encrypted PIN Verify

Callable Service 492
209. Array Elements Required by the Process Rule 493
210. Required access control points for Encrypted

PIN Verify 493
211. Encrypted PIN verify required hardware 493
212. Rule Array Keywords for PIN

Change/Unblock 496
213. Required access control points for PIN

Change/Unblock 500
214. PIN Change/Unblock hardware 501
215. Recover PIN from Offset required hardware 505
216. Rule Array Keywords for Secure Messaging

for Keys 507
217. Secure messaging for keys required hardware 509
218. Rule Array Keywords for Secure Messaging

for PINs 511
219. Secure messaging for PINs required hardware 514
220. Keywords for SET Block Compose Control

Information 516
221. SET block compose required hardware 520
222. Keywords for SET Block Compose Control

Information 522
223. Required access control points for PIN-block

encrypting key 525
224. SET block decompose required hardware 526
225. Rule Array Keywords for Transaction

Validation. 528
226. Output description for validation values 529
227. Required access control points for Transaction

Validation. 529
228. Transaction validation required hardware 530
229. CVV Generate Rule Array Keywords 532
230. VISA CVV service generate required

hardware 534
231. CVV Verify Rule Array Keywords 536
232. VISA CVV service verify required hardware 539
233. Authentication Parameter Generate Rule

Array Keywords 541

Tables xvii

||

||

||

||

||

||

||

|
||

234. Access Control Points for Authentication
Parameter Generate (CSNBAPG and
CSNEAPG) 542

235. Authentication Parameter Generate required
hardware 543

236. Keywords for Digital Signature Generate
Control Information 547

237. Digital signature generate required hardware 550
238. Keywords for Digital Signature Verify Control

Information 553
239. Digital signature verify required hardware 555
240. Keywords for PKA Key Generate Rule Array 559
241. Required access control points for PKA Key

Generate rule array keys 561
242. PKA key generate required hardware 562
243. Keywords for PKA Key Import 564
244. PKA key import required hardware 566
245. Keywords for PKA Key Token Build Control

Information 569
246. Key Value Structure Length Maximum Values

for Key Types 570
247. Key Value Structure Elements for PKA Key

Token Build 571
248. PKA key token build required hardware 578
249. Rule Array Keywords for PKA Key Token

Change 580
250. PKA key token change required hardware 581
251. Keywords for PKA Key Generate Rule Array 583
252. Required access control points for PKA Key

Translate 585
253. Required access control points for

source/target transport key combinations . . 585
254. PKA key translate required hardware 586
255. PKA public key extract build required

hardware 588
256. Retained key delete required hardware 591
257. Retained key list required hardware 594
258. CKDS record create required hardware 597
259. CKDS Key Record Create2 required hardware 599
260. CKDS record delete required hardware 601
261. CKDS record read required hardware 603
262. CKDS key record read2 required hardware 605
263. CKDS record write required hardware 608
264. CKDS key record write2 required hardware 610
265. Coordinated KDS administration required

hardware 614
266. PKDS key record create required hardware 617
267. Keywords for PKDS Key Record Delete 619
268. PKDS key record delete required hardware 620
269. PKDS key record read required hardware 622
270. Keywords for PKDS Key Record Write 624
271. PKDS key record write required hardware 625
272. Character/Nibble conversion required

hardware 629
273. Code conversion required hardware 631
274. Keywords for ICSF Query Algorithm 633
275. Output for ICSF Query Algorithm 634
276. ICSF Query Algorithm required hardware 636
277. Keywords for ICSF Query Service. 638
278. Output for option ICSFSTAT 639
279. Output for option ICSFSP11. 642

280. Output for option ICSFST2 642
281. Output for option NUM-DECT 648
282. Output for option STATAES. 648
283. Output for option STATCCA 649
284. Output for option STATCCAE 650
285. Output for option STATCARD 651
286. Output for option STATDECT 652
287. Output for option STATDIAG 653
288. Output for option STATEID 654
289. Output for option STATEXPT 655
290. Output for option STATAPKA 656
291. Output for option WRAPMTHD 657
292. Output for option STATP11 657
293. ICSF Query Service required hardware 659
294. Format of returned ICSF Query Facility 2

data. 661
295. X9.9 data editing required hardware 666
296. Keywords for PCI Interface Callable Service 669
297. PCI Interface required hardware 672
298. Keywords for derive multiple keys 679
299. parms_list parameter format for SSL-KM and

TLS-KM mechanisms 681
300. parms_list parameter format for IKE1PHA1

mechanism 682
301. parms_list parameter format for IKE2PHA1

mechanism 682
302. parms_list parameter format for IKE1PHA2

and IKE2PHA2 mechanisms 683
303. Keywords for derive key. 686
304. parms_list parameter format for PKCS-DH

mechanism 688
305. parms_list parameter format for SSL-MS,

SSL-MSDH, TLS-MS, and TLS-MSDH
mechanisms 688

306. parms_list parameter format for EC-DH
mechanism 688

307. parms_list parameter format for IKESEED,
IKESHARE, and IKEREKEY mechanisms . . 689

308. Get attribute value processing for objects
possessing sensitive attributes 693

309. Keywords for generate secret key 697
310. parms_list parameter format for SSL and TLS

mechanism 698
311. parms_list parameter format for PBEKEY

mechanism 698
312. Keywords for generate HMAC. 700
313. chain_data parameter format 702
314. Keywords for verify HMAC 704
315. chain_data parameter format 706
316. Keywords for one-way hash generate 708
317. chain_data parameter format on input (FIRST

and ONLY for SIGN-PSS and VER-PSS) . . . 711
318. chain_data parameter format on input (FIRST

and ONLY for non-PSS operations) 711
319. chain_data parameter format on output (all

calls) and input (MIDDLE and LAST) . . . 711
320. Keywords for private key sign 715
321. Keywords for public key verify 717
322. Keywords for PKCS #11 Pseudo-random

function 720

xviii z/OS ICSF Application Programmer's Guide

|
|
||
|
||

|
||

|
||

||
||

|
||
|
||
|
||

323. parms_list parameter format for TLS-PRF
mechanism 721

324. Authorization requirements for the set
attribute value callable service 723

325. Keywords for secret key decrypt 725
326. initialization_vector parameter format for

GCM mechanism 727
327. chain_data parameter format 728
328. Keywords for secret key encrypt 731
329. initialization_vector parameter format for

GCM mechanism 732
330. initialization_vector parameter format for

GCMIVGEN mechanism 733
331. chain_data parameter format 733
332. Token record create keywords 737
333. Authorization requirements for the token

record create callable service 738
334. Token record delete keywords 740
335. Authorization requirements for the token

record delete callable service 741
336. Token record list keywords 743
337. Keywords for unwrap key 747
338. Keywords for wrap key 751
339. Return Codes 755
340. Reason Codes for Return Code 0 (0) 756
341. Reason Codes for Return Code 4 (4) 757
342. Reason Codes for Return Code 8 (8) 760
343. Reason Codes for Return Code C (12) 789
344. Reason Codes for Return Code 10 (16) 798
345. Internal Key Token Format 802
346. Internal Key Token Format 803
347. Format of External Key Tokens 804
348. External RKX DES key-token format, version

X'10' 805
349. Format of Null Key Tokens 806
350. Variable-length Symmetric Key Token 807
351. DESUSECV Key-usage fields 810
352. HMAC Algorithm Key-usage fields 810
353. AES Algorithm KEK Key-usage fields 811
354. AES Algorithm Cipher Key Associated Data 814
355. AES and HMAC algorithm key-management

fields 816
356. DESUSECV key-management fields 819
357. Variable-length Symmetric Null Token 819
358. Format of PKA Null Key Tokens 819
359. RSA Public Key Token 820
360. RSA Private External Key Token Basic Record

Format. 821
361. RSA Private Key Token, 1024-bit

Modulus-Exponent external format 821
362. RSA Private Key Token, 4096-bit

Modulus-Exponent external format 822
363. RSA Private Key Token, 4096-bit Chinese

Remainder Theorem external format 824
364. RSA private key, 4096-bit Modulus-Exponent

format with AES encrypted OPK section
(X'30') external form 825

365. RSA private key, 4096-bit Chinese Remainder
Theorem format with AES encrypted OPK
section (X'31') external form. 827

366. RSA Private Key Token, 1024-bit
Modulus-Exponent External Format 829

367. RSA Private Key Token, 4096-bit
Modulus-Exponent External Format 829

368. RSA private key, 4096-bit Modulus-Exponent
format with AES encrypted OPK section
(X'30') external form 831

369. RSA private key, 4096-bit Chinese Remainder
Theorem format with AES encrypted OPK
section (X'31') external form. 832

370. RSA Private Key Token, 4096-bit Chinese
Remainder Theorem External Format . . . 834

371. RSA Private Internal Key Token Basic Record
Format. 836

372. RSA Private Internal Key Token, 1024-bit ME
Form 837

373. RSA Private Internal Key Token, 1024-bit ME
internal form with encrypted blinding . . . 838

374. RSA private key, 4096-bit Modulus-Exponent
format with AES encrypted OPK section
(X'30') internal form 839

375. RSA private key, 4096-bit Chinese Remainder
Theorem format with AES encrypted OPK
section (X'31') internal form 841

376. RSA Private Internal Key Token, 4096-bit
Chinese Remainder Theorem Internal Format . 843

377. ECC Key Token Format 845
378. Associated Data Format for ECC Private Key

Token 848
379. AESKW Wrapped Payload Format for ECC

Private Key Token 848
380. Trusted block sections. 849
381. Trusted block header 851
382. Trusted block trusted RSA public-key section

(X'11') 851
383. Trusted block rule section (X'12') 853
384. Summary of trusted block rule subsection 854
385. Transport key variant subsection (X'0001' of

trusted block rule section (X'12') 855
386. Transport key rule reference subsection

(X'0002') of trusted block rule section (X'12') . 855
387. Common export key parameters subsection

(X'0003') of trusted block rule section (X'12') . 856
388. Source key rule reference subsection (X'0004'

of trusted block rule section (X'12') 857
389. Export key CCA token parameters subsection

(X'0005') of trusted block rule section (X'12') . 858
390. Trusted block key label (name) section X'13' 860
391. Trusted block information section X'14' 860
392. Summary of trusted block information

subsections 861
393. Protection information subsection (X'0001') of

trusted block information section (X'14') . . 861
394. Activation and expiration dates subsection

(X'0002') of trusted block information section
(X'14') 862

395. Trusted block application-defined data section
X'15' 863

396. Default Control Vector Values 865
397. Main Key Type for Bits 8 to 11 870

Tables xix

||

|
||
||

398. Key Subtype for Diversified Key Generating
Keys 871

399. PKA96 Clear DES Key Record 912
400. EBCDIC to ASCII Default Conversion Table 919

401. ASCII to EBCDIC Default Conversion Table 920
402. Access control points affecting multiple

services or requiring special consideration . . 921
403. Access control points – Callable Services 924

xx z/OS ICSF Application Programmer's Guide

About this information

This information supports z/OS version 1 (5694-A01) and z/OS version 2
(5650-ZOS). It describes how to use the callable services provided by the Integrated
Cryptographic Service Facility (ICSF). The z/OS Cryptographic Services includes
these components:
v z/OS Integrated Cryptographic Service Facility (ICSF)
v z/OS Open Cryptographic Services Facility (OCSF)
v z/OS System Secure Socket Level Programming (SSL)
v z/OS Public Key Infrastructure Services (PKI)

ICSF is a software element of z/OS that works with hardware cryptographic
featires and the Security Server RACF to provide secure, high-speed cryptographic
services. ICSF provides the application programming interfaces by which
applications request the cryptographic services.

Who should use this information
This information is intended for application programmers who:
v Are responsible for writing application programs that use the security

application programming interface (API) to access cryptographic functions.
v Want to use ICSF callable services in high-level languages such as C, COBOL,

FORTRAN, and PL/I, as well as in assembler.

How to use this information
ICSF includes Advanced Encryption Standard (AES), Data Encryption Standard
(DES) and public key cryptography. These are very different cryptographic
systems.

These topics focus on IBM CCA programming and include:
v Chapter 1, “Introducing Programming for the IBM CCA,” on page 3 describes

the programming considerations for using the ICSF callable services. It also
explains the syntax and parameter definitions used in callable services.

v Chapter 2, “Introducing Symmetric Key Cryptography and Using Symmetric
Key Callable Services,” on page 13 gives an overview of AES and DES
cryptography and provides general guidance information on how the callable
services use different key types and key forms. It also discusses how to write
your own callable services called installation-defined callable services and
provides suggestions on what to do if there is a problem.

v Chapter 3, “Introducing PKA Cryptography and Using PKA Callable Services,”
on page 73 introduces Public Key Algorithm (PKA) support and describes
programming considerations for using the ICSF PKA callable services, such as
the PKA key token structure and key management.

v Chapter 4, “Introducing PKCS #11 and using PKCS #11 callable services,” on
page 87 gives an overview of PKCS #11 support and management services.

These topics focus on CCA callable services and include:
v Chapter 5, “Managing Symmetric Cryptographic Keys,” on page 93 describes the

callable services for generating and maintaining cryptographic keys and the

© Copyright IBM Corp. 1997, 2013 xxi

random number generate callable service. It also presents utilities to build AES
and DES tokens and generate and translate control vectors and describes the
PKA callable services that support AES and DES key distribution.

v Chapter 6, “Protecting Data,” on page 337 describes the callable services for
deciphering ciphertext from one key and enciphering it under another key. It
also describes enciphering and deciphering data with encrypted keys and
encoding and decoding data with clear keys.

v Chapter 7, “Verifying Data Integrity and Authenticating Messages,” on page 405
describes the callable services for generating and verifying message
authentication codes (MACs), generating modification detection codes (MDCs)
and generating hashes (SHA-1, SHA-2, MD5, RIPEMD-160).

v Chapter 8, “Financial Services,” on page 447 describes the callable services for
generating, verifying, and translating personal identification numbers (PINs). It
also describes the callable services that support the Secure Electronic Transaction
(SET) protocol and those that and generate and verify VISA card verification
values and American Express card security codes.

v Chapter 9, “Using Digital Signatures,” on page 545 describes the PKA callable
services that support using digital signatures to authenticate messages.

v Chapter 10, “Managing PKA Cryptographic Keys,” on page 557 describes the
PKA callable services that generate and manage PKA keys.

v Chapter 11, “Key Data Set Management,” on page 595 describes the callable
services that manage key tokens in the Cryptographic Key Data Set (CKDS) and
the PKA Key Data Set (PKDS).

v Chapter 12, “Utilities,” on page 627 describes callable services that convert data
between EBCDIC and ASCII format, convert between binary strings and
character strings, and query ICSF services and algorithms.

v Chapter 13, “Trusted Key Entry Workstation Interfaces,” on page 667 describes
the PCI interface (PCI) that supports Trusted Key Entry (TKE), an optional
feature available with ICSF.

v Chapter 14, “Using PKCS #11 Tokens and Objects,” on page 677 describes the
callable services for managing the PKCS #11 tokens and objects in the TKDS.

The appendixes include this information:
v Appendix A, “ICSF and TSS Return and Reason Codes,” on page 755 explains

the return and reason codes returned by the callable services.
v Appendix B, “Key Token Formats,” on page 801 describes the formats for AES

key tokens, DES internal, external, and null key tokens and for PKA public,
private external, and private internal key tokens containing either
Rivest-Shamir-Adleman (RSA) or Elliptic Curve Cryptography (ECC)
information. This appendix also describes the PKA null key token.

v Appendix C, “Control Vectors and Changing Control Vectors with the CVT
Callable Service,” on page 865 contains a table of the default control vector
values that are associated with each key type and describes the control
information for testing control vectors, mask array preparation, selecting the
key-half processing mode, and an example of Control Vector Translate.

v Appendix D, “Coding Examples,” on page 881 provides examples for COBOL,
assembler, and PL/1.

v Appendix E, “Cryptographic Algorithms and Processes,” on page 893 describes
the PIN formats and algorithms, cipher processing and segmenting rules,
multiple encipherment and decipherment and their equations, and the PKA92
encryption process.

xxii z/OS ICSF Application Programmer's Guide

|
|
|

|
|
|
|
|

|
|
|
|

v Appendix F, “EBCDIC and ASCII Default Conversion Tables,” on page 919
presents EBCDIC to ASCII and ASCII to EBCDIC conversion tables.

v Appendix G, “Access Control Points and Callable Services,” on page 921 lists
which access control points correspond to which callable services.

v Appendix H, “Accessibility,” on page 939 contains information on accessibility
features in z/OS.

v “Notices” on page 943 contains notices, programming interface information, and
trademarks.

Where to find more information
The publications in the z/OS ICSF library include:
v z/OS Cryptographic Services ICSF Overview

v z/OS Cryptographic Services ICSF Administrator's Guide

v z/OS Cryptographic Services ICSF System Programmer's Guide

v z/OS Cryptographic Services ICSF Application Programmer's Guide

v z/OS Cryptographic Services ICSF Messages

v z/OS Cryptographic Services ICSF Writing PKCS #11 Applications

Related Publications
v z/OS Cryptographic Services ICSF TKE Workstation User's Guide

v z/OS MVS Programming: Callable Services for High-Level Languages

v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

v z/OS Security Server RACF Command Language Reference

v z/OS Security Server RACF Security Administrator's Guide

v IBM Common Cryptographic Architecture (CCA) Basic Services API

This publication can be obtained in PDF format from the Library page at
http://www.ibm.com/security/cryptocards.

About this information xxiii

xxiv z/OS ICSF Application Programmer's Guide

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS ICSF Application Programmer's Guide
SC14-7508-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1997, 2013 xxv

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xxvi z/OS ICSF Application Programmer's Guide

Summary of Changes

ICSF is an element of z/OS, but provides independent ICSF releases as web
deliverables. These web deliverables are identified by their FMID. Each release of
z/OS includes a particular ICSF FMID level as part of its base.

This document contains terminology, maintenance, and editorial changes to
improve consistency and retrievability. Technical changes or additions to the text
and illustrations are indicated by a vertical line to the left of the change.

Changes made in Cryptographic Support for z/OS V1R13-V2R1 (FMID
HCR77A1)

This document contains information previously presented in z/OS ICSF Application
Programmer’s Guide, SA22-7522-16.

This document is for ICSF FMID HCR77A1. This release of ICSF runs on z/OS
V1R13, and z/OS V2R1 and only on zSeries hardware.

New information
v A new callable service, SAF ACEE Selection (CSFACEE and CSFACEE6), has

been added allowing the caller to provide the ENVR to use for SAF checks.
v A new callable service, Symmetric Key Export with Data (CSNDSXD and

CSNFSXD), has been added to export a symmetric key, along with some
application supplied data, encrypted using an RSA key.

v A new callable service, Athentication Parameter Generate (CSNBAPG and
CSNEAPG), has been added to generate an authentication parameter (AP) and
return it encrypted using the key supplied in the with the
AP_encrypting_key_identifier parameter.

v A new callable service, Recover PIN from Offset (CSNBPFO and CSNEPFO), has
been added to calculate the encrypted customer-entered PIN from a PIN
generating key, account information, and an IBM-PIN0 Offset.

v A new callable service, ICSF Query Facility2 (CSFIQF2 and CSFIQF26), has been
added to retrieve status information on the cryptographic environment as
currently known to ICSF.

v The “ISO Format 3” on page 894 was added to “PIN Formats and Algorithms”
on page 893 in Appendix E, “Cryptographic Algorithms and Processes,” on page
893.

v A new “Payload Format” on page 17 section has been added to “Functions of
the Symmetric Cryptographic Keys” on page 13 in Chapter 2, “Introducing
Symmetric Key Cryptography and Using Symmetric Key Callable Services,” on
page 13

Changed information
v The PKCS #11 Unwrap key (CSFPUWK and CSFPUWK6)and PKCS #11 Wrap

key (CSFPWPK and CSFPWPK6)services have been updated to indicate that
PCKS 8 formatting allows wrapping/unwrapping of symmetric keys with
symmetric keys.

v The Coordinated KDS Administration (CSFCRC and CSFCRC6) callable service
has been updated to perform a coordinated KDS conversion.

© Copyright IBM Corp. 1997, 2013 xxvii

v The Remote Key Export (CSNDRKX and CSNFRKX) callable service has been
updated with information regarding wrapping mode of output keys.

v The Unique Key Derive (CSNBUKD and CSNEUKD) callable service has been
updated with new information regarding the Initial Pin Encryption Key (IPEK).

v The Random Number Generate (CSNBRNG, CSNERNG, CSNBRNGL and
CSNERNGL) cxallable service has been updated with a new usage note
regarding the CSF.CSFSERV.AUTH.CSFRNG.DISABLE SAF resource profile.

v The PKCS #11 Pseudo-random function (CSFPPRF and CSFPPRF6) callable
service has been updated with a new usage note regarding the
CSF.CSFSERV.AUTH.CSFRNG.DISABLE SAF resource profile.

v The One-Way Hash Generate (CSNBOWH or CSNBOWH1 and CSNEOWH or
CSNEOWH1) callable service has been updated with a new usage note
regarding the CSF.CSFSERV.AUTH.CSFRNG.DISABLE SAF resource profile.

v The PKCS #11 One-way hash, sign, or verify (CSFPOWH and CSFPOWH6)
callable service has been updated with a new usage note regarding the
CSF.CSFSERV.AUTH.CSFRNG.DISABLE SAF resource profile.

v The ICSF Query Facility (CSFIQF and CSFIQF6), Output for option ICSFSTAT
table has been updated with a new IVSF status field.

v The PKCS #11 One-way hash, sign, or verify (CSFPOWH and CSFPOWH6)
callable service has been updated for RSA-PKCS PSS hashing method.

v The PKCS #11 Derive key (CSFPDVK and CSFPDVK6) callable service rule-array
parameter and usage notes have been updated.

v The PCI Interface Callable Service (CSFPCI and CSFPCI6) callable service
rule-array parameter and usage notes have been updated.

v The Symmetric MAC Generate (CSNBSMG or CSNBSMG1 and CSNESMG or
CSNESMG1) callable service has been updated for the KEY-DRV keyword.

v The Symmetric MAC Verify (CSNBSMV or CSNBSMV1 and CSNESMV or
CSNESMV1) callable service has been updated for the KEY-DRV keyword.

v

Deleted information
v In z/OS V2R1, support for z900/z800 is removed. HCR77A0 ships in the base of

z/OS V2R1 and will continue to support these older hardware environments.
HCR77A1 removes support for the hardware present on z900/z800 (CCF and
PCICC). z990/z890 (PCIXCC and PCICA) will continue to be supported because
HCR77A1 will still run on z/OS V1R13.
Additionally, a number of software functions that rely on the presence of CCF
and PCICC features or do not serve a purpose without these features is
removed, including the Managing Keys According to the ANSI X9.17 Standard
chapter and the Using ICSF with BSAFE appendix.

v The Operational Key Load, and the Operational Key Load - Variable-Length
Tokens, access control points for callable services CSNBOKL / CSNEOKL have
been moved to the CCA coprocessor Access Control Points and Callable Services
appendix of the ICSF Administrator’s Guide.

v Support for the following services has been removed in HCR77A1:
– ANSI X9.17 EDC Generate (CSNAEGN and CSNGEGN)
– ANSI X9.17 Key Export (CSNAKEX and CSNGKEX)
– ANSI X9.17 Key Import (CSNAKIM and CSNGKIM)
– ANSI X9.17 Key Translate (CSNAKTR and CSNGKTR)
– ANSI X9.17 Transport Key Partial Notarize (CSNATKN and CSNGTKN)

xxviii z/OS ICSF Application Programmer's Guide

– Ciphertext Translate (CSNBCTT or CSNBCTT1 and CSNECTT or CSNECTT1)
– Transform CDMF Key (CSNBTCK and CSNETCK)
– User Derived Key (CSFUDK and CSFUDK6)
– PKSC Interface Callable Service (CSFPKSC)

Changes made in Cryptographic Support for z/OS V1R12-R13 (FMID
HCR77A0)

This document contains information previously presented in z/OS ICSF Application
Programmer's Guide, SA22-7522-15.

This document is for ICSF FMID HCR77A0. This release of ICSF runs on z/OS
V1R11, z/OS V1R12, and z/OS V1R13 and only on zSeries hardware.

New information
v Added information for the Crypto Express4 feature, which can be configured as

a CCA coprocessor (CEX4C), a Enterprise PKCS #11 coprocessor (CEX4P), or an
accelerator (CEX4A).

v A new callable service, Unique Key Derive (CSFBUKD and CSFEUKD) has been
added to perform the key derivation process using a base derivation key and
derivation data as inputs for increased support for the Derived Unique Key Per
Transaction (DUKPT) key-management scheme as described in ANSI X9.24 Part
1.

v A new callable service, Cipher Text Translate2 (CSNBCTT2, CSNBCTT3,
CSNECTT2, CSNECTT3), has been added to translate cipher text. This new
service supports both AES and DES algorithms and different encryption modes.

v Added a set of access control points in the domain role to control the wrapping
of keys. ICSF administrators can use these access control points to ensure that a
key is not wrapped with a key weaker than itself.

Changed information
v Clear Key Import (CSNBCKI and CSNECKI)
v Control Vector Generate (CSNBCVG and CSNECVG)
v Coordinated KDS Administration Callable Service (CSFCRC and CSFCRC6)
v Data Key Export (CSNBDKX and CSNEDKX)
v Data Key Import (CSNBDKM and CSNEDKM)
v Diversified Key Generate (CSNBDKG and CSNEDKG)
v ECC Diffie-Hellman (CSNDEDH and CSNFEDH)
v Key Export (CSNBKEX and CSNEKEX)
v Key Generate (CSNBKGN and CSNEKGN)
v Key Generate2 (CSNBKGN2 and CSNEKGN2)
v Key Import (CSNBKIM and CSNEKIM)
v Key Token Build (CSNBKTB and CSNEKTB)
v Key Token Build2 (CSNBKTB2 and CSNEKTB2)
v Key Translate (CSNBKTR and CSNEKTR)
v Key Translate2 (CSNBKTR2 and CSNEKTR2)
v Multiple Clear Key Import (CSNBCKM and CSNECKM) v Multiple Secure Key

Import (CSNBSKM and CSNESKM)
v PIN Change/Unblock (CSNBPCU and CSNEPCU)

Summary of Changes xxix

v PKA Decrypt (CSNDPKD and CSNFPKD)
v Random Number Generate (CSNBRNG, CSNERNG, CSNBRNGL and

CSNERNGL)
v Remote Key Export (CSNDRKX and CSNFRKX)
v Restrict Key Attribute (CSNBRKA and CSNERKA)
v Secure Key Import (CSNBSKI and CSNESKI)
v Secure Key Import2 (CSNBSKI2 and CSNESKI2)
v Symmetric Key Export (CSNDSYX and CSNFSYX)
v Symmetric Key Generate (CSNDSYG and CSNFSYG)
v Symmetric Key Import (CSNDSYI and CSNFSYI)
v Symmetric Key Import2 (CSNDSYI2 and CSNFSYI2)
v Transaction Validation (CSNBTRV and CSNETRV)
v TR-31 Export (CSNBT31X and CSNET31X)
v TR-31 Import (CSNBT31I and CSNET31I)
v Digital Signature Generate (CSNDDSG and CSNFDSG)
v Digital Signature Verify (CSNDDSV and CSNFDSV)
v PKA Key Generate (CSNDPKG and CSNFPKG)
v PKA Key Import (CSNDPKI and CSNFPKI)
v PKA Key Token Build (CSNDPKB and CSNFPKB)
v PKA Key Token Change (CSNDKTC and CSNFKTC)
v PKA Key Translate (CSNDPKT and CSNFPKT)
v Coordinated KDS Administration (CSFCRC and CSFCRC6)
v ICSF Query Facility (CSFIQF and CSFIQF6)
v PCI Interface Callable Service (CSFPCI and CSFPCI6)
v PKCS #11 Generate secret key (CSFPGSK and CSFPGSK6)
v PKCS #11 Verify HMAC (CSFPHMV and CSFPHMV6)
v PKCS #11 Private key sign (CSFPPKS and CSFPPKS6)
v PKCS #11 Public key verify (CSFPPKV and CSFPPKV6)
v PKCS #11 Pseudo-random function (CSFPPRF and CSFPPRF6)
v PKCS #11 Secret key encrypt (CSFPSKE and CSFPSKE6)
v PKCS#11 Secret key decrypt (CSFPSKD and CSFPSKD6)
v PKCS #11 Token record create (CSFPTRC and CSFPTRC6)
v PKCS #11 Unwrap key (CSFPUWK and CSFPUWK6)
v PKCS #11 Wrap key (CSFPWPK and CSFPWPK6)

Changes made in Cryptographic Support for z/OS V1R11-R13 (FMID
HCR7790)

This document contains information previously presented in z/OS ICSF Application
Programmer's Guide, SA22-7522-14.

This document is for ICSF FMID HCR7790. This release of ICSF runs on z/OS
V1R11, z/OS V1R12, and z/OS V1R13 and only on zSeries hardware.

New information
v Added support for the TR-31 key block format defined by the American

National Standards Institute (ANSI). ICSF enables applications to convert a CCA

xxx z/OS ICSF Application Programmer's Guide

token to a TR-31 key block for export to another party, and to convert an
imported TR-31 key block to a CCA token. This enables you to securely
exchange keys and their attributes with non-CCA systems. The following
callable services have been added to provide this support:
– TR-31 Export (CSNBT31X and CSNET31X)
– TR-31 Import (CSNBT31I and CSNET31I) TR-31
– TR-31 Parse (CSNBT31P and CSNET31P) TR-31
– TR-31 Optional Data Read (CSNBT31R and CSNET31R)
– TR-31 Optional Data Build (CSNBT31O and CSNET31O)

v Added new callable service, CVV key combine (CSNBCKC and CSNECKC). This
callable service combines 2 single-length CCA internal key tokens into 1
double-length CCA key token containing a CVVKEY-A key type for use with the
VISA CVV Service Generate or VISA CVV Service Verify callable services. This
combined double-length key satisfies current VISA requirements and eases
translation between TR-31 and CCA formats for CVV keys. See “CVV Key
Combine (CSNBCKC and CSNECKC)” for more information.

v Added support for coordinated and dynamic update of a CKDS. The new
callable service Coordinated KDS Administration (CSFCRC and CSFCRC6)
which performs a CKDS refresh or reencipher operation while allowing
applications to update the CKDS. In a sysplex environment, this callable service
enables an application to perform a coordinated sysplex-wide refresh or
reencipher operation from a single ICSF instance.

v Added new callable service ECC Diffie-Hellman (CSNDEDH and CSNFEDH),
which applications can use to create symmetric key material from a pair of ECC
keys using the Elliptic Curve Diffie-Hellman protocol and the static unified
model key agreement scheme.

v A new health check, ICSFMIG_DEPRECATED_SERV_WARNINGS, has been
added to the Health Checker to detect the use of services that will not be
supported in subsequent releases: The deprecated services checked in this
release are listed below. These are not supported on post zSeries 900 hardware,
and will not be supported in subsequent releases of ICSF.
– ANSI X9.17 EDC Generate
– ANSI X9.17 Key Export
– ANSI X9.17 Key Import
– ANSI X9.17 Key Translate
– ANSI X9.17 Transport Key Partial Notarize
– Ciphertext Translate
– Ciphertext Translate with ALET
– Transform CDMF Key
– User Derived Key
– PKSC Interface Callable Service

You should use the ICSFMIG_DEPRECATED_SERV_WARNINGS check to
determine if these services are being used. For more information on this health
check, refer to z/OS Cryptographic Services ICSF Administrator's Guide.

Changed information
v CKDS Key Record Write2 (CSNBKRW2 and CSNEKRW2)
v Clear PIN Generate (CSNBPGN and CSNEPGN)
v Clear PIN Generate Alternate (CSNBCPA and CSNECPA)
v Control Vector Generate (CSNBCVG and CSNECVG)

Summary of Changes xxxi

v Digital Signature Verify (CSNDDSV and CSNFDSV)
v Encrypted PIN Generate (CSNBEPG and CSNEEPG)
v Encrypted PIN Verify (CSNBPVR and CSNEPVR)
v ICSF Query Facility (CSFIQF and CSFIQF6)
v Key Generate2 (CSNBKGN2 and CSNEKGN2)
v Key Part Import2 (CSNBKPI2 and CSNEKPI2)
v Key Test2 (CSNBKYT2 and CSNEKYT2)
v Key Token Build (CSNBKTB and CSNEKTB)
v Key Token Build2 (CSNBKTB2 and CSNEKTB2)
v Key Translate2 (CSNBKTR2 and CSNEKTR2)
v PKDS Key Record Create (CSNDKRC and CSNFKRC)
v PKDS Key Record Delete (CSNDKRD and CSNFKRD)
v PKDS Key Record Read (CSNDKRR and CSNFKRR)
v PKDS Key Record Write (CSNDKRW and CSNFKRW)
v PKA Decrypt (CSNDPKD and CSNFPKD)
v PKA Encrypt (CSNDPKE and CSNFPKE)
v PKA Key Generate (CSNDPKG and CSNFPKG)
v PKA Key Import (CSNDPKI and CSNFPKI)
v PKA Key Token Change (CSNDKTC and CSNFKTC)
v Restrict Key Attribute (CSNBRKA and CSNERKA)
v Secure Key Import2 (CSNBSKI2 and CSNESKI2)
v Symmetric Algorithm Decipher (CSNBSAD or CSNBSAD1 and CSNESAD or

CSNESAD1)
v Symmetric Algorithm Encipher (CSNBSAE or CSNBSAE1 and CSNESAE or

CSNESAE1)
v Symmetric Key Import2 (CSNDSYI2 and CSNFSYI2)
v Symmetric Key Generate (CSNDSYG and CSNFSYG)
v Symmetric Key Import (CSNDSYI and CSNFSYI)
v Symmetric Key Export (CSNDSYX and CSNFSYX)
v VISA CVV Service Generate (CSNBCSG and CSNECSG)
v VISA CVV Service Verify (CSNBCSV and CSNECSV)

For clarity:
v CSNBKRC and CSNEKRC, which had been referred to as the "Key Record

Create" service, are now referred to as the "CKDS Key Record Create" service
v CSNBKRC2 and CSNEKRC2, which had been referred to as the "Key Record

Create2" service, are now referred to as the "CKDS Key Record Create2" service
v CSNBKRD and CSNEKRD, which had been referred to as the "Key Record

Delete" service, are now referred to as the "CKDS Key Record Delete" service
v CSNBKRR and CSNEKRR, which had been referred to as the "Key Record Read"

service, are now referred to as the "CKDS Key Record Read" service
v CSNBKRR2 and CSNEKRR2, which had been referred to as the "Key Record

Read2" service, are now referred to as the "CKDS Key Record Read2" service
v CSNBKRW and CSNEKRW, which had been referred to as the "Key Record

Write" service, are now referred to as the "CKDS Key Record Write" service
v CSNBKRW2 and CSNEKRW2, which had been referred to as the "Key Record

Write2" service, are now referred to as the "CKDS Key Record Write2" service

xxxii z/OS ICSF Application Programmer's Guide

v CSNDKRC and CSNFKRC, which had been referred to as the "PKDS Record
Create" service, are now referred to as the "PKDS Key Record Create" service

v CSNDKRD and CSNFKRD, which had been referred to as the "PKDS Record
Delete" service, are now referred to as the "PKDS Key Record Delete" service

v CSNDKRR and CSNFKRR, which had been referred to as the "PKDS Record
Read" service, are now referred to as the "PKDS Key Record Read" service

v CSNDKRW and CSNFKRW, which had been referred to as the "PKDS Record
Write" service, are now referred to as the "PKDS Key Record Write" service

References to the IBM Eserver zSeries 800 (z800) do not appear in this information.
Be aware that the documented notes and restrictions for the IBM Eserver zSeries
900 (z900) also apply to the z800.

Summary of Changes xxxiii

xxxiv z/OS ICSF Application Programmer's Guide

Part 1. IBM CCA Programming

IBM CCA Programming introduces programming for the IBM CCA, including AES.
DES, RSA and ECC cryptography. It explains how to use these callable services.

© Copyright IBM Corp. 1997, 2013 1

|
|

2 z/OS ICSF Application Programmer's Guide

Chapter 1. Introducing Programming for the IBM CCA

ICSF provides access to cryptographic functions through callable services, which
are also known as verbs. A callable service is a routine that receives control using a
CALL statement in an application language.

Prior to invoking callable services in an application program, you must link them
into the application program. See “Linking a Program with the ICSF Callable
Services” on page 12.

To invoke the callable service, the application program must include a procedure
call statement that has the entry point name and parameters for the callable
service. The parameters that are associated with a callable service provide the only
communication between the application program and ICSF.

ICSF Callable Services Naming Conventions
The ICSF callable services generally follow the naming conventions outlined in the
following table.

There are five exceptions where the CSFzzz names would collide and in those
cases, the CSFzzz alias is CSFPzzz instead: PKDS Key Record Create (CSFPKRC),
PKDS Key Record Delete (CSFPKRD), PKDS Key Record Read (CSFPKRR), PKDS
Key Record Write (CSFPKRW), PKA Key Token Change (CSFPKTC),

In the following table, zzz is a 3- or 4-letter service name, such as ENC for the
Encipher service or PKG for the PKA Key Generate service. Not all
CSNBzzz/CSNEzzz services have ALET-qualified entry points (where certain
parameters can be in a dataspace or an address space other than the caller's). See
each specific service for details.

Table 1. ICSF Callable Services Naming Conventions

This callable service
prefix: Identifies:

CSNBzzz / CSFzzz 31-bit

Symmetric Key Services and Hashing Services
CSNBzzz1 / CSFzzz1 31-bit ALET-qualified

CSNEzzz / CSFzzz6 64-bit

CSNEzzz1 / CSFzzz16 64-bit ALET-qualified

CSNDzzz / CSFzzz 31-bit
Asymmetric Key Services

CSNFzzz / CSFzzz6 64-bit

CSFPzzz 31-bit
PKCS #11 Services

CSFPzzz6 64-bit

CSFzzz 31-bit
Utility Services and TKE Workstation Interfaces

CSFzzz6 64-bit

Callable Service Syntax
This publication uses a general call format to show the name of the ICSF callable
service and its parameters. An example of that format is shown here:

© Copyright IBM Corp. 1997, 2013 3

||

||
|

CALL CSNBxxx (return_code,
reason_code,
exit_data_length,
exit_data,
parameter_5,
parameter_6,
.
.
.
parameter_N)

where CSNBxxx is the name of the callable service. The return code, reason code,
exit data length, exit data, parameter 5 through parameter N represent the
parameter list. The call generates a fixed length parameter list. You must supply
the parameters in the order shown in the syntax diagrams. “Parameter Definitions”
on page 6 describes the parameters in more detail.

ICSF callable services can be called from application programs written in a number
of high-level languages as well as assembler. The high-level languages are:
v C
v COBOL
v FORTRAN
v PL/I

The ICSF callable services comply with the IBM Common Cryptographic
Architecture: Cryptographic Application Programming Interface. The services can
be invoked using the generic format, CSNBxxx. Use the generic format if you want
your application to work with more than one cryptographic product. The format
CSFxxxx can be used in place of CSNBxxx. Otherwise, use the CSFxxxx format.

Specific formats for the languages that can invoke ICSF callable services are as
follows:
v C

CSNBxxxx (return_code,reason_code,exit_data_length,exit_data,
parameter_5,...parameter_N)

v COBOL
CALL 'CSNBxxxx' USING return_code,reason_code,exit_data_length,
exit_data,parameter_5,...parameter_N

v FORTRAN
CALL CSNBxxxx (return_code,reason_code,exit_data_length,exit_data,
parameter_5,...parameter_N)

v PL/I
DCL CSNBxxxx ENTRY OPTIONS(ASM);
CALL CSNBxxxx return_code,reason_code,exit_data_length,exit_data,
parameter_5,...parameter_N;

v Assembler language programs must use standard linkage conventions when
invoking ICSF callable services. An example of how an assembler language
program can invoke a callable service is shown as follows:
CALL CSNBxxxx,(return_code,reason_code,exit_data_length,exit_data,
parameter_5,...parameter_N)

Coding examples using the high-level languages are shown in Appendix D,
“Coding Examples,” on page 881.

4 z/OS ICSF Application Programmer's Guide

Callable Services with ALET Parameters
Some callable services have an alternate entry point (with ALET parameters—for
data that resides in data spaces). They are in the format of CSNBxxx1 as shown in
the following table. For the associated 64-bit versions of the callable services
(CSNExxx), the ALET-qualified versions are in the format CSNExxx1.

Verb
Callable Service without
ALET

Callable Service with
ALET

Ciphertext Translate2 CSNBCTT2 CSNBCTT3

Decipher CSNBDEC CSNBDEC1

Encipher CSNBENC CSNBENC1

HMAC Generate CSNBHMG CSNBHMG1

HMAC Verify CSNBHMV CSNBHMV1

MAC generate CSNBMGN CSNBMGN1

MAC verify CSNBMVR CSNBMVR1

MDC generate CSNBMDG CSNBMDG1

One way hash generate CSNBOWH CSNBOWH1

Symmetric algorithm decipher CSNBSAD CSNBSAD1

Symmetric algorithm encipher CSNBSAE CSNBSAE1

Symmetric key decipher CSNBSYD CSNBSYD1

Symmetric key encipher CSNBSYE CSNBSYE1

Symmetric MAC generate CSNBSMG CSNBSMG1

Symmetric MAC verify CSNBSMV CSNBSMV1

When choosing which service to use, consider the fact that:
v Callable services that do not have an ALET parameter require data to reside in

the caller's primary address space. A program using these services adheres to the
IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface.

v Callable services that have an ALET parameter allow data to reside either in the
caller's primary address space or in a data space. This can allow you to encipher
more data with one call. However, a program using these services does not
adhere to the IBM Common Cryptographic Architecture: Cryptographic
Application Programming Interface, and may need to be modified prior to
running with other cryptographic products that follow this programming
interface.

Rules for Defining Parameters and Attributes
These rules apply to the callable services:
v Parameters are required and positional.
v Each parameter list has a fixed number of parameters.
v Each parameter is defined as an integer or a character string. Null pointers are

not acceptable for any parameter.
v Keywords passed to the callable services, such as CLEAR, CBC, and FIRST can

be in lower, upper, or mixed case. The callable services fold them to uppercase
prior to using them.

Chapter 1. Introducing Programming for the IBM CCA 5

|||

|
|
|

Each callable service defines its own list of parameters. The entire list must be
supplied on every call. If you do not use a specific parameter, you must supply
that parameter with hexadecimal zeros or binary zeros.

Parameters are passed to the callable service. All information that is exchanged
between the application program and the callable service is through parameters
passed on the call.

Each parameter definition begins with the direction that the data flows and the
attributes that the parameter must possess (called “type”). This describes the
direction.

Direction
Meaning

Input The application sends (supplies) the parameter to the callable service. The
callable service does not change the value of the parameter.

Output
The callable service returns the parameter to the application program. The
callable service may have changed the value of the parameter on return.

Input/Output
The application sends (supplies) the parameter to the callable service. The
callable service may have changed the value of the parameter on return.

This describes the attributes or type.

Type Meaning

Integer (I)
A 4-byte (32-bit), twos complement, binary number that has sign
significance.

String A series of bytes where the sequence of the bytes must be maintained.
Each byte can take on any bit configuration. The string consists only of
data bytes. No string terminators, field-length values, or type-casting
parameters are included. The maximum size of a string is X'7FFFFFFF' or 2
gigabytes. In some of the callable services, the length of some string data
has an upper bound defined by the installation. The upper bound of a
string can also be defined by the service.

Alphanumeric character string
A string of bytes in which each byte represents characters from this set:

EBCDIC EBCDIC EBCDIC
Character Value Character Value Character Value

A-Z (X’4D’ / X’61’
a-z) X’5D’ , X’6B’
0-9 + X’4E’ % X’6C’
Blank X’40’ & X’50’ ? X’6F’
* X’5C’ . X’4B’ : X’7A’
< X’4C’ ; X’5E’ = X’7E’
> X’6E’ - X’60’ ’ X’7D’

Parameter Definitions
This topic describes these parameters, which are used by most of the callable
services:
v Return_code

v Reason_code

6 z/OS ICSF Application Programmer's Guide

v Exit_data_length

v Exit_data

v Key_identifier

Note: The return_code parameter, the reason_code parameter, the exit_data_length
parameter, and the exit_data parameter are required with every callable service.

Return and Reason Codes
Return_code and reason_code parameters return integer values upon completion of
the call.

Return_code
The return code parameter contains the general results of processing as an
integer.

Table 2 shows the standard return code values that the callable services return.
A complete list of return codes is shown in Appendix A, “ICSF and TSS Return
and Reason Codes,” on page 755.

Table 2. Standard Return Code Values From ICSF Callable Services

Value Hex (Decimal) Meaning

00 (00) Successful. Normal return.

04 (04) A warning. Execution was completed with a minor, unusual
event encountered.

08 (08) An application error occurred. The callable service was
stopped due to an error in the parameters. Or, another
condition was encountered that needs to be investigated.

0C (12) Error. ICSF is not active or an environment error was detected.

10 (16) System error. The callable service was stopped due to a
processing error within the software or hardware.

Generally, PCF macros will receive identical error return codes if they execute
on PCF or on ICSF. A single exception has been noted: if a key is installed on
the ICSF CKDS with the correct label but with the wrong key type, PCF issues
a return code of 8, indicating that the key type was incorrect. ICSF issues a
return code of 12, indicating that the key could not be found.

Reason_code
The reason code parameter contains the results of processing as an integer. You
can specify which set of reason codes (ICSF or TSS) are returned from callable
services. The default value is ICSF. For more information about the
REASONCODES installation option, see z/OS Cryptographic Services ICSF
System Programmer's Guide. Different results are assigned to unique reason code
values under a return code.

A list of reason codes is shown in Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755.

Exit Data Length and Exit Data
The exit_data_length and exit_data parameters are described here. The parameters
are input to all callable services. Although all services require these parameters,
several services ignore them.

Exit_data_length
The integer that has the string length of the data passed to the exit. The data is
identified in the exit_data parameter.

Chapter 1. Introducing Programming for the IBM CCA 7

Exit_data
The installation exit data string that is passed to the callable service's
preprocessing exit. The installation exit can use the data for its own processing.

ICSF provides two installation exits for each callable service. The preprocessing exit
is invoked when an application program calls a callable service, but prior to when
the callable service starts processing. For example, this exit is used to check or
change parameters passed on the call or to stop the call. It can also be used to
perform additional security checks.

The post-processing exit is invoked when the callable service has completed
processing, but prior to when the callable service returns control to the application
program. For example, this exit can be used to check and change return codes from
the callable service or perform clean-up processing.

For more information about the exits, see z/OS Cryptographic Services ICSF System
Programmer's Guide.

Key Identifier for Key Token
A key identifier for a key token is an area that contains one of these:
v Key label identifies keys that are in the CKDS or PKDS. Ask your ICSF

administrator for the key labels that you can use.
v Key token can be either an internal key token, an external key token, or a null

key token. Key tokens are generated by an application (for example, using the
key generate callable service), or received from another system that can produce
external key tokens.
An internal key token can be used only on ICSF because the master key
encrypts the key value. Internal key tokens contain keys in operational form
only.
An external key token can be exchanged with other systems because a transport
key that is shared with the other system encrypts the key value. External key
tokens contain keys in either exportable or importable form.
A null key token can be used to import a key from a system that cannot
produce external key tokens. A null key token may contain a key encrypted
under an importer key-encrypting key but does not contain the other
information present in an external key token.

The term key identifier is used to indicate that different inputs are possible for a
parameter. One or more of the previously described items may be accepted by the
callable service.

Key Label: If the first byte of the key identifier is greater than X'40', the field is
considered to be holding a key label. The contents of a key label are interpreted as
a pointer to a CKDS or PKDS key entry. The key label is an indirect reference to an
internal key token.

A key label is specified on callable services with the key_identifier parameter as a
64-byte character string, left-justified, and padded on the right with blanks. In most
cases, the callable service does not check the syntax of the key label beyond the
first byte. One exception is the CKDS key record create callable service which
enforces the KGUP rules for key labels unless syntax checking is bypassed by a
preprocessing exit.

A key label has this form:

8 z/OS ICSF Application Programmer's Guide

|
|
|
|

Offset Length Data

00-63 64 Key label name

There are some general rules for creating labels for CKDS key records.
v Each label can consist of up to 64 characters. The first character must be

alphabetic or a national character (#, $, @). The remaining characters can be
alphanumeric, a national character (#, $, @), or a period (.).

v All alphabetic characters must be upper case (A-Z). All labels in the key data
sets are created with upper case characters.

v Labels must be unique for all key types except EXPORTER, IMPORTER,
PINGEN, PINVER, OPINENC and IPINENC.

v Transport and PIN keys can have duplicate labels for different key types. Keys
that use the dynamic CKDS update services to create or update, however, must
have unique key labels.

v Labels must be unique for any key record, including transport and PIN keys,
created or updated using the dynamic CKDS update services.

Invocation Requirements
Applications that use ICSF callable services must meet these invocation
requirements:
v All output parameters must be in storage that the caller is allowed to modify in

their execution key.
v All input parameters must be in storage that the caller is allowed to read in their

execution key.
v Data can be located higher or lower than 16Mb but must be 31-bit addressable.

Data can be located above 2Gb if the service is invoked in AMODE(64)
v Problem or supervisor state
v Any PSW key
v Task mode or Service Request Block (SRB) mode
v No mode restrictions
v Enabled for interrupts
v No locks held

The exceptions to this list are documented with the individual callable services.

All ICSF callable services support invocation in AMODE(64). Applications which
are written for AMODE(64) operation must be linked with the ICSF 64-bit service
stubs, and must invoke the service with the appropriate service name. (Refer to the
description of the individual callable service to determine the service name to be
used.)

Security Considerations
Your installation can use the Security Server RACF or an equivalent product to
control who can use ICSF callable services or key labels. Prior to using an ICSF
callable service or a key label, ask your security administrator to ensure that you
have the necessary authorization. For more information, see z/OS Security Server
RACF Security Administrator's Guide.

ICSF supports a key store policy using the RACF XFACILIT class. See z/OS Security
Server RACF Security Administrator's Guide.

Chapter 1. Introducing Programming for the IBM CCA 9

|
|

|
|

RACF does not control all services. The usage notes topic in the callable service
description will highlight those services which are not controlled.

Performance Considerations
In most cases, the z/OS operating system dispatcher provides optimum
performance. However, if your application makes extensive use of ICSF functions,
you should consider using Use the IEAAFFN callable service (processor affinity) to
avoid system overhead in selecting which processor your program (specifically, a
particular TCB in the application) runs in. Note that you do not have to use the
IEAAFFN service to ensure that the system runs a program on a processor with a
cryptographic feature; the system ensures that automatically. However, you can
avoid some of the system overhead involved in the selection process by using the
IEAAFFN service, thus improving the program's performance. For more
information on using the IEAAFFN callable service, refer to z/OS MVS
Programming: Callable Services for High-Level Languages.

IBM recommends that you run applications first without using this option.
Consider this option when you are tuning your application for performance. Use
this option only if it improves the performance of your application.

Special Secure Mode
Special secure mode is a special processing mode in which:
v The Secure Key Import, Secure Key Import2, and Multiple Secure Key Import

callable services, which work with clear keys, can be used.
v The Clear PIN Generate callable service, which works with clear PINs, can be

used.
v The key generator utility program (KGUP) can be used to enter clear keys into

the CKDS.

To use special secure mode, the following condition must be met:
v The installation options data set must specify YES for the SSM installation

option or the CSF.SSM.ENABLE SAF profile must be defined in the XFACILIT
SAF resource class.
For information about specifying installation options, see z/OS Cryptographic
Services ICSF System Programmer's Guide.
This is required for all systems.

Using the Callable Services
This topic discusses how ICSF callable services use the different key types and key
forms. It also provides suggestions on what to do if there is a problem.

ICSF provides callable services that perform cryptographic functions. You call and
pass parameters to a callable service from an application program. Besides the
callable services ICSF provides, you can write your own callable services called
installation-defined callable services. Note that only an experienced system
programmer should attempt to write an installation-defined callable service.

To write an installation-defined callable service, you must first write the callable
service and link-edit it into a load module. Then define the service in the
installation options data set.

10 z/OS ICSF Application Programmer's Guide

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

|

You must also write a service stub. To execute an installation-defined callable
service, you call a service stub from your application program. In the service stub,
you specify the service number that identifies the callable service.

For more information about installation-defined callable services, see z/OS
Cryptographic Services ICSF System Programmer's Guide.

When the Call Succeeds
If the return code is 0, ICSF has successfully completed the call. If a reason code
other than 0 is included, refer to Appendix A, “ICSF and TSS Return and Reason
Codes,” on page 755, for additional information. For instance, reason code 10000
indicates the key in the key identifier (or more than one key identifier, for services
that use two internal key identifiers) has been reenciphered from encipherment
under the old master key to encipherment under the current master key. Keys in
external tokens are not affected by this processing because they contain keys
enciphered under keys other than the host master key. If you manage your key
identifiers on disk, then reason code 10000 should be a “trigger” to store these
updated key identifiers back on disk.

Your program can now continue providing its function, but you may want to
communicate the key that you used to another enterprise. This process is exporting
a key.

If you want to communicate the key that you are using to a cryptographic partner,
there are several methods to use:
v For DATA keys only, call the data key export callable service. You now have a

DATA key type in exportable form.
v Call the key export callable service. You now have the key type in exportable

form.
v When you use the key generate callable service to create your operational or

importable key form, you can create an exportable form, at the same time, and
you now have the key type, in exportable form, at the same time as you get the
operational or importable form.

When the Call Does Not Succeed
Now you have planned your use of the ICSF callable services, made the call, but
the service has completed with a return and reason codes other than zero.

If the return code is 4, there was a minor problem. For example, reason code 8004
indicates the trial MAC that was supplied does not match the message text
provided.

If the return code is 8, there was a problem with one of your parameters. Check
the meaning of the reason code value, correct the parameter, and call the service
again. You may go through this process several times prior to succeeding.

If the return code is 12, ICSF is not active, has no access to cryptographic features,
or has an environmental problem. Check with your ICSF administrator.

If the return code is 16, the service has a serious problem that needs the help of
your system programmer.

There are several common reason codes that can occur when you have already
fully debugged and tested your program. For example:

Chapter 1. Introducing Programming for the IBM CCA 11

|
|

v Reason code 10004 indicates that you provided a key identifier that holds a key
enciphered under a host master key. The host master key is not installed in the
cryptographic coprocessor. If this happens, you have to go back and import your
importable key form again and call the service again. You need to build this
flow into your program logic.

v Reason code 10012 indicates a key corresponding to the label that you specified
is not in the CKDS or PKDS. Check with your ICSF administrator to see if the
label is correct.

v Reason code 3063 indicates RACF failed your request to use a token.
v Reason code 16000 indicates RACF failed your request to use a service.
v Reason code 16004 indicates RACF failed your request to use the key label.

Examine your CSFKEYS profiles and key store policies for possible errors.

Return and reason codes are described in Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755.

Linking a Program with the ICSF Callable Services
To link the ICSF callable services into an application program, you can use these
sample JCL statements.In the SYSLIB concatenation, include the CSF.SCSFMOD0
module in the link edit step. This provides the application program access to all
ICSF callable services (those that can be invoked in AMODE(24)/AMODE(31) as
well as those that can be invoked in AMODE(64)).
//LKEDENC JOB
//*---*
//* *
//* The JCL links the ICSF encipher callable service, CSNBENC, *
//* into an application called ENCIPHER. *
//* *
//*---*
//LINK EXEC PGM=IEWL,
// PARM=’XREF,LIST,LET’
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(10,10))
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=CSF.SCSFMOD0,DISP=SHR * SERVICES ARE IN HERE
//SYSLMOD DD DSN=MYAPPL.LOAD,DISP=SHR * MY APPLICATION LIBRARY
//SYSLIN DD DSN=MYAPPL.ENCIPHER.OBJ,DISP=SHR * MY ENCIPHER PROGRAM
// DD *

ENTRY ENCIPHER
NAME ENCIPHER(R)

/*

12 z/OS ICSF Application Programmer's Guide

Chapter 2. Introducing Symmetric Key Cryptography and
Using Symmetric Key Callable Services

The Integrated Cryptographic Service Facility protects data from unauthorized
disclosure or modification. ICSF protects data stored within a system, stored in a
file off a system on magnetic tape, and sent between systems. ICSF also
authenticates the identity of customers in the financial industry and authenticates
messages from originator to receiver. It uses cryptography to accomplish these
functions.

ICSF provides access to cryptographic functions through callable services. A
callable service is a routine that receives control using a CALL statement in an
application language. Each callable service performs one or more cryptographic
functions, including:
v Generating and managing cryptographic keys.
v Enciphering and deciphering data with encrypted keys using the U.S. National

Institute of Standards and Technology (NIST) Data Encryption Standard (DES) or
Advanced Encryption Standard (AES).

v Enciphering and deciphering data with clear keys using either the NIST Data
Encryption Standard (DES), or Advanced Encryption Standard (AES).

v Reenciphering text from encryption under one key to encryption under another
key

v Encoding and decoding data with clear keys
v Generating random numbers
v Ensuring data integrity and verifying message authentication
v Generating, verifying, and translating personal identification numbers (PINs)

that identify a customer on a financial system

This topic provides an overview of the symmetric key cryptographic functions
provided in ICSF, explains the functions of the cryptographic keys, and introduces
the topic of building key tokens. Many services have hardware requirements. See
each service for details.

Functions of the Symmetric Cryptographic Keys
ICSF provides functions to create, import, and export AES, DES, and HMAC keys.
This topic gives an overview of these cryptographic keys. Detailed information
about how ICSF organizes and protects keys is in z/OS Cryptographic Services ICSF
Administrator's Guide.

ICSF supports two types of symmetric key tokens: fixed-length and
variable-length. In fixed-length key tokens, key type and usage are defined by the
control vector. In variable-length key tokens, the key type and usage are defined in
the associated data section. The control vector and associated data section are
cryptographically bound to the encrypted key value in the token.

Key Separation
The cryptographic feature controls the use of keys by separating them into unique
types, allowing you to use a specific type of key only for its intended purpose. For
example, a key used to protect data cannot be used to protect a key.

© Copyright IBM Corp. 1997, 2013 13

|
|
|

An ICSF system has only one DES master key and one AES master key. However,
to provide for key separation, the cryptographic feature automatically encrypts
each type of key in a fixed-length token under a unique variation of the master
key. Each variation of the master key encrypts a different type of key. Although
you enter only one master key, you have a unique master key to encrypt all other
keys of a certain type.

Note: In PCF, key separation applies only to keys enciphered under the master key
(keys in operational form). In ICSF, key separation also applies to keys enciphered
under transport keys (keys in importable or exportable form). This allows the
creator of a key to transmit the key to another system and to enforce its use at the
other system.

Master Key Variant for Fixed-length Tokens
Whenever the master key is used to encipher a key, the cryptographic coprocessor
produces a variation of the master key according to the type of key the master key
will encipher. These variations are called master key variants. The cryptographic
coprocessor creates a master key variant by exclusive ORing a fixed pattern, called
a control vector, onto the master key. A unique control vector is associated with each
type of key. For example, all the different types of data-encrypting, PIN, MAC, and
transport keys each use a unique control vector which is exclusive ORed with the
master key in order to produce the variant. The different key types are described
in “Types of Keys” on page 18.

Each master key variant protects a different type of key. It is similar to having a
unique master key protect all the keys of a certain type.

The master key, in the form of master key variants, protects keys operating on the
system. A key can be used in a cryptographic function only when it is enciphered
under a master key. When systems want to share keys, transport keys are used to
protect keys sent outside of systems. When a key is enciphered under a transport
key, the key cannot be used in a cryptographic function. It must first be brought on
to a system and enciphered under the system's master key, or exported to another
system where it will then be enciphered under that system's master key.

Transport Key Variant for Fixed-length Tokens
Like the master key, ICSF creates variations of a transport key to encrypt a key
according to its type. This allows for key separation when a key is transported off
the system. A transport key variant, also called key-encrypting key variant, is created
the same way a master key variant is created. The transport key's clear value is
exclusive ORed with a control vector associated with the key type of the key it
protects.

Note: To exchange keys with systems that do not recognize transport key variants,
ICSF allows you to encrypt selected keys under a transport key itself, not under
the transport key variant. For more information, see the “Transport keys (or
key-encrypting keys)” list item in “Types of Keys” on page 18.

Key Forms
A key that is protected under the master key is in operational form, which means
ICSF can use it in cryptographic functions on the system.

When you store a key with a file or send it to another system, the key is
enciphered under a transport key rather than the master key because, for security

14 z/OS ICSF Application Programmer's Guide

reasons, the key should no longer be active on the system. When ICSF enciphers a
key under a transport key, the key is not in operational form and cannot be used
to perform cryptographic functions.

When a key is enciphered under a transport key, the sending system considers the
key in exportable form. The receiving system considers the key in importable form.
When a key is reenciphered from under a transport key to under a system's master
key, it is in operational form again.

Enciphered keys appear in three forms. The form you need depends on how and
when you use a key.
v Operational key form is used at the local system. Many callable services can use

an operational key form.
The key token build, key generate, key import, data key import, clear key
import, multiple clear key import, secure key import, and multiple secure key
import callable services can create an operational key form.

v Exportable key form is transported to another cryptographic system. It can only
be passed to another system. The ICSF callable services cannot use it for
cryptographic functions. The key generate, data key export, and key export
callable services produce the exportable key form.

v Importable key form can be transformed into operational form on the local
system. The key import callable service (CSNBKIM) and the Data key import
callable service (CSNBDKM) can use an importable key form. Only the key
generate callable service (CSNBKGN) can create an importable key form. The
secure key import (CSNBSKI) and multiple secure key import (CSNBSKM)
callable services can convert a clear key into an importable key form.

For more information about the key types, see either “Functions of the Symmetric
Cryptographic Keys” on page 13 or the z/OS Cryptographic Services ICSF
Administrator's Guide. See “Key Forms and Types Used in the Key Generate
Callable Service” on page 58 for more information about key form.

DES Key Flow
The conversion from one key to another key is considered to be a one-way flow.
An operational key form cannot be turned back into an importable key form. An
exportable key form cannot be turned back into an operational or importable key
form. The flow of ICSF key forms can only be in one direction:
IMPORTABLE —to→ OPERATIONAL —to→ EXPORTABLE

Key Token
ICSF supports two types of symmetric key tokens: fixed-length and
variable-length. The fixed-length token is a 64-byte field composed of a key value
and control information in the control vector. The variable-length token is
composed of a key value and control information in the associated data section of
the token. The control information is assigned to the key when ICSF creates the
key. The key token can be either an internal key token, an external key token, or a
null key token. Through the use of key tokens, ICSF can:
v Support continuous operation across a master key change
v Control use of keys in cryptographic services

If the first byte of the key identifier is X'01', the key identifier is interpreted as an
internal key token. An internal key token is a token that can be used only on the
ICSF system that created it (or another ICSF system with the same host master
key). It contains a key that is encrypted under the master key.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 15

An application obtains an internal key token by using one of the callable services
such as those listed here. The callable services are described in detail in Chapter 5,
“Managing Symmetric Cryptographic Keys,” on page 93.
v CKDS Key record read and CKDS key record read2
v Clear key import
v Data key import
v Key generate and Key generate2
v Key import
v Key part import and Key part import2
v Key token build and Key token build2
v Multiple secure key import
v Multiple clear key import
v Secure key import and secure key import2
v Symmetric key import2

The master keys may be dynamically changed between the time that you invoke a
service, such as the key import callable service to obtain a key token, and the time
that you pass the key token to the encipher callable service. When a change to the
master key occurs, ICSF reenciphers the caller's key from under the old master key
to under the new master key. A Return Code of 0 with a reason code of 10000
notifies you that ICSF reenciphered the key. For information on reenciphering the
CKDS or the PKDS, see z/OS Cryptographic Services ICSF Administrator's Guide.

Attention: If an internal key token held in user storage is not used while the
master key is changed twice, the internal key token is no longer usable. (See
“Other Considerations” on page 20 for additional information.)

For debugging information, see Appendix B, “Key Token Formats,” on page 801 for
the format of an internal key token.

If the first byte of the key identifier is X'02', the key identifier is interpreted as an
external key token. By using the external key token, you can exchange keys
between systems. It contains a key that is encrypted under a key-encrypting key.

An external key token contains an encrypted key and control information to allow
compatible cryptographic systems to:
v Have a standard method of exchanging keys
v Control the use of keys through the control vector
v Merge the key with other information needed to use the key

An application obtains the external key token by using one of the callable services
such as these listed. They are described in detail in Chapter 5, “Managing
Symmetric Cryptographic Keys,” on page 93.
v Key generate
v Key export
v Data key export
v Symmetric key export

For debugging information, see Appendix B, “Key Token Formats,” on page 801 for
the format of an external key token.

16 z/OS ICSF Application Programmer's Guide

If the first byte of the key identifier is X'00', the key identifier is interpreted as a
null key token. Use the null key token to import a key from a system that cannot
produce external key tokens. That is, if you have an 8- to 16-byte key that has been
encrypted under an importer key, but is not imbedded within a token, place the
encrypted key in a null key token and then invoke the key import callable service
to get the key in operational form.

For debugging information, see Appendix B, “Key Token Formats,” on page 801 for
the format of a null key token.

Key Wrapping
ICSF supports two methods of wrapping the key value in a fixed-length symmetric
key token: ECB wrapping and an enhanced CBC wrapping method which is ANSI
X9.24 compliant.

The key value in AES tokens is always encrypted using AES encryption and cipher
block chaining (CBC) mode.

The key value in DES tokens may be wrapped in two ways:
v The original (ECB) method which has been used by ICSF since it was first

released. For this method, the key value is encrypted using triple DES
encryption and key parts are encrypted separately.

v The enhanced (CBC) method which was added later. For this method, the key
value is bundled with other token data and encrypted using triple DES
encryption and cipher block chaining mode. This enhanced method requires a
IBM zEnterprise 196 or higher with a CEX3C or higher.

Your installation's system programmer can, while customizing installation options
data set as described in the z/OS Cryptographic Services ICSF System Programmer's
Guide, use the DEFAULTWRAP parameter to specify the default key wrapping for
symmetric keys. Application programs can override this default method using the
WRAP-ENH (use enhanced method) and WRAP-ECB (use original ECB
key-wrapping method) rule array keywords.

Note: All variable-length tokens are wrapped using the AESKW wrapping method
defined in ANSI X9.102 and are not affected by the DEFAULTWRAP setting.

Payload Format
Variable-length symmetric key tokens have a payload section that contains the
encrypted key material. Prior to HCR77A1, these tokens used a variable-length
payload which consisted of the encrypted key and padding. HCR77A1 introduces
fixed-length payloads for AES keys which will obscure the length of the encrypted
key in the payload section

Any new AES key types will have the fixed-length payload format. Existing AES
key types (CIPHER, IMPORTER and EXPORTER) will default to use the
variable-length payloads unless keywords indicate the use of the fixed-length
payloads. This ensures compatibility with older releases of ICSF and hardware
where fixed-length payloads are not supported.

The following options are available for AES CIPHER, IMPORTER and EXPORTER
keys:
v New tokens can be created with fixed-length or variable-length payloads by

providing new keywords to CSNBKTB2 or CSNBKGN2.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 17

|

|
|
|
|
|

|
|
|
|
|

|
|

|
|

v Existing tokens can be translated to fixed-length or variable-length payload
format by providing new keywords to CSNBKTR2. To convert to a
variable-length payload, the Key Translate2 - Translate fixed to variable payload
access control point must be enabled.

v Clear keys can be encrypted into tokens with the fixed-length or variable-length
payload format by providing new keywords to CSNBSKI2.

The CKDS Reencipher utility and the CSNDSYX, CSNDSYI2, CSNBKYT2,
CSNBRKA and CSNBKPI2 callable services will maintain the payload format of the
source key token.

Fixed-length payload support requires an IBM zEnterprise EC12 with a CEX3C or
CEX4C and the September 2013 or later Licensed Internal Code (LIC).

Control Vector for DES Keys
For DES keys, a unique control vector exists for each type of key the master key
enciphers. The cryptographic feature exclusive ORs the master key with the control
vector associated with the type of key the master key will encipher. The control
vector ensures that an operational key is only used in cryptographic functions for
which it is intended. For example, the control vector for an input PIN-encrypting
key ensures that such a key can be used only in the Encrypted PIN translate and
Encrypted PIN verify functions.

Types of Keys
The cryptographic keys are grouped into these categories based on the functions
they perform.
v DES master key. The DES master key is a double-length (128 bits) or

triple-length (192 bits) key used only to encrypt other keys. The ICSF
administrator installs and changes the DES master key (see z/OS Cryptographic
Services ICSF Administrator's Guide for details). The administrator does this by
using the Master Key Entry panels or the optional Trusted Key Entry (TKE)
workstation.
The master key always remains in a secure area in the cryptographic facility.
It is used only to encipher and decipher keys. Other keys also encipher and
decipher keys and are mostly used to protect cryptographic keys you transmit
on external links. These keys, while on the system, are also encrypted under the
master key.

v AES master key. The AES master key is a 32–byte (256 bits) key used only to
encrypt other keys. The ICSF administrator installs and changes the AES master
key (see z/OS Cryptographic Services ICSF Administrator's Guide for details). The
administrator does this by using the Master Key Entry panels or the optional
Trusted Key Entry (TKE) workstation.
The master key always remains in a secure area in the cryptographic facility.
It is used only to encipher and decipher keys. Other keys also encipher and
decipher keys and are mostly used to protect cryptographic keys you transmit
on external links. These keys, while on the system, are also encrypted under the
master key.

v AES Data-encrypting keys. The AES data-encrypting keys are 128-, 192- and
256-bits keys that protect data privacy. If you intend to use a data-encrypting
key for an extended period, you can store it in the CKDS so that it will be
reenciphered if the master key is changed.

18 z/OS ICSF Application Programmer's Guide

|
|
|
|

|
|

|
|
|

|
|

v AES Cipher keys. The AES cipher keys are 128-, 192- and 256-bit keys that
protect data privacy. If you intend to use a cipher key for an extended period,
you can store it in the CKDS so that it will be reenciphered if the master key is
changed.

v DES Data-encrypting keys. The DES data-encrypting keys are single-length
(64-bit), double-length (128-bit), or triple-length (192-bit) keys that protect data
privacy. Single-length data-encrypting keys can also be used to encode and
decode data and authenticate data sent in messages. If you intend to use a
data-encrypting key for an extended period, you can store it in the CKDS so that
it will be reenciphered if the master key is changed.
You can use single-length data-encrypting keys in the encipher, decipher, encode,
and decode callable services to manage data and also in the MAC generation
and MAC verification callable services. Double-length and triple-length
data-encrypting keys can be used in the encipher and decipher callable services
for more secure data privacy. DATAC is also a double-length data encrypting
key.

v AES Cipher text translation keys. The cipher-translation keys are 128-, 192- or
256-bit keys used for the cipher text translate2 callable service as either the input
or the output cipher-transport key.

v DES Cipher text translation keys. The cipher-translation keys are double-length
keys used for the cipher text translate2 callable service as either the input or the
output cipher-transport key.

v CIPHER keys. These consist of CIPHER, ENCIPHER and DECIPHER keys. They
are single and double length keys for enciphering and deciphering data.

v HMAC keys. HMAC keys are variable-length (80 - 2048 bits) keys used to
generate and verify MACs using the key-hash MAC algorithm.

v MAC keys. The MAC keys are single- and double-length (64 and 128 bits) keys
used for the callable services that generate and verify MACs.

v PIN keys. The personal identification number (PIN) is a basis for verifying the
identity of a customer across financial industry networks. PIN keys are used in
cryptographic functions to generate, translate, and verify PINs, and protect PIN
blocks. They are all double-length (128 bits) keys. PIN keys are used in the Clear
PIN generate, Encrypted PIN verify, and Encrypted PIN translate callable
services.
For installations that do not support double-length 128-bit keys, effective
single-length keys are provided. For a single-length key, the left key half of the
key equals the right key half.
“Managing Personal Authentication” on page 52 gives an overview of the PIN
algorithms you need to know to write your own application programs.

v AES Transport keys (or key-encrypting keys). Transport keys are also known as
key-encrypting keys. They are used to protect AES and HMAC keys when you
distribute them from one system to another.
There are two types of AES transport keys:
– Exporter key-encrypting key protects keys of any type that are sent from your

system to another system. The exporter key at the originator is the same key
as the importer key of the receiver.

– Importer key-encrypting key protects keys of any type that are sent from
another system to your system. It also protects keys that you store externally
in a file that you can import to your system at another time. The importer
key at the receiver is the same key as the exporter key at the originator.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 19

Note: A key-encrypting key should be as strong or stronger than the key it is
wrapping.

v DES Transport keys (or key-encrypting keys). Transport keys are also known as
key-encrypting keys. They are double-length (128 bits) DES keys used to protect
keys when you distribute them from one system to another.
There are several types of transport keys:
– Exporter or OKEYXLAT key-encrypting key protects keys of any type that are

sent from your system to another system. The exporter key at the originator is
the same key as the importer key of the receiver.

– Importer or IKEYXLAT key-encrypting key protects keys of any type that are
sent from another system to your system. It also protects keys that you store
externally in a file that you can import to your system at another time. The
importer key at the receiver is the same key as the exporter key at the
originator.

– NOCV Importers and Exporters are key-encrypting keys used to transport keys
with systems that do not recognize key-encrypting key variants. There are
some requirements and restrictions for the use of NOCV key-encrypting keys:
- Use of NOCV IMPORTERs and EXPORTERs is controlled by access control

points.
- Only programs in system or supervisor state can use the NOCV

key-encrypting key in the form of tokens in callable services. Any problem
program may use NOCV key-encrypting key with labelnames from the
CKDS.

- NOCV key-encrypting key on the CKDS should be protected by RACF.
- NOCV key-encrypting key can be used to encrypt single or double length

keys with standard CVs for key types DATA, DATAC, DATAM ,DATAMV,
EXPORTER, IKEYXLAT, IMPORTER, IPINENC, single-length MAC,
single-length MACVER, OKEYXLAT, OPINENC, PINGEN and PINVER.

- NOCV key-encrypting keys can be used with triple length DATA keys.
Since DATA keys have 0 CVs, processing will be the same as if the
key-encrypting keys are standard key-encrypting keys (not the NOCV
key-encrypting key).

Note: Transport keys replace local, remote, and cross keys used by PCF.
You use key-encrypting keys to protect keys that are transported using any of
these services: data key export, key export, key import, clear key import,
multiple clear key import, secure key import, multiple secure key import, key
generate, and key translate.
For installations that do not support double-length key-encrypting keys, effective
single-length keys are provided. For an effective single-length key, the clear key
value of the left key half equals the clear key value of the right key half.

v Key-Generating Keys. Key-generating keys are double-length keys used to
derive unique-key-per-transaction keys.

Other Considerations
These are considerations for keys held in the cryptographic key data set (CKDS) or
by applications.
v ICSF ensures that keys held in the CKDS are reenciphered during the master key

change. Keys with a long life span (more than one master key change) should be
stored in the CKDS.

v Keys enciphered under the host DES master key and held by applications are
automatically reenciphered under a new master key as they are used. Keys with

20 z/OS ICSF Application Programmer's Guide

|
|

|
|
|
|

|
|
|
|

a short life span (for example, VTAM SLE data keys) do not need to be stored in
the CKDS. However, if you have keys with a long life span and you do not store
them in the CKDS, they should be enciphered under the importer
key-encrypting key. The importer key-encrypting key itself should be stored in
the CKDS.

Table 3 describes the key types.

Table 3. Descriptions of Key Types

Key Type Meaning

AESDATA Data encrypting key. Use the AES 128-, 192- or 256-bit key to encipher and
decipher data.

AESTOKEN May contain an AES key.

CIPHER v DES: This single or double-length key is used to encrypt or decrypt
data. It can be used in the Encipher and Decipher callable services.

v AES: This 128-, 192- or 256-bit key is used to encrypt or decrypt data. It
can be used in the Symmmetric Algorithm Decipher and Symmetric
Algorithm Encipher callable services.

This 128-, 192, or 256-bit key is used to translate cipher text from one
key to another. It can be used in the Cipher Text Translate2 service.

CIPHERXI DES input cipher text translation key. Use this double-length key to
reencipher text from one data-encrypting key to another.

CIPHERXL DES cipher text translation key. Use this double-length key to reencipher
text from one data-encrypting key to another.

CIPHERXO DES output cipher text translation key. Use this double-length key to
reencipher text from one data-encrypting key to another.

CLRAES Data encrypting key. The key value is not encrypted. Use this AES 128-,
192- or 256-bit key to encipher and decipher data.

CLRDES Data encrypting key. The key value is not encrypted. Use this DES
single-length, double-length, or triple-length key to encipher and decipher
data.

CVARDEC The TSS Cryptographic variable decipher verb uses a CVARDEC key to
decrypt plaintext by using the Cipher Block Chaining (CBC) method. This
is a single-length key.

CVARENC Cryptographic variable encipher service uses a CVARENC key to encrypt
plaintext by using the Cipher Block Chaining (CBC) method. This is a
single-length DES key.

CVARPINE Used to encrypt a PIN value for decryption in a PIN-printing application.
This is a single-length DES key.

CVARXCVL Used to encrypt special control values in DES key management. This is a
single-length DES key.

CVARXCVR Used to encrypt special control values in DES key management. This is a
single-length DES key.

DATA Data encrypting key. Use this DES single-length, double-length, or
triple-length key to encipher and decipher data. Use the AES 128-, 192- or
256-bit key to encipher and decipher data.

DATAC Used to specify a DATA-class DES key that will perform in the Encipher
and Decipher callable services, but not in the MAC Generate or MAC
Verify callable services. This is a double-length key.

DATAM Double-length DES MAC generation key. Used to generate a message
authentication code.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 21

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|

Table 3. Descriptions of Key Types (continued)

Key Type Meaning

DATAMV Double-length DES MAC verification key. Used to verify a message
authentication code.

DECIPHER This single or double-length DES key is used to decrypt data. It can be
used in the Decipher callable service.

DKYGENKY Used to generate a diversified key based on the key-generating key. This
is a double-length DES key.

ENCIPHER This single or double-length DES key is used to encrypt data. It can be
used in the Encipher callable service.

EXPORTER Exporter key-encrypting key. Use this double-length DES key or 128-, 192-,
or 256-bit AES key to convert a key from the operational form into
exportable form.

IKEYXLAT Used to decrypt an input key in the Key Translate callable service. This is
a double-length DES key.

IMPORTER Importer key-encrypting key. Use this double-length DES key or 128-, 192-
or 256-bit AES key to convert a key from importable form into operational
form.

IMP-PKA Double-length limited-authority DES importer key used to encrypt PKA
private key values in PKA external tokens.

IPINENC Double-length input DES PIN-encrypting key. PIN blocks received from
other nodes or automatic teller machine (ATM) terminals are encrypted
under this type of key. These encrypted PIN blocks are the input to the
Encrypted PIN translate, Encrypted PIN verify, and Clear PIN Generate
Alternate services. If an encrypted PIN block is contained in the output of
the SET Block Decompose service, it may be encrypted by an IPINENC
key.

KEYGENKY Used to generate a key based on the key-generating key. This is a
double-length DES key.

MAC Single, double-length, or variable-length MAC generation key. Use this
key to generate a message authentication code.

MACVER Single, double-length, or variable-length MAC verification key. Use this
key to verify a message authentication code.

OKEYXLAT Used to encrypt an output key in the Key Translate callable service. This
is a double-length DES key.

OPINENC Output DES PIN-encrypting key. Use this double-length output key to
translate PINs. The output PIN blocks from the Encrypted PIN translate,
Encrypted PIN generate, and Clear PIN generate alternate callable services
are encrypted under this type of key. If an encrypted PIN block is
contained in the output of the SET Block Decompose service, it may be
encrypted by an OPINENC key.

PINGEN DES PIN generation key. Use this double-length key to generate PINs.

PINVER DES PIN verification key. Use this double-length key to verify PINs.

SECMSG Used to encrypt PINs or keys in a secure message. This is a double-length
DES key.

Clear Keys
A clear key is the base value of a key, and is not encrypted under another key.
Encrypted keys are keys whose base value has been encrypted under another key.

22 z/OS ICSF Application Programmer's Guide

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|

|

|

|
|

There are four callable services you can use to convert a clear key to an encrypted
key:
v To convert a clear key to an encrypted data key in operational form, use either

the Clear Key Import callable service or the Multiple Clear Key Import callable
service.

v To convert a clear key to an encrypted key of any type, in operational or
importable form, use either the Secure Key Import callable service or the
Multiple Secure Key Import callable service.

Note: The Secure Key Import and Multiple Secure Key Import callable services can
only execute in special secure mode.

Clear key DATA tokens can be stored in the CKDS. These tokens can only be used
by symmetric key decipher and symmetric key encipher callable services for the
DES and AES algorithms.

Key Strength and Wrapping of Key
Key strength is measured as “bits of security” as described in the documentation of
NIST and other organizations. Each individual key will have its “bits of security”
computed, then the different key types (AES, DES, ECC, RSA, HMAC) can then
have their relative strengths compared on a single scale. When the raw value of a
particular key falls between discreet values of the NIST table, the lower value from
the table will be used as the “bits of security”.

The following tables show some examples of the restrictions due to key strength.

When wrapping an HMAC key with an AES key-encrypting key, the strength of
the AES key-encrypting key depends on the attributes of the HMAC key.

Table 4. AES EXPORTER strength required for exporting an HMAC key under an AES
EXPORTER

Key-usage field 2 in the
HMAC key

Minimum strength of AES EXPORTER to adequately
protect the HMAC key

SHA-256, SHA-384, SHA-512 256 bits

SHA-224 192 bits

SHA-1 128 bits

Table 5. Minimum RSA modulus length to adequately protect an AES key

Bit length of AES key to be
exported

Minimum strength of RSA wrapping key to adequately
protect the AES key

128 3072

192 7860

256 15360

Key Strength and Key Wrapping Access Control Points
In order to comply with cryptographic standards, including ANSI X9.24 Part 1 and
PCI-HSM, ICSF provides a way to ensure that a key is not wrapped with a key
weaker than itself. ICSF provides a set of access control points in the domain role
to control the wrapping of keys. ICSF administrators can use these access control
points to meet an installation's individual requirements.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 23

There are new and existing access control points that control the wrapping of keys
by master and key-encrypting keys. These access control points will either prohibit
the wrapping of a key by a key of weaker strength or will return a warning (return
code 0, reason code non-zero) when a key is wrapped by a weaker key. All of these
ACPs are disabled by default in the domain role.

The processing of callable services will be affected by these access control points.
Here is a description of the access control points, the wrapping they control, and
the effect on services. These access control points apply to symmetric and
asymmetric keys.

When the Prohibit weak wrapping - Transport keys access control point is
enabled, any service that attempts to wrap a key with a weaker transport key will
fail.

When the Prohibit weak wrapping - Master keys access control point is enabled,
any service that wraps a key under a master key will fail if the master key is
weaker than the key being wrapped.

When the Warn when weak wrap - Transport keys access control point is enabled,
any service that attempts to wrap a key with a weaker transport key will succeed
with a warning reason code.

When the Warn when weak wrap - Master keys access control point is enabled,
any service that attempts to wrap a key with a weaker master key will succeed
with a warning reason code.

24-byte DATA keys with a zero control vector can be wrapped with a 16-byte key,
the DES master key, or a key-encrypting key, which violates the wrapping
requirements. The Prohibit weak wrapping – Transport keys and Prohibit weak
wrapping – Master keys access control points do not cause services to fail for this
case. The Disallow 24-byte DATA wrapped with 16-byte Key access control point
does control this wrapping. When enabled, services will fail. The Warn when weak
wrap – Transport keys and Warn when weak wrap – Master keys access control
points will cause the warning to be returned when the access control points are
enabled.

When the RKX/TBC – Disallow triple-length MAC key access control point is
enabled, CSNDRKX will fail to import a triple-length MAC key under a
double-length key-encrypting key. CSNBTBC will not wrap a triple-length MAC
key under a double-length key-encrypting key. The Prohibit weak wrapping –
Transport keys and Prohibit weak wrapping – Master keys access control points
do not cause services to fail for this case. The Warn when weak wrap – Transport
keys and Warn when weak wrap – Master keys access control points will cause
the warning to be returned when the ACPs are enabled.

If the Prohibit Weak Wrap access control point is enabled, RSA private keys may
not be wrapped using a weaker DES key-encrypting key. Enabling the Allow weak
DES wrap of RSA private key access control points will override this restriction.

DES Master Key
Since ICSF only allows a 16-byte DES master key to be loaded, ICSF can't be
compliant for key strength for 24-byte operational keys wrapped by the DES
master key. Starting with ICSF release HCR77A0, a 24-byte master key can be
loaded. Only cryptographic coprocessors with at least the October, 2012 licensed

24 z/OS ICSF Application Programmer's Guide

|
|
|
|

internal code support this key length. The DES master key – 24-byte key access
control point must be enabled in the domain role. See the z/OS Cryptographic
Services ICSF Administrator's Guide for more details.

Generating and Managing Symmetric Keys
Using ICSF, you can generate keys using either the key generator utility program or
the key generate callable service. The dynamic CKDS update callable services allow
applications to directly manipulate the CKDS. ICSF provides callable services that
support DES and AES key management as defined by the IBM Common
Cryptographic Architecture (CCA).

The next few topics describe the key generating and management options ICSF
provides.

Key Generator Utility Program
The key generator utility program generates data, data-translation, MAC, PIN, and
key-encrypting keys, and enciphers each type of key under a specific master key
variant. When the KGUP generates a key, it stores it in the cryptographic key data
set (CKDS).

Note: If you specify CLEAR, KGUP uses the random number generate and secure
key import callable services rather than the key generate service.

You can access KGUP using ICSF panels. The KGUP path of these panels helps
you create the JCL control statements to control the key generator utility program.
When you want to generate a key, you can enter the ADD control statement and
information, such as the key type on the panels. For a detailed description of the
key generator utility program and how to use it to generate keys, see z/OS
Cryptographic Services ICSF Administrator's Guide.

Common Cryptographic Architecture DES Key Management
Services

ICSF provides callable services that support CCA key management for DES keys.

Clear Key Import Callable Service (CSNBCKI and CSNECKI)
This service imports a clear DATA key that is used to encipher or decipher data. It
accepts a clear key and enciphers the key under the host master key, returning an
encrypted DATA key in operational form in an internal key token.

Control Vector Generate Callable Service (CSNBCVG and
CSNECVG)
The control vector generate callable service builds a control vector from keywords
specified by the key_type and rule_array parameters.

Control Vector Translate Callable Service (CSNBCVT and
CSNECVT)
The control vector translate callable service changes the control vector used to
encipher an external key. Use of this service requires the optional PCI
Cryptographic Coprocessor.

Cryptographic Variable Encipher Callable Service (CSNBCVE and
CSNECVE)
The cryptographic variable encipher callable service uses a DES CVARENC key to
encrypt plaintext by using the Cipher Block Chaining (CBC) method. You can use

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 25

|
|
|

|
|

this service to prepare a mask array for the control vector translate service. The
plaintext must be a multiple of eight bytes in length.

Data Key Export Callable Service (CSNBDKX and CSNEDKX)
This service reenciphers a DATA key from encryption under the master key to
encryption under an exporter key-encrypting key, making it suitable for export to
another system.

Data Key Import Callable Service (CSNBDKM and CSNEDKM)
This service imports an encrypted source DES DATA key and creates or updates a
target internal key token with the master key enciphered source key.

Diversified Key Generate Callable Service (CSNBDKG and
CSNEDKG)
The diversified key generate service generates a key based on the key-generating
key, the processing method, and the parameter supplied. The control vector of the
key-generating key also determines the type of target key that can be generated.

Key Export Callable Service (CSNBKEX and CSNEKEX)
This service reenciphers any type of key (except IMP-PKA key) from encryption
under a master key variant to encryption under the same variant of an exporter
key-encrypting key, making it suitable for export to another system.

Key Generate Callable Service (CSNBKGN and CSNEKGN)
The key generate callable service generates data, data-translation, MAC, PIN, and
key-encrypting keys. It generates a single key or a pair of keys. Unlike the key
generator utility program, the key generate service does not store the keys in the
CKDS where they can be saved and maintained. The key generate callable service
returns the key to the application program that called it. The application program
can then use a dynamic CKDS update service to store the key in the CKDS.

When you call the key generate callable service, include parameters specifying
information about the key you want generated. Because the form of the key
restricts its use, you need to choose the form you want the generated key to have.
You can use the key_form parameter to specify the form. The possible forms are:
v Operational, if the key is used for cryptographic operations on the local system.

Operational keys are protected by master key variants and can be stored in the
CKDS or held by applications in internal key tokens.

v Importable, if the key is stored with a file or sent to another system. Importable
keys are protected by importer key-encrypting keys.

v Exportable, if the key is transported or exported to another system and
imported there for use. Exportable keys are protected by exporter key-encrypting
keys and cannot be used by ICSF callable service.

Importable and exportable keys are contained in external key tokens. For more
information on key tokens, refer to “Key Token” on page 15.

Key Import Callable Service (CSNBKIM and CSNEKIM)
This service reenciphers a key from encryption under an importer key-encrypting
key to encryption under the master key. The reenciphered key is in the operational
form.

Key Part Import Callable Service (CSNBKPI and CSNEKPI)
This service combines clear key parts of any key type and returns the combined
key value either in an internal token or as an update to the CKDS.

26 z/OS ICSF Application Programmer's Guide

|
|

Key Test Callable Service (CSNBKYT, CSNEKYT, CSNBKYTX, and
CSNEKYTX)
This service generates or verifies a secure cryptographic verification pattern for
keys. A parameter indicates the action you want to perform.

The key to test can be in the clear or encrypted under a master key. The key test
extended callable service works on keys encrypted under a KEK.

For generating a verification pattern, the service creates and returns a random
number with the verification pattern. For verifying a pattern, you supply the
random number from the call to the service that generated the pattern.

Key Token Build Callable Service (CSNBKTB and CSNEKTB)
The key token build callable service is a utility you can use to create skeleton key
tokens as input to the key generate or key part import callable service. You can
also use this service to build CCA key tokens for all key types ICSF supports.

Key Translate Callable Service (CSNBKTR and CSNEKTR)
This service uses one key-encrypting key to decipher an input key and then
enciphers this key using another key-encrypting key within the secure
environment.

Key Translate2 Callable Service (CSNBKTR2 and CSNEKTR2)
This service uses one key-encrypting key to decipher an input key and then
enciphers this key using another key-encrypting key within the secure
environment.

Multiple Clear Key Import Callable Service (CSNBCKM and
CSNECKM)
This service imports a single-length, double-length, or triple-length clear DATA key
that is used to encipher or decipher data. It accepts a clear key and enciphers the
key under the host master key, returning an encrypted DATA key in operational
form in an internal key token.

Multiple Secure Key Import Callable Service (CSNBSKM and
CSNESKM)
This service enciphers a single-length, double-length, or triple-length clear key
under the host master key or under an importer key-encrypting key. The clear key
can then be imported as any of the possible key types. Triple-length keys can only
be imported as DATA keys. This service can be used only when ICSF is in special
secure mode.

Prohibit Export Callable Service (CSNBPEX and CSNEPEX)
This service modifies an operational key so that it cannot be exported. This callable
service does not support NOCV key-encrypting keys, DATA, MAC, or MACVER
keys with standard control vectors.

Prohibit Export Extended Callable Service (CSNBPEXX and
CSNEPEXX)
This service updates the control vector in the external token of a key in exportable
form so that the receiver node can import the key but not export it. When the key
import callable service imports such a token, it marks the token as non-exportable.
The key export callable service does not allow export of this token.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 27

|
|
|

|
|
|
|
|

|
|
|

Random Number Generate Callable Service (CSNBRNG,
CSNERNG, CSNBRNGL, and CSNERNGL)
The random number generate callable service creates a random number value to
use in generating a key. The callable service uses cryptographic hardware to
generate a random number for use in encryption.

Remote Key Export Callable Service (CSNDRKX and CSNFRKX)
The remote key export callable service uses the trusted block to generate or export
DES keys for local use and for distribution to an ATM or other remote device.

Restrict Key Attribute Callable Service (CSNBRKA and
CSNERKA)
This service modifies an AES operational key so that it cannot be exported.

Secure Key Import Callable Service (CSNBSKI and CSNESKI)
This service enciphers a clear key under the host master key or under an importer
key-encrypting key. The clear key can then be imported as any of the possible key
types. This service can be used only when ICSF is in special secure mode.

Note: The PKA encrypt, PKA decrypt, symmetric key generate, symmetric key
import, and symmetric key export callable services provide a way of distributing
DES DATA keys protected under a PKA key. See Chapter 3, “Introducing PKA
Cryptography and Using PKA Callable Services,” on page 73 for additional
information.

Symmetric Key Export Callable Service (CSNDSYX, CSNFSYX
and CSNDSXD)
This service transfers an application-supplied symmetric key (a DATA key) from
encryption under the DES host master key to encryption under an
application-supplied RSA public key. The application-supplied DATA key must be
an ICSF DES internal key token or the label of such a token in the CKDS. The
symmetric key import callable service can import the PKA-encrypted form at the
receiving node.

Symmetric Key Generate Callable Service (CSNDSYG, CSNFSYG)
This service generates a symmetric key (that is, a DATA key) and returns it
encrypted using DES and encrypted under an RSA public key token.

The DES-encrypted key can be an internal token encrypted under a host DES
master key, or an external form encrypted under a KEK. (You can use the
symmetric key import callable service to import the PKA-encrypted form.)

Symmetric Key Import Callable Service (CSNDSYI and CSNFSYI)
This service imports a symmetric (DES) DATA key enciphered under an RSA
public key. This service returns the key in operational form, enciphered under the
DES master key.

Trusted Block Create Callable Service (CSNDTBC and CSNFTBC)
This service creates and activates a trusted block under two step process.

Unique Key Derive Callable Service (CSFBUKD and CSFEUKD)
Unique Key Derive will perform the key derivation process as defined in ANSI
X9.24 Part 1, Using a Base Derivation Key and Derivation Data as inputs.

28 z/OS ICSF Application Programmer's Guide

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

Common Cryptographic Architecture AES Key Management
Services

ICSF provides callable services that support CCA key management for AES keys.

Key Generate Callable Service (CSNBKGN and CSNEKGN)
The key generate callable service generates AES data keys. It generates a single
operational key. Unlike the key generator utility program, the key generate service
does not store the keys in the CKDS where they can be saved and maintained. The
key generate callable service returns the key to the application program that called
it. The application program can then use a dynamic CKDS update service to store
the key in the CKDS.

Key Generate2 Callable Service (CSNBKGN2 and CSNEKGN2)
The service generates AES keys. It generates one operational key or an operational
key pair. The key generate callable service returns the key to the application
program that called it. The application program can then use a dynamic CKDS
update service to store the key in the CKDS.

Key Part Import2 Callable Service (CSNBKPI2 and CSNEKPI2)
This service combines clear key parts of any AES key type and returns the
combined key value either in an internal token or as an update to the CKDS.

Key Test2 Callable Service (CSNBKYT2 and CSNEKYT2)
This service generates or verifies a secure cryptographic verification pattern for
AES keys. A parameter indicates the action you want to perform.

Key Token Build Callable Service (CSNBKTB and CSNEKTB)
The key token build callable service is a utility you can use to create clear
fixed-length AES key tokens, secure AES key tokens and skeleton secure AES key
tokens for use with other callable services. You can also use this service to build
CCA key tokens for all key types ICSF supports. You can also use this service to
build CCA key tokens for all key types ICSF supports.

Multiple Clear Key Import Callable Service (CSNBCKM and
CSNECKM)
This service imports a a 128-, 192- or 256-bit clear DATA key that is used to
encipher or decipher data. It accepts a clear key and enciphers the key under the
host master key, returning an encrypted DATA key in operational form in an
internal key token.

Multiple Secure Key Import Callable Service (CSNBSKM and
CSNESKM)
This service enciphers 128-, 192- or 256-bit clear DATA key under the host master
key. This service can be used only when ICSF is in special secure mode.

Restrict Key Attribute Callable Service (CSNBRKA and
CSNERKA)
This service modifies an AES operational key so that it cannot be exported.

Secure Key Import2 Callable Service (CSNBSKI2 and CSNESKI2)
This service enciphers a variable length clear AES key under the host master key.
This service can be used only when ICSF is in special secure mode.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 29

Symmetric Key Export Callable Service (CSNDSYX, CSNFSYX,
and CSNDSXD)
Use the symmetric key export callable service to transfer an application-supplied
AES DATA key from encryption under a master key to encryption under an
application-supplied RSA public key or AES EXPORTER key. The
application-supplied key must be an ICSF AES internal key token or the label of
such a token in the CKDS. The Symmetric Key Import or Symmetric Key Import2
callable services can import the key encrypted under the RSA public key or AES
EXPORTER at the receiving node.

Symmetric Key Generate Callable Service (CSNDSYG and
CSNFSYG)
This service generates a symmetric DATA key and returns it encrypted under the
host AES master key and encrypted under an RSA public key token. (There are
two types of PKA public key tokens: RSA and DSS. This callable service can use
only the RSA type.)

The AES-encrypted key can only be an internal token encrypted under a host AES
master key. You can use the symmetric key import callable service to import the
PKA-encrypted form.

Symmetric Key Import Callable Service (CSNDSYI and CSNFSYI)
This service imports a symmetric DATA key enciphered under an RSA public key.
This service returns the key in operational form, enciphered under the AES master
key.

Symmetric Key Import2 Callable Service (CSNDSYI2 and
CSNFSYI2)
This service imports an AES key enciphered under an RSA public key. This service
returns the key in operational form, enciphered under the AES master key.

Common Cryptographic Architecture HMAC Key Management
Services

ICSF provides callable services that support CCA key management for HMAC
keys. HMAC keys are stored in the cryptographic key data set (CKDS).

Key Generate2 callable service (CSNBKGN2 and CSNEKGN2)
The service generates HMAC keys. It generates operational key or operational key
pair. The key generate callable service returns the key to the application program
that called it. The application program can then use a dynamic CKDS update
service to store the key in the CKDS.

Key Part Import2 callable service (CSNBKPI2 and CSNEKPI2)
This service combines clear key parts of any HMAC key type and returns the
combined key value either in an internal token or as an update to the CKDS.

Key Test2 callable service (CSNBKYT2 and CSNEKYT2)
This service generates or verifies a secure cryptographic verification pattern for
HMAC keys. A parameter indicates the action you want to perform.

Key Token Build2 callable service (CSNBKTB2 and CSNEKTB2)
This service is a utility you can use to create skeleton HMAC key tokens for use
with other callable services.

Restrict Key Attribute callable service (CSNBRKA and CSNERKA)
This service modifies an HMAC operational key so that it cannot be exported.

30 z/OS ICSF Application Programmer's Guide

|
|
|
|
|
|
|
|
|

|
|
|

|
|

Secure Key Import2 callable service (CSNBSKI2 and CSNESKI2)
This service enciphers a variable length clear HMAC key under the host master
key. This service can be used only when ICSF is in special secure mode.

Symmetric Key Export Callable Service (CSNDSYX and
CSNFSYX)
This service transfers an application-supplied symmetric key from encryption
under the AES host master key to encryption under an application-supplied RSA
public key. The application-supplied key must be an ICSF internal key token or the
label of such a token in the CKDS. The symmetric key import callable service can
import the PKA-encrypted form at the receiving node.

Symmetric Key Import2 Callable Service (CSNDSYI2 and
CSNFSYI2)
This service imports an HMAC key enciphered under an RSA public key. This
service returns the key in operational form, enciphered under the AES master key.

ECC Diffie-Hellman Key Agreement Models

Token Agreement Scheme
The caller must have both the required key tokens and both Parties identifiers
including a randomly generated nonce. Combine the exchanged nonce and Party
Info into the party identifier. (Both parties must combine this information in the
same format.) Then call the ECC Diffie-Hellman callable service. Specify a skeleton
token or the label of a skeleton token as the output key identifier as a container for
the computed symmetric key material. Note, both parties must specify the same
key type in their skeleton key tokens.
v Specify rule array keyword DERIV01 to denote the Static Unified Model key

agreement scheme.
v Specify an ECC token as the private key identifier containing this party's ECC

public-private key pair.
v Optionally specify a private KEK key identifier, if the key pair is in an external

key token.
v Specify an ECC token as the public key identifier containing other party's ECC

public key part.
v Specify a skeleton token as the output key identifier as a container for the

computed symmetric key material.
v Optionally specify an output KEK key identifier, if the output key is to be in an

external key token.
v Specify the combined party info (including nonce) as the party identifier.
v Specify the desired size of the key to be derived (in bits) as the key bit length.

Obtaining the Raw “Z” value
To use a key agreement scheme that differs from the above, one may obtain the
raw shared secret "Z" and skip the key derivation step. The caller must then derive
the final key material using a method of their choice. Do not specify any party
info.
v Specify rule array keyword “PASSTHRU" to denote no key agreement scheme.
v Specify an ECC token as the private key identifier containing this party's ECC

public-private key pair.
v Optionally specify a private KEK key identifier, if the key pair is in an external

key token.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 31

|
|
|
|
|

|
|

v Specify an ECC token as the public key identifier containing other party's ECC
public key part.

v The output key identifier be populated with the resulting shared secret material.

Improved remote key distribution

Note: This improved remote key distribute support is only available on the z9 EC,
z9 BC and higher servers.

New methods have been added for securely transferring symmetric encryption
keys to remote devices, such as Automated Teller Machines (ATMs), PIN-entry
devices, and point of sale terminals. These methods can also be used to transfer
symmetric keys to another cryptographic system of any type, such as a different
kind of Hardware Security Module (HSM) in an IBM or non-IBM computer server.
This change is especially important to banks, since it replaces expensive human
operations with network transactions that can be processed quickly and
inexpensively. This method supports a variety of requirements, fulfilling the new
needs of the banking community while simultaneously making significant
interoperability improvements to related cryptographic key-management functions.

For the purposes of this description, the ATM scenario will be used to illustrate
operation of the new methods. Other uses of this method are also valuable.

Remote Key Loading
Remote key loading refers to the process of installing symmetric encryption keys
into a remotely located device from a central administrative site. This encompasses
two phases of key distributions.
v Distribution of initial key encrypting keys (KEKs) to a newly installed device. A

KEK is a type of symmetric encryption key that is used to encrypt other keys so
they can be securely transmitted over unprotected paths.

v Distribution of operational keys or replacement KEKs, enciphered under a KEK
currently installed in the device.

Old remote key loading example: Use an ATM as an example of the remote key
loading process. A new ATM has none of the bank's keys installed when it is
delivered from the manufacturer. The process of getting the first key securely
loaded is difficult. This has typically been done by loading the first KEK into each
ATM manually, in multiple cleartext key parts. Using dual control for key parts,
two separate people must carry key part values to the ATM, then load each key
part manually. Once inside the ATM, the key parts are combined to form the actual
KEK. In this manner, neither of the two people has the entire key, protecting the
key value from disclosure or misuse. This method is labor-intensive and
error-prone, making it expensive for the banks.

New remote key loading methods: New remote key loading methods have been
developed to overcome some of the shortcomings of the old manual key loading
methods. These new methods define acceptable techniques using public key
cryptography to load keys remotely. Using these new methods, banks will be able
to load the initial KEKs without sending people to the remote device. This will
reduce labor costs, be more reliable, and be much less expensive to install and
change keys. The new cryptographic features added provide new methods for the
creation and use of the special key forms needed for remote key distribution of
this type. In addition, they provide ways to solve long-standing barriers to secure
key exchange with non-IBM cryptographic systems.

32 z/OS ICSF Application Programmer's Guide

|
|

Once an ATM is in operation, the bank can install new keys as needed by sending
them enciphered under a KEK installed previously. This is straightforward in
concept, but the cryptographic architecture in ATMs is often different from that of
the host system sending the keys, and it is difficult to export the keys in a form
understood by the ATM. For example, cryptographic architectures often enforce
key-usage restrictions in which a key is bound to data describing limitations on
how it can be used - for encrypting data, for encrypting keys, for operating on
message authentication codes (MACs), and so forth. The encoding of these
restrictions and the method used to bind them to the key itself differs among
cryptographic architectures, and it is often necessary to translate the format to that
understood by the target device prior to a key being transmitted. It is difficult to
do this without reducing security in the system; typically it is done by making it
possible to arbitrarily change key-usage restrictions. The methods described here
provide a mechanism through which the system owner can securely control these
translations, preventing the majority of attacks that could be mounted by
modifying usage restrictions.

A new data structure called a trusted block is defined to facilitate the remote key
loading methods. The trusted block is the primary vehicle supporting these new
methods.

Trusted block
The trusted block is the central data structure to support all remote key loading
functions. It provides great power and flexibility, but this means that it must be
designed and used with care in order to have a secure system. This security is
provided through several features of the design.
v A two step process is used to create a trusted block.
v The trusted block includes cryptographic protection that prevents any

modification when it is created.
v A number of fields in the rules of a trusted block offer the ability to limit how

the block is used, reducing the risk of it being used in unintended ways or with
unintended keys.

The trusted block is the enabler which requires secure approval for its creation,
then enables the export or generation of DES and TDES keys in a wide variety of
forms as approved by the administrators who created the trusted block. For added
security, the trusted blocks themselves can be created on a separate system, such as
an xSeries server with an IBM 4764 Cryptographic Coprocessor, locked in a secure
room. The trusted block can subsequently be imported into the zSeries server
where they will be used to support applications.

There are two CCA callable services to manage and use trusted blocks: Trusted
Block Create (CSNDTBC and CSNETBC) and Remote Key Export (CSNDRKX and
CSNFRKX). The Trusted Block Create service creates a trusted block, and the
Remote Key Export service uses a trusted block to generate or export DES keys
according to the parameters in the trusted block. The trusted block consists of a
header followed by several sections. Some elements are required, while others are
optional.

Figure 1 on page 34 shows the contents of a trusted block. The elements shown in
the table give an overview of the structure and do not provide all of the details of
a trusted block.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 33

Here is a brief description of the elements that are depicted.

Structure version information - This identifies the version of the trusted block
structure. It is included so that code can differentiate between this trusted block
layout and others that may be developed in the future.

Public key - This contains the RSA public key and its attributes. For distribution of
keys to a remote ATM, this will be the root certification key for the ATM vendor,
and it will be used to verify the signature on public-key certificates for specific
individual ATMs. In this case, the Trusted Block will also contain Rules that will be
used to generate or export symmetric keys for the ATMs. It is also possible for the
Trusted Block to be used simply as a trusted public key container, and in this case
the Public Key in the block will be used in general-purpose cryptographic
functions such as digital signature verification. The public key attributes contain
information on key usage restrictions. This is used to securely control what
operations will be permitted to use the public key. If desired, the public key can be
restricted to use for only digital signature operations, or for only key management
operations.

Trusted block protection information - This topic contains information that is
used to protect the Trusted Block contents against modification. According to the
method in ISO 16609, a CBC-mode MAC is calculated over the Trusted Block using

Modulus

Exponent

Attributes

MAC key

MAC

Flags

MKVP

Activation/Expiration dates

Label

Rule 1

Rule 2

Rule 3

...

Rule N

Data defined and understood
only by the application using the

trusted block

Public key

Trusted block protection information

Public key name (optional)

Rules

Application defined data

Structure version information

Figure 1. Overview of trusted block contents

34 z/OS ICSF Application Programmer's Guide

a randomly-generated triple-DES (TDES) key, and the MAC key itself is encrypted
and embedded in the block. For the internal form of the block, the MAC key is
encrypted with a randomly chosen fixed-value variant of the PKA master key. For
the external form, the MAC key is encrypted with a fixed variant of a
key-encrypting key. The MKVP field contains the master key verification pattern
for the PKA master key that was used, and is filled with binary zeros if the trusted
block is in external format. Various flag fields contain these boolean flags.
v Active flag - Contained within the flags field of the required trusted block

information section, this flag indicates whether the trusted block is active and
ready for use by other callable services. Combined with the use of two separate
access control points, the active flag is used to enforce dual control over creation
of the block. A person whose active role is authorized to create a trusted block in
inactive form creates the block and defines its parameters. An inactive trusted
block can only be used to make it active. A person whose active role is
authorized to activate an inactive trusted block must approve the block by
changing its status to active. See Figure 3 on page 38. The Remote_Key_Export
callable service can only use an internal active trusted block to generate or
export DES keys according to the parameters defined in the trusted block.

v Date checking flag - Contained within the optional activation and expiration
date subsection of the required trusted block information subsection, this flag
indicates whether the coprocessor checks the activation and expiration dates for
the trusted block. If the date checking flag is on, the coprocessor compares the
activation and expiration dates in the optional subsection to the coprocessor
internal real time clock, and processing terminates if either date is out of range.
If this flag is off or the activation and expiration dates subsection is not defined,
the device does no date checking. If this flag is off and the activation and
expiration dates subsection is defined, date checking can still be performed
outside of the device if required. The date checking flag enables use of the
trusted block in systems where the coprocessor clock is not set.

Trusted block name - This field optionally contains a text string that is a name (key
label) for the trusted block. It is included in the block for use by an external system
such as a host computer, and not by the card itself. In the zSeries system, the label
can be checked by RACF to determine if use of the block is authorized. It is
possible to disable use of trusted blocks that have been compromised or need to be
removed from use for other reasons by publishing a revocation list containing the
key names for the blocks that must not be used. Code in the host system could
check each trusted block prior to it being used in the cryptographic coprocessor, to
ensure that the name from that block is not in the revocation list.

Expiration date and activation dates - The trusted block can optionally contain an
expiration date and an activation date. The activation date is the first day on which
the block can be used, and the expiration date is the last day when the block can
be used. If these dates are present, the date checking flag in the trusted block will
indicate whether the coprocessor should check the dates using its internal real-time
clock. In the case of a system that does set the coprocessor clock, checking would
have to be performed by an application program prior to using the trusted block.
This is not quite as secure, but it is still valuable, and storing the dates in the block
itself is preferable to making the application store it somewhere else and maintain
the association between the separate trusted block and activation and expiration
dates.

Application-defined data - The trusted block can hold data defined and
understood only by the host application program. This data is included in the
protected contents of the trusted block, but it is not used or examined in any way

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 35

by the coprocessor. By including its own data in the trusted block, an application
can guarantee that the data is not changed in any way, since it is protected in the
same way as the other trusted block contents.

Rules - A variable number of rules can be included in the block. Each rule contains
information on how to generate or export a symmetric key, including values for
variants to be used in order to provide keys in the formats expected by systems
with differing cryptographic architectures. Use of the rules are described in the
topics covering key generation and export using the RKX function. This table
summarizes the required and optional values of each rule.

Field name Required
field

Description

Rule ID Yes Specifies the 8-character name of the rule

Operation Yes Indicates whether this rule generates a new key or
exports an existing key

Generated key
length

Yes Specifies the length of the key to be generated

Key-check
algorithm ID

Yes Specifies which algorithm to use to compute the
optional key-check value (KCV). Options are

v No KCV

v Encrypt zeros with the key

v Compute MDC-2 hash of the key

Symmetric-
encrypted output
format

Yes Specifies the format of the required symmetric-encrypted
key output. Options are:

v CCA key token

v RKX key token

Asymmetric-
encrypted output
format

Yes Specifies the format of the optional asymmetric-
encrypted key output (key is encrypted with RSA).
Options are:

v No asymmetric-encrypted key output

v Encrypt in PKCS1.2 format

v Encrypt in RSAOAEP format

Transport-key
variant

No Specifies the variant to apply to the transport key prior
to it being used to encrypt the key being generated or
exported

Export key CV No Specifies the CCA CV to apply to the transport key prior
to it being used to encrypt the key being generated or
exported. The CV defines permitted uses for the
exported key.

Export key length
limits

No Defines the minimum and maximum lengths of the key
that can be exported with this rule.

Output key
variant

No Specifies the variant to apply to the generated or
exported key prior to it being encrypted.

Export-key rule
reference

No Specifies the rule ID for the rule that must have been
used to generate the key being exported, if that key is
an RKX key token.

Export-key CV
restrictions

No Defines masks and templates to use to restrict the
possible CV values that a source key can have when
being exported with RKX. Only applies if the key is a
CCA key token. This can control the types of CCA keys
that can be processed using the rule.

36 z/OS ICSF Application Programmer's Guide

Field name Required
field

Description

Export-key label
template

No Specifies the key label of the key token that contains the
source key to be exported. A key label is a name used to
identify a key. The rule can optionally contain a key
label template, which will be matched against the
host-supplied key label, using a wildcard (*) so that the
template can match a set of related key labels. The
operation will only be accepted if the supplied label
matches the wildcard template in the rule.

Changes to the CCA API
These changes have been made to the CCA API to support remote key loading
using trusted blocks:
v A new Trusted Block Create (CSNDTBC and CSNETBC) callable service has been

developed to securely create trusted blocks under dual control.
v A new Remote Key Export (CSNDRKX and CSNFRKX) callable service has been

developed to generate or export DES and TDES keys under control of the rules
contained in a trusted block.

v The Digital Signature Verify (CSNDDSV) callable service has been enhanced so
that, in addition to verifying ordinary CCA RSA keys, it can use the RSA public
key contained in a trusted block to verify digital signatures.

v The PKA Key Import (CSNDPKI) callable service has been enhanced so it can
import an RSA key into the CCA domain. In addition, the verb can import an
external format trusted block into an internal format trusted block, ready to be
used in the local system.

v The PKA Key Token Change (CSNDKTC and CSNFKTC) callable service has
been enhanced so that it can update trusted blocks to the current PKA master
key when the master key is changed. A trusted block contains an embedded
MAC key enciphered under the PKA master key. When the PKA master key is
changed, the outdated MAC key and the trusted block itself need to be updated
to reflect the current PKA master key.

v The MAC Generate (CSNBMGN) and MAC Verify (CSNBMVR) callable services
have been enhanced to add ISO 16609 TDES MAC support in which the text will
be CBC-TDES encrypted using a double-length key and the MAC will be
extracted from the last block.

v The PKA key storage callable services support trusted blocks.

The RKX key token
CCA normally uses key tokens that are designed solely for the purposes of
protecting the key value and carrying metadata associated with the key to control
its use by CCA cryptographic functions. The remote key loading design introduces
a new type of key token called an RKX key token. The purpose of this token is
somewhat different, and its use is connected directly with the Remote Key Export
callable service added to CCA of the remote key loading design.

The RKX key token uses a special structure that binds the token to a specific
trusted block, and allows sequences of Remote Key Export calls to be bound
together as if they were an atomic operation. This allows a series of related
key-management operations to be performed using the Remote Key Export callable
service. These capabilities are made possible by incorporating these three features
into the RKX key token structure:

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 37

v The key is enciphered using a variant of the MAC key that is in the trusted
block. A fixed, randomly-derived variant is applied to the key prior to it being
used. As a result, the enciphered key is protected against disclosure since the
trusted block MAC key is itself protected at all times.

v The structure includes the rule ID contained in the trusted block rule that was
used to create the key. A subsequent call to the Remote Key Export callable
service can use this key with a trusted block rule that references this rule ID,
effectively chaining use of the two rules together securely.

v A MAC is computed over the encrypted key and the rule ID, using the same
MAC key that is used to protect the trusted block itself. This MAC guarantees
that the key and the rule ID cannot be modified without detection, providing
integrity and binding the rule ID to the key itself. In addition, the MAC will
only verify if the RKX key token is used with the same trusted block that
created the token, thus binding the key to that specific trusted block.

This figure shows a simplified conceptual view of the RKX key token structure.

Using trusted blocks
These examples illustrate how trusted blocks are used with the new and enhanced
CCA callable services.

Creating a trusted block: This figure illustrates the steps used to create a trusted
block.

A two step process is used to create a trusted block. Trusted blocks are structures
that could be abused to circumvent security if an attacker could create them with

Enciphered key
MAC covers these areas

Rule ID

MAC

Figure 2. Simplified RKX key-token structure

External trusted block

Administrator 1

Inactive

TBC External trusted block

Administrator 2

Active

TBC

Figure 3. Trusted block creation

38 z/OS ICSF Application Programmer's Guide

undesirable settings, and the requirement for two separate and properly authorized
people makes it impossible for a single dishonest employee to create such a block.
A trusted block cannot be used for any operations until it is in the active state. Any
number of trusted blocks can be created in order to meet different needs of
application programs.

Exporting keys with Remote_Key_Export: This figure shows the process for
using a trusted block in order to export a DES or TDES key. This representation is
at a very high level in order to illustrate the basic flow.

The Remote Key Export callable service is called with these main parameters:

Internal trusted
block

Active

Transport key

Source key

Importer key

Certificate

RXK

Validate
trusted block

Symmetric
encrypted key

RSA-encrypted key
(optional)

Key check value
(optional)

Validate parameter
against rules in
trusted block

Apply rules in trusted
block to build output key

value from source key

Compute key check value
(KCV) on source key, if

specified by rule

Apply rules to encrypt key
value with transport key

and optionally with public
key in certificate

Note: Importer key is only used if
source key is an external CCA token.

Figure 4. Exporting keys using a trusted block

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 39

v A trusted block, in the active state, defines how the export operation is to be
processed, including values to be used for things such as variants to apply to the
keys.

v The key to be exported, shown previously as the source key. The source key
takes one of two forms:
1. A CCA DES key token
2. An RKX key token

v A key-encrypting key, shown in the figure as the importer key. This is only used
if the source key is an external CCA DES key token, encrypted under a KEK. In
this case, the KEK is the key needed to obtain the cleartext value of the source
key.

v A transport key, either an exporter KEK or an RKX key token, used to encrypt
the key being exported.

v An optional public key certificate which, if included, contains the certified public
key for a specific ATM. The certificate is signed with the ATM vendor's private
key, and its corresponding public key must be contained in the trusted block so
that this certificate can be validated. The public key contained in the certificate
can be used to encrypt the exported key.

The processing steps are simple at a high level, but there are many options and
significant complexity in the details.
v The trusted block itself is validated. This includes several types of validation.

– Cryptographic validation using the MAC that is embedded in the block, in
which the MAC key is decrypted using the coprocessor's master key, and the
MAC is then verified using that key. This verifies the block has not been
corrupted or tampered with, and it also verifies that the block is for use with
this coprocessor since it will only succeed if the master key is correct.

– Consistency checking and field validation, in which the validity of the
structure itself is checked, and all values are verified to be within defined
ranges.

– Fields in the trusted block are checked to see if all requirements are met for
use of this trusted block. One check which is always required is to ensure that
the trusted block is in the active state prior to continuing. Another check,
which is optional based on the contents of the trusted block, is to ensure the
operation is currently allowed by comparing the date of the coprocessor
real-time clock to the activation and expiration dates defined in the trusted
block.

v Input parameters to the Remote Key Export callable service are validated against
rules defined for them within the trusted block. For example:
– The rule can restrict the length of the key to be exported.
– The rule can restrict the control vector values for the key to be exported, so

only certain key types can be exported with that rule.
v When the export key is decrypted, the rules embedded in the trusted block are

then used to modify that key to produce the desired output key value. For
example, the trusted block can contain a variant to be exclusive-ORed with the
source key prior to when that key is encrypted. Many non-IBM cryptographic
systems use variants to provide key separation to restrict a key from improper
use.

v A key check value (KCV) can be optionally computed for the source key. If the
KCV is computed, the trusted block allows for one of two key check algorithms

40 z/OS ICSF Application Programmer's Guide

to be used: (1) encrypting binary zeros with the key, or (2) computing an MDC-2
hash of the key. The KCV is returned as output from the Remote Key Export
function.

v The export key, which could possibly be modified with a variant according to
the rules in the trusted block, is enciphered with the transport key. The rules can
specify that the key be created in one of two formats: (1) a CCA key token, or (2)
the new RKX key token, described previously. With proper selection of rule
options, the CCA key token can create keys that can be used in non-CCA
systems. The key value can be extracted from the CCA key token resulting in a
generic encrypted key, with variants and other options as defined in the rule.
Two optional fields in the trusted block may modify the transport key prior to it
being used to encrypt the source key:
– The trusted block can contain a CCA control vector (CV) to be

exclusive-ORed with the transport key prior to it being used to encrypt the
export key. This exclusive-OR process is the standard way CCA applies a CV
to a key.

– In addition to the CV described previously, the trusted block can also contain
a variant to be exclusive-ORed with the transport key prior to its use.

If a variant and CV are both present in the trusted block, the variant is applied
first, then the CV.

v The export key can optionally be encrypted with the RSA public key identified
by the certificate parameter of the Remote Key Export callable service, in
addition to encrypting it with the transport key as described previously. These
two encrypted versions of the export key are provided as separate outputs of the
Remote Key Export callable service. The trusted block allows a choice of
encrypting the key in either PKCS1.2 format or PKCSOAEP format.

Generating keys with Remote_Key_Export: This figure shows the process for
using a trusted block to generate a new DES or TDES key. This representation is at
a very high level in order to illustrate the basic flow.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 41

For key generation, the Remote Key Export callable service is called with these
main parameters:
v A trusted block, in the internal active state, which defines how the key

generation operation is to be processed, including values to be used for things
such as variants to apply to the keys. The generated key is encrypted by a
variant of the MAC key contained in a trusted block.

v An optional public key certificate which, if included, contains the certified public
key for a specific ATM. The certificate is signed with the ATM vendor's private
key, and its corresponding public key must be contained in the trusted block so
that this certificate can be validated. The public key contained in the certificate
can be used to encrypt the generated key.

Symmetric
encrypted key

RSA-encrypted
key (optional)

Key check vlaue
(optional)

Apply rules to encrypt key
value with transport key

and optionally with public
key in certificate.

Compute key check
value (KCV) on key K

if specified by rule.

Apply rules in trusted
block to build output

key value from key K.

Generate random key
K based on rules in

trusted block.

Validate parameter
against rules in
trusted block.

Validate trusted block.

RKX

Certificate

Transport key

Active

Internal trusted
block

Figure 5. Generating keys using a trusted block

42 z/OS ICSF Application Programmer's Guide

The processing steps are simple at a high level, but there are many options and
significant complexity in the details. Most of the processing steps are the same as
those described previously for key export. Therefore, only those processing steps
that differ are described here in detail.
v Validation of the trusted block and input parameters is done as described for

export previously.
v The DES or TDES key to be returned by the Remote Key Export callable service

is randomly generated. The trusted block indicates the length for the generated
key.

v The output key value is optionally modified by a variant as described previously
for export, and then encrypted in the same way as for export using the
Transport key and optionally the public key in the certificate parameter.

v The key check value (KCV) is optionally computed for the generated key using
the same method as for an exported key.

Remote key distribution scenario
The new and modified CCA functions for remote key loading are used together to
create trusted blocks, and then generate or export keys under the control of those
trusted blocks. This figure summarizes the flow of the CCA functions to show how
they are used:

TBC

TBC

PKI

Trusted block parameters

Transport key

Option=INACTIVE

Trusted block

Transport key

Option=ACTIVATE

Trusted block

Transport key

Trusted block

Transport key

Source key

Certificate

Importer key (if needed)

Trusted block

Transport key

Source key

Certificate

Importer key (if needed)

RKX

RKX

Trusted block (external, inactive)

Trusted block (external, active)

Trusted block (internal, active)

Symmetric-encrypted key

Asymmetric-encrypted key

Key check value

Symmetric-encrypted key

Asymmetric-encrypted key

Key check value

Possible to do one of these
if key format is an RKX token

Figure 6. Typical flow of callable services for remote key export

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 43

Usage example: The scenario described shows how these functions might be
combined in a real-life application to distribute a key to an ATM and keep a copy
for local use. Some of the terminology used reflects typical terms used in ATM
networks. The example illustrates a fairly complex real-world key distribution
scenario, in which these values are produced.
v A TMK (Terminal Master Key), which is the root KEK used by the ATM to

exchange other keys, is produced in two forms: (1) encrypted under the ATM
public key, so it can be sent to the ATM, and (2) as an RKX key token that will
be used in subsequent calls to the Remote Key Export callable service to produce
other keys.

v A key-encrypting key KEK1 that is encrypted under the TMK in a form that can
be understood by the ATM.

v A PIN-encrypting key PINKEY be used by the ATM to encrypt customer-entered
PINs and by the host to verify those PINs. The PINKEY is produced in two
forms: (1) encrypted under KEK1 in a form that can be understood by the ATM,
and (2) as a CCA internal DES key token with the proper PIN-key CV, encrypted
under the CCA DES master key and suitable for use with the coprocessor.

It takes seven steps to produce these keys using the Remote Key Export callable
service. These steps use a combination of five rules contained in a single trusted
block. The rules in this example are referred to as GENERAT1, GENERAT2,
EXPORT1, EXPORT2, and EXPORT3.
1. Use the Remote Key Export callable service with rule ID "GENERAT1" to

generate a TMK for use with the ATM. The key will be output in two forms:
a. ePu(TMK): Encrypted under the ATM public key, supplied in the certificate

parameter, CERT
b. RKX(TMK): As an RKX key token, suitable for subsequent input to the

CSNDRKX callable service
2. Use the Remote Key Export callable service with rule ID "GENERAT2" to

generate a key-encrypting key (KEK1) as an RKX key token, RKX(KEK1)
3. Use the Remote Key Export callable service with rule ID "GENERAT2" to

generate a PIN key (PINKEY) as an RKX key token: RKX(PINKEY).
4. Use the Remote Key Export callable service with rule ID "EXPORT1 " to export

KEK1 encrypted under the TMK as a CCA DES key token using a variant of
zeros applied to the TMK. This produces eTMK(KEK1).

5. Use the Remote Key Export callable service with rule ID "EXPORT2 " to export
PINKEY encrypted under KEK1 as a CCA token using a variant of zeros
applied to KEK1. This produces eKEK1(PINKEY).

6. Use the Remote Key Export callable service with rule ID "EXPORT3 " to export
PINKEY under KEK2, an existing CCA key-encrypting key on the local server.
This produces eKEK2(PINKEY), with the CCA control vector for a PIN key.

7. Use the Key Import callable service to import the PINKEY produced in step 6
into the local system as an operational key. This produces eMK(PINKEY), a copy
of the key encrypted under the local DES master key (MK) and ready for use
by CCA PIN API functions.

Remote key distribution benefits
CCA support for remote key loading solves one new problem, and one
long-standing problem. This support allows the distribution of initial keys to ATMs
and other remote devices securely using public-key techniques, in a flexible way
that can support a wide variety of different cryptographic architectures. They also
make it far easier and far more secure to send keys to non-CCA systems when

44 z/OS ICSF Application Programmer's Guide

those keys are encrypted with a triple-DES key-encrypting key. These changes
make it easier for customers to develop more secure systems.

Diversifying keys
CCA supports several methods for diversifying a key using the diversified key
generate callable service. Key-diversification is a technique often used in working
with smart cards. In order to secure interactions with a population of cards, a
"key-generating key" is used with some data unique to a card to derive
("diversify") keys for use with that card. The data is often the card serial number
or other quantity stored on the card. The data is often public, and therefore it is
very important to handle the key-generating key with a high degree of security lest
the interactions with the whole population of cards be placed in jeopardy.

In the current implementation, several methods of diversifying a key are
supported: CLR8-ENC, TDES-CBC, TDES-ENC, TDES-DEC, SESS-XOR,
TDES-XOR, TDESEMV2 and TDESEMV4. The first three methods triple-encrypt
data using the generating_key to form the diversified key. The diversified key is
then multiply-enciphered by the master key modified by the control vector for the
output key. The TDES-DEC method is similar except that the data is
triple-decrypted.

The SESS-XOR method provides a means for modifying an existing DATA,
DATAC, MAC, DATAM, or MACVER, DATAMV single- or double-length key. The
provided data is exclusive-ORed into the clear value of the key. This form of key
diversification is specified by several of the credit card associations.

The TDES-ENC, TDES-CBC and TDES-DEC methods permit the production of
either another key-generating key, or a final key. Control-vector bits 19 – 22
associated with the key-generating key specify the permissible type of final key.
(See DKYGENKY in Figure 11 on page 870.) Control-vector bits 12 – 14 associated
with the key-generating key specify if the diversified key is a final key or another
in a series of key-generating keys. Bits 12 – 14 specify a counter that is decreased
by one each time the diversified key generate service is used to produce another
key-generating key. For example, if the key-generating key that you specify has
this counter set to B'010', then you must specify the control vector for the
generated_key with a DKYGENKY key type having the counter bits set to B'001'
and specifying the same final key type in bits 19 – 22. Use of a generating_key
with bits 12 – 14 set to B'000' results in the creation of the final key. Thus you can
control both the number of diversifications required to reach a final key, and you
can closely control the type of the final key.

The TDESEMV2, TDESEMV4, and TDES-XOR methods also derive a key by
encrypting supplied data including a transaction counter value received from an
EMV smart card. The processes are described in detail at “Visa and EMV-related
smart card formats and processes” on page 914. Refer to “Working with
Europay–MasterCard–Visa smart cards” on page 448 to understand the various
verbs you can use to operate with EMV smart cards.

Callable Services for Dynamic CKDS Update
ICSF provides the dynamic CKDS update services that allow applications to
directly manipulate both the DASD copy and in-storage copy of the current CKDS.

Note: Applications using the dynamic CKDS update callable services can run
concurrently with other operations that affect the CKDS, such as KGUP, CKDS
conversion, REFRESH, and dynamic master key change. An operation can fail if it

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 45

|
|

|

needs exclusive or shared access to the same DASD copy of the CKDS that is held
shared or exclusive by another operation. ICSF provides serialization to prevent
data loss from attempts at concurrent access, but your installation is responsible for
the effective management of concurrent use of competing operations. Consult your
system administrator or system programmer for your installation guidelines.

The syntax of the CKDS key record create, CKDS key record read, and CKDS key
record write services is identical with the same services provided by the
Transaction Security System security application programming interface. Key
management applications that use these common interface verbs can run on both
systems without change.

The CKDS Key Record Create2, CKDS Key Record Read2, and CKDS Key Record
Write2 callable services must be used for variable-length key tokens. These services
also support existing DES and AES tokens.

CKDS Key Record Create Callable Service (CSNBKRC and
CSNEKRC)
This service accepts a key label and creates a null key record in both the DASD
copy and in-storage copy of the CKDS. The record contains a key token set to
binary zeros and is identified by the key label passed in the call statement. The key
label must be unique.

Prior to updating a key record using either the dynamic CKDS update services or
KGUP, that record must already exist in the CKDS. You can use either the CKDS
key record create service, KGUP, or your key entry hardware to create the initial
record in the CKDS.

CKDS Key Record Create2 Callable Service (CSNBKRC2 and
CSNEKRC2)
This service accepts a key label and optionally, a symmetric key token, and creates
a key record in both the DASD copy and in-storage copy of the CKDS. The record
contains the supplied key token or a null key token and is identified by the key
label passed in the call statement. The key label must be unique.

This service must be used with variable-length key tokens. This service supports
existing DES and AES key tokens.

CKDS Key Record Delete Callable Service (CSNBKRD and
CSNEKRD)
This service accepts a unique key label and deletes the associated key record from
both the in-storage and DASD copies of the CKDS. This service deletes the entire
record, including the key label from the CKDS.

CKDS Key Record Read Callable Service (CSNBKRR and
CSNEKRR)
This service copies an internal key token from the in-storage CKDS to the
application storage, where it may be used directly in other cryptographic services.
Key labels specified with this service must be unique.

CKDS Key Record Read2 Callable Service (CSNBKRR2 and
CSNEKRR2)
This service copies an internal key token from the in-storage CKDS to the
application storage, where it may be used directly in other cryptographic services.
Key labels specified with this service must be unique.

46 z/OS ICSF Application Programmer's Guide

|
|
|

This service must be used with variable-length key tokens. This service supports
existing DES and AES key tokens.

CKDS Key Record Write Callable Service (CSNBKRW and
CSNEKRW)
This service accepts an internal key token and a label and writes the key token to
the CKDS record identified by the key label. The key label must be unique.
Application calls to this service write the key token to both the DASD copy and
in-storage copy of the CKDS, so the record must already exist in both copies of the
CKDS.

CKDS Key Record Write2 Callable Service (CSNBKRW2 and
CSNEKRW2)
This service accepts an internal key token and a label and writes the key token to
the CKDS record identified by the key label. The key label must be unique.
Application calls to this service write the key token to both the DASD copy and
in-storage copy of the CKDS, so the record must already exist in both copies of the
CKDS.

This service must be used with variable-length key tokens. This service supports
existing DES and AES key tokens.

Coordinated KDS Administration Callable Service (CSFCRC and
CSFCRC6)
This service is used to perform the following operations: coordinated CKDS
change-mk, coordinated CKDS refresh, coordinated PKDS change-mk, coordinated
PKDS refresh, and coordinated TKDS change-mk.

While this service is performing a coordinated change-mk operation, dynamic KDS
update services may continue to run in parallel. During a coordinated refresh
operation, dynamic KDS update services may continue to be enabled, however
they will be temporarily suspended internally until the coordinated refresh
completes. If this can not be tolerated, it is recommended to disable dynamic KDS
update services when using this service.

In a sysplex environment, this callable service is executed from a single ICSF
instance, and the operation is coordinated across all sysplex members sharing the
same active KDS. This removes the need for KDS refresh or KDS change-mk
operations to be performed locally on every ICSF instance sharing the same active
KDS in a sysplex environment.

Callable Services that Support Secure Sockets Layer (SSL)
The Secure Sockets Layer (SSL) protocol, developed by Netscape Development
Corporation, provides communications privacy over the Internet. Client/server
applications can use the SSL protocol to provide secure communications and
prevent eavesdropping, tampering, or message forgery.

ICSF provides callable services that support the RSA-encryption and
RSA-decryption of PKCS 1.2-formatted symmetric key data to produce symmetric
session keys. These session keys can then be used to establish an SSL session
between the sender and receiver.

PKA Decrypt Callable Service (CSNDPKD)
The PKA decrypt callable service uses the corresponding private RSA key to
unwrap the RSA-encrypted key and deformat the key value. This service then
returns the clear key value to the application.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 47

PKA Encrypt Callable Service (CSNDPKE)
The PKA encrypt callable service encrypts a supplied clear key value under an
RSA public key. Currently, the supplied key can be formatted using the PKCS 1.2
or ZERO-PAD methods prior to encryption.

Enciphering and Deciphering Data
The encipher and decipher callable services protect data off the host. ICSF protects
sensitive data from disclosure to people who do not have authority to access it.
Using algorithms that make it difficult and expensive for an unauthorized user to
derive the original clear data within a practical time period assures privacy.

To protect data, ICSF can use the Data Encryption Standard (DES) algorithm or the
Advanced Encryption Standard (AES) algorithm to encipher or decipher data or
keys. The algorithm is documented in the Federal Information Processing Standard
#46. The algorithm is documented in the Federal Information Processing Standard
#192.

These services can be used to protect data.
v Decipher Callable Service (CSNBDEC, CSNBDEC1, CSNEDEC and CSNEDEC1)

The decipher callable service uses encrypted DES data-encrypting keys to
decipher data.

v Encipher Callable Service (CSNBENC, CSNBENC1, CSNEENC and CSNEENC1)
The encipher callable service uses encrypted DES data-encrypting keys to
encipher data.

v Symmetric Algorithm Decipher Callable Service (CSNBSAD, CSNBSAD1,
CSNESAD and CSNESAD1)
The symmetric algorithm decipher callable service uses encrypted AES
data-encrypting keys to decipher data.

v Symmetric Algorithm Encipher Callable Service (CSNBSAE, CSNBSAE1,
CSNESAE and CSNESAE1)
The symmetric algorithm Encipher callable service uses encrypted AES
data-encrypting keys to encipher data.

v Symmetric Key Decipher Callable Service (CSNBSYD, CSNBSYD1, CSNESYD
and CSNESYD1)
The symmetric key decipher callable service uses clear and encrypted AES and
DES data-encrypting keys to decipher data.

v Symmetric Key Encipher Callable Service (CSNBSYE, CSNBSYE1, CSNESYE and
CSNESYE1)
The symmetric key encipher callable service uses clear and encrypted AES and
DES data-encrypting keys to encipher data.

Encoding and Decoding Data (CSNBECO, CSNEECO, CSNBDCO, and
CSNEDCO)

The encode and decode callable services perform functions with clear keys. Encode
enciphers 8 bytes of data using the electronic code book (ECB) mode of the DES
and a clear key. Decode does the inverse of the encode service. These services are
available only on a DES-capable system.

48 z/OS ICSF Application Programmer's Guide

|
|
|
|
|

Translating Ciphertext (CSNBCTT2 or CSNBCTT3 and CSNECTT2 or
CSNECTT3)

Restriction: These services are only available on the IBM zEnterprise EC12 or later
servers.

ICSF provides a ciphertext translate callable service. It deciphers encrypted data
(ciphertext) under one encryption key and reenciphers it under another key
without having the data appear in the clear outside the cryptographic feature. Such
a function is useful in a multiple node network, where sensitive data is passed
through multiple nodes prior to reaching its final destination. Different nodes use
different keys in the process. For more information about different nodes, see
“Using the Ciphertext Translate2 Callable Service” on page 61.

The translate keys cannot be used for the encipher and decipher callable services.

Managing Data Integrity and Message Authentication
To ensure the integrity of transmitted messages and stored data, ICSF provides:
v Message authentication code (MAC)
v Several hashing functions, including modification detection code (MDC), SHA-1,

SHA-224, SHA-256, SHA-384, SHA-512, RIPEMD-160 and MD5.

(See Chapter 9, “Using Digital Signatures,” on page 545 for an alternate method of
message authentication using digital signatures.)

The choice of callable service depends on the security requirements of the
environment in which you are operating. If you need to ensure the authenticity of
the sender and also the integrity of the data, consider message authentication code
processing. If you need to ensure the integrity of transmitted data in an
environment where it is not possible for the sender and the receiver to share a
secret cryptographic key, consider hashing functions, such as the modification
detection code process.

Message Authentication Code Processing
The process of verifying the integrity and authenticity of transmitted messages is
called message authentication. Message authentication code (MAC) processing allows
you to verify that a message was not altered or a message was not fraudulently
introduced onto the system. You can check that a message you have received is the
same one sent by the message originator. The message itself may be in clear or
encrypted form. The comparison is performed within the cryptographic feature.
Since both the sender and receiver share a secret cryptographic key used in the
MAC calculation, the MAC comparison also ensures the authenticity of the
message.

In a similar manner, MACs can be used to ensure the integrity of data stored on
the system or on removable media, such as tape.

ICSF provides support for both single-length and double-length MAC generation
and MAC verification keys. With the ANSI X9.9-1 single key algorithm, use the
single-length MAC and MACVER keys.

ICSF provides support for the use of data-encrypting keys in the MAC generation
and verification callable services, and also the use of a MAC generation key in the

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 49

MAC verification callable service. This support permits ICSF MAC services to
interface more smoothly with non-CCA key distribution system.

HMAC Generation Callable Service (CSNBHMG or CSNBHMG1
and CSNEHMG or CSNEHMG1)
When a message is sent, an application program can generate an authentication
code for it using the HMAC generation callable service. The callable service
computes the message authentication code using FIPS-198 Keyed-Hash Message
Authentication Code method.

HMAC Verification Callable Service (CSNBHMV or CSNBHMV1
and CSNEHMV or CSNEHMV1)
When the receiver gets the message, an application program calls the HMAC
verification callable service. The callable service verifies a MAC by generating
another MAC and comparing it with the MAC received with the message. If the
two codes are the same, the message sent was the same one received. A return
code indicates whether the MACs are the same.

The MAC verification callable service can use FIPS-198 Keyed-Hash Message
Authentication Code method.

MAC Generation Callable Service (CSNBMGN or CSNBMGN1 and
CSNEMGN or CSNEMGN1)
When a message is sent, an application program can generate an authentication
code for it using the MAC generation callable service. The callable service
computes the message authentication code using one of these methods:
v Using the ANSI X9.9-1 single key algorithm, a single-length MAC generation

key or data-encrypting key, and the message text.
v Using the ANSI X9.19 optional double key algorithm, a double-length MAC

generation key and the message text.
v Using Europay, MasterCard and Visa (EMV) padding rules with a single-length

MAC key or double-length MAC key and the message text.
v Using ISO 16609 algorithm with a double-length MAC or a double-length DATA

key and the message text.

ICSF allows a MAC to be the leftmost 32 or 48 bits of the last block of the
ciphertext or the entire last block (64 bits) of the ciphertext. The originator of the
message sends the message authentication code with the message text.

MAC Verification Callable Service (CSNBMVR or CSNBMVR1 and
CSNEMVR or CSNEMVR1)
When the receiver gets the message, an application program calls the MAC
verification callable service. The callable service verifies a MAC by generating
another MAC and comparing it with the MAC received with the message. If the
two codes are the same, the message sent was the same one received. A return
code indicates whether the MACs are the same.

The MAC verification callable service can use either of these methods to generate
the MAC for authentication:
v The ANSI X9.9-1 single key algorithm, a single-length MAC verification or MAC

generation key (or a data-encrypting key), and the message text.
v The ANSI X9.19 optional double key algorithm, a double-length MAC

verification or MAC generation key and the message text.
v Using Europay, MasterCard and Visa (EMV) padding rules with a single-length

MAC key or double-length MAC key and the message text.

50 z/OS ICSF Application Programmer's Guide

|
|

v Using ISO 16609 algorithm with a double-length MAC or a double-length DATA
key and the message text.

The method used to verify the MAC should correspond with the method used to
generate the MAC.

Symmetric MAC Generate Callable Service (CSNBSMG,
CSNBSMG1, CSNESMG and CSNESMG1)
This service supports generating a MAC using a clear AES key. The algorithms
supported are CBC-MAC and XCBC-MAC (AES-XCBC-MAC-96 and
AES-XCBC-PRF-128)

Symmetric MAC Verify Callable Service (CSNBSMV, CSNBSMV1,
CSNESMV and CSNESMV1)
This service supports verifying a MAC using a clear AES key. The algorithms
supported are CBC-MAC and XCBC-MAC (AES-XCBC-MAC-96 and
AES-XCBC-PRF-128)

Hashing Functions
Hashing functions include one-way hash generation and modification detection
code (MDC) processing.

One-Way Hash Generate Callable Service (CSNBOWH or
CSNBOWH1 and CSNEOWH or CSNEOWH1)

This service hashes a supplied message. Supported hashing methods include:
v SHA-11

v SHA-224
v SHA-256
v SHA-384
v SHA-512
v RIPEMD-160
v MD5

MDC Generation Callable Service (CSNBMDG or CSNBMDG1 and
CSNEMDG or CSNEMDG1)
The modification detection code (MDC) provides a form of support for data
integrity. The MDC allows you to verify that data was not altered during
transmission or while in storage. The originator of the data ensures that the MDC
is transmitted with integrity to the intended receiver of the data. For instance, the
MDC could be published in a reliable source of public information. When the
receiver gets the data, an application program can generate an MDC, and compare
it with the original MDC value. If the MDC values are equal, the data is accepted
as unaltered. If the MDC values differ the data is assumed to be bogus.

Supported hashing methods through the MDC generation callable service are:
v MDC-2
v MDC-4
v PADMDC-2
v PADMDC-4

1. The Secure Hash Algorithm (SHA) is also called the Secure Hash Standard (SHS), which Federal Information Processing Standard
(FIPS) Publication 180 defines.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 51

In a similar manner, MDCs can be used to ensure the integrity of data stored on
the system or on removable media, such as tape.

When data is sent, an application program can generate a modification detection
code for it using the MDC generation callable service. The callable service
computes the modification detection code by encrypting the data using a
publicly-known cryptographic one-way function. The MDC is a 128-bit value that
is easy to compute for specific data, yet it is hard to find data that will result in a
given MDC.

Once an MDC has been established for a file, the MDC generate service can be run
at any other time on the file. The resulting MDC can then be compared with the
previously established MDC to detect deliberate or inadvertent modification.

Managing Personal Authentication
The process of validating personal identities in a financial transaction system is
called personal authentication. The personal identification number (PIN) is the basis
for verifying the identity of a customer across the financial industry networks.
ICSF checks a customer-supplied PIN by verifying it using an algorithm. The
financial industry needs functions to generate, translate, and verify PINs. These
functions prevent unauthorized disclosures when organizations handle personal
identification numbers.

ICSF supports these algorithms for generating and verifying personal identification
numbers:
v IBM 3624
v IBM 3624 PIN offset
v IBM German Bank Pool
v IBM German Bank Pool PIN Offset (GBP-PINO)
v VISA PIN validation value
v Interbank

With ICSF, you can translate PIN blocks from one format to another. ICSF supports
these formats:
v ANSI X9.8
v ISO formats 0, 1, 2, 3
v VISA formats 1, 2, 3, 4
v IBM 4704 Encrypting PINPAD format
v IBM 3624 formats
v IBM 3621 formats
v ECI formats 1, 2, 3

With the capability to translate personal identification numbers into different PIN
block formats, you can use personal identification numbers on different systems.

Verifying Credit Card Data
The Visa International Service Association (VISA) and MasterCard International,
Incorporated have specified a cryptographic method to calculate a value that
relates to the personal account number (PAN), the card expiration date, and the
service code. The VISA card-verification value (CVV) and the MasterCard
card-verification code (CVC) can be encoded on either track 1 or track 2 of a

52 z/OS ICSF Application Programmer's Guide

magnetic striped card and are used to detect forged cards. Because most online
transactions use track-2, the ICSF callable services generate and verify the CVV2 by
the track-2 method.

The VISA CVV generate callable service calculates a 1- to 5-byte value through the
DES-encryption of the PAN, the card expiration date, and the service code using
two data-encrypting keys or two MAC keys. The VISA CVV service verify callable
service calculates the CVV by the same method, compares it to the CVV supplied
by the application (which reads the credit card's magnetic stripe) in the CVV_value,
and issues a return code that indicates whether the card is authentic.

Clear PIN Encrypt Callable Service (CSNBCPE and CSNECPE)
To format a PIN into a PIN block format and encrypt the results, use the Clear PIN
Encrypt callable service. You can also use this service to create an encrypted PIN
block for transmission. With the RANDOM keyword, you can have the service
generate random PIN numbers. An enhanced PIN security mode is available for
formatting an encrypted PIN block into IBM 3621 format or IBM 3624 format. See
“Clear PIN Encrypt (CSNBCPE and CSNECPE)” on page 458 for more information.

Clear PIN Generate Alternate Callable Service (CSNBCPA and
CSNECPA)
To generate a clear VISA PIN validation value from an encrypted PIN block, call
the clear PIN generate alternate callable service. This service also supports the
IBM-PINO algorithm to produce a 3624 offset from a customer selected encrypted
PIN.

An enhanced PIN security mode is available for extracting PINs from encrypted
PIN blocks. This mode only applies when specifying a PIN-extraction method for
an IBM 3621 or an IBM 3624 PIN-block. See “Clear PIN Generate Alternate
(CSNBCPA and CSNECPA)” on page 466 for more information.

Note: The PIN block must be encrypted under either an input PIN-encrypting key
(IPINENC) or output PIN-encrypting key (OPINENC). Using an IPINENC key
requires NOCV keys to be enabled in the CKDS.

Clear PIN Generate Callable Service (CSNBPGN and CSNEPGN)
To generate personal identification numbers, call the Clear PIN generate callable
service. Using a PIN generation algorithm, data used in the algorithm, and the PIN
generation key, the callable service generates a clear PIN, a PIN verification value,
or an offset. The callable service can only execute in special secure mode, which is
described in “Special Secure Mode” on page 10.

CVV Key Combine Callable Service (CSNBCKC and CSNECKC)
This callable service combines 2 single-length CCA internal key tokens into 1
double-length CCA key token containing a CVVKEY-A key type. This combined
double-length key satisfies current VISA requirements and eases translation
between TR-31 and CCA formats for CVV keys.

Encrypted PIN Generate Callable Service (CSNBEPG and
CSNEEPG)
To generate personal identification numbers, call the Encrypted PIN generation
callable service. Using a PIN generation algorithm, data used in the algorithm, and
the PIN generation key, the callable service generates a PIN and using a PIN block
format and the PIN encrypting key, formats and encrypts the PIN. An enhanced

2. The VISA CVV and the MasterCard CVC refer to the same value. CVV is used here to mean both CVV and CVC.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 53

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

PIN security mode is available for formatting an encrypted PIN block into IBM
3621 format or IBM 3624 format. See “Encrypted PIN Generate (CSNBEPG and
CSNEEPG)” on page 477 for more information.

Encrypted PIN Translate Callable Service (CSNBPTR and
CSNEPTR)
To translate a PIN from one PIN-encrypting key to another or from one PIN block
format to another or both, call the Encrypted PIN translation callable service. You
must identify the input PIN-encrypting key that originally enciphers the PIN. You
also need to specify the output PIN-encrypting key that you want the callable
service to use to encipher the PIN. If you want to change the PIN block format,
specify a different output PIN block format from the input PIN block format. An
enhanced PIN security mode is available for formatting an encrypted PIN block
into IBM 3621 format or IBM 3624 format. The enhanced security mode is also
available for extracting PINs from encrypted PIN blocks. This mode only applies
when specifying a PIN-extraction method for an IBM 3621 or an IBM 3624
PIN-block. See “Encrypted PIN Translate (CSNBPTR and CSNEPTR)” on page 482
for more information.

Encrypted PIN Verify Callable Service (CSNBPVR and CSNEPVR)
To verify a supplied PIN, call the Encrypted PIN verify callable service. You need
to specify the supplied enciphered PIN, the PIN-encrypting key that enciphers it,
and other relevant data. You must also specify the PIN verification key and PIN
verification algorithm. It compares the two personal identification numbers; if they
are the same, it verifies the supplied PIN. See Chapter 8, “Financial Services,” on
page 447 for additional information.

An enhanced PIN security mode is available for extracting PINs from encrypted
PIN blocks. This mode only applies when specifying a PIN-extraction method for
an IBM 3621 or an IBM 3624 PIN-block. See “Encrypted PIN Verify (CSNBPVR and
CSNEPVR)” on page 488 for more information.

PIN Change/Unblock Callable Service (CSNBPCU and CSNEPCU)
To support PIN change algorithms specified in the VISA Integrated Circuit Card
Specification, call the PIN change/unblock callable service.

An enhanced PIN security mode is available for extracting PINs from encrypted
PIN blocks. This mode only applies when specifying a PIN-extraction method for
an IBM 3621 or an IBM 3624 PIN-block. See “PIN Change/Unblock (CSNBPCU
and CSNEPCU)” on page 494 for more information.

Transaction Validation Callable Service (CSNBTRV and
CSNETRV)
To support generation and validation of American Express card security codes, call
the transaction validation callable service.

Recover PIN From Offset (CSNBPFO and CSNEPFO)
This callable service will calculate an encrypted customer-entered PIN from a PIN
generating key, account information, and an offset. The generated PIN is returned
encrypted under a PIN encrypting key.

Authentication Parameter Generate (CSNBAPG and CSNEAPG)
This callable service will calculate an authentication parameter (AP) and optionally
return it encrypted under an encrypting key.

54 z/OS ICSF Application Programmer's Guide

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|

|
|
|

ANSI TR-31 key block support
A TR-31 key block is a format defined by the American National Standards
Institute (ANSI) to support the interchange of keys in a secure manner with key
attributes included in the exchanged data. The TR-31 key block format has a set of
defined key attributes that are securely bound to the key so that they can be
transported together between any two systems that both understand the TR-31
format. ICSF enables applications to convert a CCA token to a TR-31 key block for
export to another party, and to convert an imported TR-31 key block to a CCA
token. This enables you to securely exchange keys and their attributes with
non-CCA systems.

Although there is often a one-to-one correspondence between TR-31 key attributes
and the attributes defined by CCA, there are also cases where the correspondence
is many-to-one or one-to-many. Because there is not always a one-to-one mapping
between the key attributes defined by TR-31 and those defined by CCA, the TR-31
Export callable service and the TR-31 Import callable service provide rule array
keywords that enable an application to specify the attributes to attach to the
exported or imported key.

The TR-31 key block format defines a header section. The header contains
metadata about the key, including its usage attributes. The header can also be
extended with optional blocks, which can either have standardized content or
proprietary information. Callable services are also provided for retrieving standard
header or optional block information from a TR-31 key block without importing
the key and for building an optional block.

The TR-31 key block support requires a z196 or IBM zEnterprise EC12 with a
CEX3C or CEX4C and the Sept. 2011 or later LIC. Only DES/TDES keys can be
transported in TR-31 key blocks. There is no support for transporting AES keys.

TR-31 Export Callable Service (CSNBT31X and CSNET31X)
The TR-31 Export callable service converts a CCA token to TR-31 format for export
to another party. Since there is not always a one-to-one mapping between the key
attributes defined by TR-31 and those defined by CCA, the caller may need to
specify the attributes to attach to the exported key through the rule array.

TR-31 Import Callable Service (CSNBT31I and CSNET31I)
The TR-31 Import callable service converts a TR-31 key block to a CCA token.
Since there is not always a one-to-one mapping between the key attributes defined
by TR-31 and those defined by CCA, the caller may need to specify the attributes
to attach to the imported key through the rule array.

TR-31 Parse Callable Service (CSNBT31P and CSNET31P)
The TR-31 Parse callable service retrieves standard header information from a
TR-31 key block without importing the key. This callable service can be used with
the TR-31 Optional Data Read callable service to obtain both the standard header
fields and any optional data blocks from the key block.

TR-31 Optional Data Read Callable Service (CSNBT31R and
CSNET31R)

A TR-31 key block can hold optional fields which are securely bound to the key
block using the integrated MAC. The optional blocks may either contain
information defined in the TR-31 standard, or they may contain proprietary data. A

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 55

separate range of optional block identifiers is reserved for use with proprietary
blocks. Applications can call the TR-31 Optional Data Read callable service to
obtain lists of the optional block identifiers and optional block lengths, and to
obtain the data for a particular optional block. This callable service is often used in
conjunction with the TR-31 Parse Callable Service which can be used to determine
the number of optional blocks in the TR-31 token.

TR-31 Optional Data Build Callable Service (CSNBT31O and
CSNET31O)

The TR-31 Optional Data Build callable service constructs the optional block data
structure for a TR-31 key block. It builds the structure by adding one optional
block with each call, until your entire set of optional blocks have been added. With
each call, the application program provides a single optional block by specifying its
ID, its length, and its data. Each subsequent call appends the current optional
block to any pre-existing blocks.

Secure Messaging

These services will assist applications in encrypting secret information such as
clear keys and PIN blocks in a secure message. These services will execute within
the secure boundary of the CCA coprocessor.

The Secure Messaging for Keys callable service encrypts a text block, including a
clear key value decrypted from an internal or external DES token.

The Secure Messaging for PINs callable service encrypts a text block, including a
clear PIN block recovered from an encrypted PIN block.

Trusted Key Entry (TKE) Support

The Trusted Key Entry (TKE) workstation is an optional feature. It offers an
alternative to clear key entry. You can use the TKE workstation to load master
keys, and operational keys in a secure way.

You can load keys remotely and for multiple cryptographic coprocessors. The TKE
workstation eases the administration for using one cryptographic coprocessor as a
production machine and as a test machine at the same time, while maintaining
security and reliability.

The TKE workstation can be used for enabling/disabling access control points for
callable services executed on cryptographic coprocessors. See Appendix G, “Access
Control Points and Callable Services,” on page 921 for additional information.

For complete details about the TKE workstation see z/OS Cryptographic Services
ICSF TKE Workstation User's Guide.

TKE Version 6.0 or higher is required if using a CEX3C.

TKE Version 7.2 or higher is required if using a CEX4C.

On z890, z990 z9 EC, z9 BC, z10 EC and z10 BC systems running with May 2004
or higher version of Licensed Internal Code or an z9 EC, z9 BC, z10 EC and z10
BC with MCL 029 Stream J12220 or higher of Licensed Internal Code, you must
enable TKE commands for each PCIXCC or CCA Crypto Express coprocessor from

56 z/OS ICSF Application Programmer's Guide

|
|
|

|
|
|

|
|
|
|

the Support Element. This is true for new TKE users and those upgrading from
TKE V4.0 to V4.1, V4.2 or V5.x when the new LIC is installed. See Support Element
Operations Guide and z/OS Cryptographic Services ICSF TKE Workstation User's Guide
for more information.

Utilities
ICSF provides these utilities.

Character/Nibble Conversion Callable Services (CSNBXBC and
CSNBXCB)

The character/nibble conversion callable services are utilities that convert a binary
string to a character string and vice versa.

Code Conversion Callable Services (CSNBXEA and CSNBXAE)
The code conversion callable services are utilities that convert EBCDIC data to
ASCII data and vice versa.

X9.9 Data Editing Callable Service (CSNB9ED)
The data editing callable service is a utility that edits an ASCII text string
according to the editing rules of ANSI X9.9-4.

ICSF Query Algorithm Callable Service (CSFIQA)
The callable service provides information regarding the cryptographic and hash
algorithms available.

ICSF Query Facility Callable Service (CSFIQF)
The callable service provides ICSF status information, as well as coprocessor
information.

ICSF Query Facility2 Callable Service (CSFIQF2)
The callable service provides status information on the cryptographic environment
as currently know by ICSF. This callable service is not SAF protected nor does it
call any cryptographic processors.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 57

|

|
|
|

Typical Sequences of ICSF Callable Services
Sample sequences in which the ICSF callable services might be called are shown in
Table 6.

Table 6. Combinations of the Callable Services

Combinations

Combination A (DATA keys only) Combination B

1. Random number generate 1. Random number generate
2. Clear key import or 2. Secure key import or

multiple clear key import multiple secure key import
3. Encipher/decipher 3. Any service
4. Data key export or key export 4. Data key export for DATA keys, or

(optional step) key export in the general case
(optional step)

Combination C Combination D

1. Key generate (OP form only) 1. Key generate (OPEX form)
2. Any service 2. Any service
3. Key export (optional)

Combination E Combination F

1. Key generate (IM form only) 1. Key generate (IMEX form)
2. Key import 2. Key import
3. Any service 3. Any service
4. Key export (optional)

Combination G Combination H

1. Key generate 1. Key import
2. Key record create 2. Key record create
3. Key record write 3. Key record write
4. Any service (passing label 4. Any service (passing label

of the key just generated) of the key just generated)

Notes:

1. An example of “any service” is CSNBENC.

2. These combinations exclude services that can be used on their own; for example, key export or encode, or using
key generate to generate an exportable key.

3. These combinations do not show key communication, or the transmission of any output from an ICSF callable
service.

The key forms are described in “Key Generate (CSNBKGN and CSNEKGN)” on
page 132.

Key Forms and Types Used in the Key Generate Callable Service
The key generate callable service is the most complex of all the ICSF callable
services. This topic provides examples of the key forms and key types used in the
key generate callable service.

Generating an Operational Key
To generate an operational key, choose one of these methods:
v For operational keys, call the key generate callable service (CSNBKGN). Table 34

on page 140 and Table 35 on page 140 show the key type and key form
combinations for a single key and for a key pair.

58 z/OS ICSF Application Programmer's Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

v For operational keys, call the random number generate callable service
(CSNBRNG) and specify the form parameter as RANDOM. For DES keys, specify
ODD parity for a random number you intend to use as a key. For AES keys, any
random number is permitted. Then pass the generated value to the secure key
import callable service (CSNBSKI) with a required key type. The required key
type is now in operational form.
This method requires ICSF to be in special secure mode. For more information
about special secure mode, see “Special Secure Mode” on page 10.

v For data-encrypting keys, call the random number generate callable service
(CSNBRNG) and, for DES keys, specify the form parameter as ODD. Then pass
the generated value to the clear key import callable service (CSNBCKI) or the
multiple clear key import callable service (CSNBCKM). The DATA key type is
now in operational form.

You cannot generate a PIN verification (PINVER) key in operational form because
the originator of the PIN generation (PINGEN) key generates the PINVER key in
exportable form, which is sent to you to be imported.

Generating an Importable Key
To generate an importable key form, call the key generate callable service
(CSNBKGN).

If you want a DATA, DECIPHER, ENCIPHER, MAC, PINGEN, DATAM, or
DATAC key type in importable form, obtain it directly by generating a single key.
If you want any other key type in importable form, request a key pair where either
the first or second key type is importable (IM). Discard the generated key form
that you do not need.

Generating an Exportable Key
To generate an exportable key form, call the key generate callable service
(CSNBKGN).

If you want a DATA, DECIPHER, ENCIPHER, MAC, PINGEN, DATAM, or
DATAC key type in exportable form, obtain it directly by generating a single key.
If you want any other key type in exportable form, request a key pair where either
the first or second key type is exportable (EX). Discard the generated key form that
you do not need.

Examples of Single-Length Keys in One Form Only
Key Key
Form 1

OP DATA Encipher or decipher data. Use data key export or key export
to send encrypted key to another cryptographic partner. Then
communicate the ciphertext.

OP MAC MAC generate. Because no MACVER key exists, there is no
secure communication of the MAC with another cryptographic
partner.

IM DATA Key Import, and then encipher or decipher. Then key export
to communicate ciphertext and key with another cryptographic
partner.

EX DATA You can send this key to a cryptographic partner, but you
can do nothing with it directly. Use it for the key
distribution service. The partner could then use key import
to get it in operational form, and use it as in OP DATA
above.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 59

|
|
|

|

|
|

|
|

Examples of OPIM Single-Length, Double-Length, and
Triple-Length Keys in Two Forms

The first two letters of the key form indicate the form that key type 1 parameter is
in, and the second two letters indicate the form that key type 2 parameter is in.
Key Type Type
Form 1 2

OPIM DATA DATA Use the OP form in encipher. Use key export with the
OP form to communicate ciphertext and key with
another cryptographic partner. Use key import at a
later time to use encipher or decipher with the same
key again.

OPIM MAC MAC Single-length MAC generation key. Use the OP form in
MAC generation. You have no corresponding MACVER key,
but you can call the MAC verification service with
the MAC key directly. Use the key import callable
service and then compute the MAC again using the MAC
verification callable service, which compares the MAC
it generates with the MAC supplied with the message
and issues a return code indicating whether they
compare.

Examples of OPEX Single-Length, Double-Length, and
Triple-Length Keys in Two Forms

Key Type Type
Form 1 2

OPEX DATA DATA Use the OP form in encipher. Send the EX form and
the ciphertext to another cryptographic partner.

OPEX MAC MAC Single-length MAC generation key. Use the OP form in
both MAC generation and MAC verification. Send the
EX form to a cryptographic partner to be used in the
MAC generation or MAC verification services.

OPEX MAC MACVER Single-length MAC generation and MAC verification
keys. Use the OP form in MAC generation. Send the EX
form to a cryptographic partner where it will be put
into key import, and then MAC verification, with the
message and MAC that you have also transmitted.

OPEX PINGEN PINVER Use the OP form in Clear PIN generate. Send the
EX form to a cryptographic partner where it is put
into key import, and then Encrypted PIN verify,
along with an IPINENC key.

OPEX IMPORTER EXPORTER
Use the OP form in key import, key generate,
or secure key import. Send the EX form to a
cryptographic partner where it is used in key
export, data key export, or key generate, or put in
the CKDS.

OPEX EXPORTER IMPORTER
Use the OP form in key export, data key export,
or key generate. Send the EX form to a cryptographic
partner where it is put into the CKDS or used in key
import, key generate or secure key import.

When you and your partner have the OPEX IMPORTER EXPORTER, OPEX
EXPORTER IMPORTER pairs of keys in “Examples of OPEX Single-Length,
Double-Length, and Triple-Length Keys in Two Forms” installed, you can start key
and data exchange.

60 z/OS ICSF Application Programmer's Guide

Examples of IMEX Single-Length and Double-Length Keys in
Two Forms

Key Type Type
Form 1 2

IMEX DATA DATA Use the key import callable service to import
IM form and use the OP form in encipher. Send
the EX form to a cryptographic partner.

IMEX MAC MACVER Use the key import callable service to import
the IM form and use the OP form in MAC
generate. Send the EX form to a cryptographic
partner who can verify the MAC.

IMEX IMPORTER EXPORTER Use the key import callable service to import
the IM form and send the EX form to a
cryptographic partner. This establishes a new
IMPORTER/EXPORTER key between you and your
partner.

IMEX PINGEN PINVER Use the key import callable service to import
the IM form and send the EX form to a
cryptographic partner. This establishes a new
PINGEN/PINVER key between you and your partner.

Examples of EXEX Single-Length and Double-Length Keys in
Two Forms

For the keys shown in this list, you are providing key distribution services for
other nodes in your network, or other cryptographic partners. Neither key type
can be used in your installation.

Key Type Type
Form 1 2

EXEX DATA DATA Send the first EX form to a cryptographic
EXEX MAC MACVER partner with the corresponding IMPORTER and
EXEX IMPORTER EXPORTER send the second EX form to another
EXEC OPINENC IPINENC cryptographic partner with the corresponding

IMPORTER. This exchange establishes a key
between two partners.

Using the Ciphertext Translate2 Callable Service
Restriction: The Ciphertext Translate2 callable service is only available on the IBM
zEnterprise EC12 and later servers.

This topic describes a scenario using the encipher, Ciphertext Translate2, and
decipher callable services with four network nodes: A, B, C, and D. You want to
send data from your network node A to a destination node D. You cannot
communicate directly with node D, and nodes B and C are situated between you.
You do not want nodes B and C to decipher your data.

At node A, you use the Encipher callable service. Node D uses the Decipher
callable service.

Node B and C will use the Ciphertext Translate2 callable service. Consider the keys
that are needed to support this process:
1. At your node, generate one key in two forms: OPEX CIPHER CIPHERXI
2. Send the exportable CIPHERXI key to node B.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 61

|

|
|

|
|
|
|
|

|
|

|
|

|

|

3. Node B and C need to share a key, so generate a different key in two forms:
EXEX CIPHERX0 CIPHERXI.

4. Send the exportable CIPHERX0 key to node B.
5. Send the exportable CIPHERXI key to node C.
6. Node C and node D need to share a CIPHERX0 key and a CIPHER key. Node

D can generate one key in two forms: OPEX CIPHERX0 CIPHERXI.
7. Node D sends the exportable CIPHERX0 key to node C.

The communication process is shown as:
Node: A B C D

Callable
Service: Encipher Ciphertext Translate Ciphertext Translate Decipher

Keys: CIPHER CIPHERXI CIPHERX0 CIPHERXI CIPHERXI CIPHER

Key Pairs: |____ = ____| |____ = ____| |____ = ____|

Therefore, you need three keys, each in two different forms. You can generate two
of the keys at node A, and node D can generate the third key. Note that the key
used in the decipher callable service at node D is not the same key used in the
encipher callable service at node A.

Summary of Callable Services
Table 7 lists the callable services described in this publication, and their
corresponding verbs. The figure also references the topic that describes the callable
service.

Table 7. Summary of ICSF Callable Services

Verb Service Name Function

Chapter 5, “Managing Symmetric Cryptographic Keys,” on page 93

CSNBCKI
CSNECKI

Clear key import Imports an 8-byte clear DATA key, enciphers it
under the master key, and places the result
into an internal key token. CSNBCKI converts
the clear key into operational form as a DATA
key.

CSNBCVG
CSNECVG

Control vector generate Builds a control vector from keywords
specified by the key_type and rule_array
parameters.

CSNBCVT
CSNECVT

Control vector translate Changes the control vector used to encipher an
external key.

CSNBCVE
CSNECVE

Cryptographic variable encipher Uses a CVARENC key to encrypt plaintext by
using the Cipher Block Chaining (CBC)
method. The plaintext must be a multiple of
eight bytes in length.

CSNBDKX
CSNEDKX

Data key export Converts a DATA key from operational form
into exportable form.

CSNBDKM
CSNEDKM

Data key import Imports an encrypted source DES single- or
double-length DATA key and creates or
updates a target internal key token with the
master key enciphered source key.

62 z/OS ICSF Application Programmer's Guide

|
|

|

|

|
|

|

|

|
|
|
|
|
|
|
|

|
|
|
|

Table 7. Summary of ICSF Callable Services (continued)

Verb Service Name Function

CSNBDKG
CSNEDKG

Diversified key generate Generates a key based upon the
key-generating key, the processing method,
and the parameter data that is supplied.

CSNBEDH
CSNEEDH

ECC Diffie-Hellman Creates symmetric key material from a pair of
ECC keys using the Elliptic Curve
Diffie-Hellman protocol and the static unified
model key agreement scheme or “Z” data (the
“secret” material output from D-H process).

CSNBKEX
CSNEKEX

Key export Converts any key from operational form into
exportable form. (However, this service does
not export a key that was marked
non-exportable when it was imported.)

CSNBKGN
CSNEKGN

Key generate Generates a 64-bit, 128-bit, or 192-bit odd
parity key, or a pair of keys; and returns them
in encrypted forms (operational, exportable, or
importable). CSNBKGN does not produce keys
in plaintext.

CSNBKGN2
CSNEKGN2

Key generate2 Generates a variable-length HMAC or AES key
or a pair of keys; and returns them in
encrypted forms (operational, exportable, or
importable).

CSNBKIM
CSNEKIM

Key import Converts any key from importable form into
operational form.

CSNBKPI
CSNEKPI

Key part import Combines the clear key parts of any key type
and returns the combined key value in an
internal key token or an update to the CKDS.

CSNBKPI2
CSNEKPI2

Key part import2 Combines the clear key parts of an HMAC or
AES key and returns the combined key value
in an internal key token or an update to the
CKDS.

CSNBKYT
CSNEKYT
CSNBKYTX
CSNEKYTX

Key test Generates or verifies (depending on keywords
in the rule array) a secure verification pattern
for keys. CSNBKYT and CSNEKYT require the
tested key to be in the clear or encrypted
under the master key. CSNBKYTX and
CSNEKYTX also allow the tested key to be
encrypted under a key-encrypting key.

CSNBKYT2
CSNEKYT2

Key test2 Generates or verifies (depending on keywords
in the rule array) a secure verification pattern
for keys. CSNBKYT2 and CSNEKYT2 allow
the tested key to be in the clear or encrypted
under the master key or a key-encrypting key.

CSNBKTB
CSNEKTB

Key token build Builds an internal or external token from the
supplied parameters. You can use this service
to build CCA key tokens for all key types ICSF
supports.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 63

|
|
|
|

Table 7. Summary of ICSF Callable Services (continued)

Verb Service Name Function

CSNBKTB2
CSNEKTB2

Key token build2 Builds an internal clear key or skeleton token
from the supplied parameters. You can use this
callable service to build an internal clear key
token for any key type for input to the key
test2 callable service. You can use this callable
service to build a skeleton token for input to
the key generate2 and key part import2
callable services.

CSNBKTR
CSNEKTR

Key translate Uses one key-encrypting key to decipher an
input key and then enciphers this key using
another key-encrypting key within the secure
environment.

CSNBKTR2
CSNEKTR2

Key translate2 Uses one key-encrypting key to decipher an
input key and then enciphers this key using
another key-encrypting key within the secure
environment.

CSNBCKM
CSNECKM

Multiple clear key import Imports a single-, double-, or triple-length
clear DATA key, enciphers it under the master
key, and places the result into an internal key
token. CSNBCKM converts the clear key into
operational form as a DATA key.

CSNBSKM
CSNESKM

Multiple secure key import Enciphers a single-, double-, or triple-length
clear key under the master key or an input
importer key, and places the result into an
internal or external key token as any key type.
Triple-length keys can only be imported as
DATA keys.

This service executes only in special secure
mode.

CSNDPKD
CSNFPKD

PKA decrypt Uses an RSA private key to decrypt the
RSA-encrypted key value and return the clear
key value to the application.

CSNDPKE
CSNFPKE

PKA encrypt Encrypts a supplied clear key value under an
RSA public key.

CSNBPEX
CSNEPEX

Prohibit export Modifies an operational key so that it cannot
be exported.

CSNBPEXX
CSNEPEXX

Prohibit export extended Changes the external token of a key in
exportable form so that it can be imported at
the receiver node but not exported from that
node.

CSNBRKA
CSNERKA

Restrict Key Attribute Modifies an operational variable-length key so
that it cannot be exported.

CSNBRNG
CSNERNG
CSNBRNGL
CSNERNGL

Random number generate Generates an 8-byte random number or a
random number with a user-specified length.
The output can be specified in three forms of
parity: RANDOM, ODD, and EVEN.

64 z/OS ICSF Application Programmer's Guide

Table 7. Summary of ICSF Callable Services (continued)

Verb Service Name Function

CSNDRKX
CSNFRKX

Remote key export Generates or exports DES keys for local use
and for distribution to an ATM or other remote
device. RKX uses a special structure to hold
encrypted symmetric keys in a way that binds
them to the trusted block and allows
sequences of RKX calls to be bound together as
if they were an atomic operation.

CSNBSKI
CSNESKI

Secure key import Enciphers a clear key under the master key,
and places the result into an internal or
external key token as any key type.

This service executes only in special secure
mode.

CSNBSKI2
CSNESKI2

Secure key import2 Enciphers a variable-length clear HMAC or
AES under the master key, and places the
result into an internal key token as any key
type.

Enciphers a variable-length clear HMAC or
AES under a key-encrypting key, and places
the result into an external key token as any
key type.

This service executes only in special secure
mode.

CSNDSYX
CSNFSYX

Symmetric key export Transfers an application-supplied symmetric
key from encryption under the host master key
to encryption under an application-supplied
RSA public key or AES EXPORTER key. The
application-supplied key must be an internal
key token or the label in the CKDS of a DES
DATA, AES DATA, or variable-length
symmetric key token.

CSNDSXD
CSNFSXD

Symmetric Key Export with Data Export a symmetric key encrypted using an
RSA key, inserted in a PKCS#1 block type 2,
with some extra data supplied by the
application.

CSNDSYG
CSNFSYG

Symmetric key generate Generates a symmetric DATA key and returns
the key in two forms: enciphered under the
DES master key or KEK and under an RSA
public key.

CSNDSYI
CSNFSYI

Symmetric key import Imports a symmetric key enciphered under an
RSA public key into operational form
enciphered under a host master key.

CSNDSYI2
CSNFSYI2

Symmetric key import2 Imports a symmetric key enciphered under an
RSA public key or AES EXPORTER key into
operational form enciphered under a host
master key.

CSNDTBC
CSNETBC

Trusted block create Creates a trusted block in a two step process.
The block will be in external form, encrypted
under an IMP-PKA transport key. This means
that the MAC key contained within the trusted
block will be encrypted under the IMP-PKA
key.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 65

|
|
|
|

|
|
|
|

|
|

|
|
||
|
|
|

|
|
|
|

Table 7. Summary of ICSF Callable Services (continued)

Verb Service Name Function

CSNBT31X
CSNET31X

TR-31 Export Converts a CCA token to TR-31 format for
export to another party.

CSNBT31I
CSNET31I

TR-31 Import Converts a TR-31 key block to a CCA token.

CSNBT31P
CSNET31P

TR-31 Parse Retrieves standard header information from a
TR-31 key block without importing the key.

CSNBT31R
CSNET31R

TR-31 Optional Data Read Obtains lists of the optional block identifiers
and optional block lengths, and obtains the
data for a particular optional block.

CSNBT31O
CSNET31O

TR-31 Optional Data Build Constructs the optional block data structure for
a TR-31 key block.

CSNBUKD
CSNEUKD

Unique Key Derive Derives a key using a base derivation key and
derivation data. The following key types can
be derived:

v CIPHER

v ENCIPHER

v DECIPHER

v MAC

v MACVER

v IPINENC

v OPINENC

v DATA token containing a PIN Key

Chapter 6, “Protecting Data,” on page 337

CSNBCTT2
CSNBCTT3
CSNECTT2
CSNECTT3

Ciphertext translate2 Translates the user-supplied ciphertext from
one key and enciphers the ciphertext to
another key. Supports both AES and DES
algorithms.

CSNBCTT2 and CSNECTT2 require the
ciphertext to reside in the caller's primary
address space.

CSNBCTT3 and CSNECTT3 allow the
ciphertext to reside in the caller's primary
address space or in a z/OS data space.

CSNBDEC
CSNEDEC
CSNBDEC1
CSNEDEC1

Decipher Deciphers data using the cipher block chaining
mode of the DES. (The method depends on the
token marking or keyword specification.) The
result is called plaintext.

CSNBDEC and CSNEDEC require the plaintext
and ciphertext to reside in the caller's primary
address space.

CSNBDEC1 and CSNEDEC1 allow the
plaintext and ciphertext to reside in the caller's
primary address space or in a z/OS data
space.

66 z/OS ICSF Application Programmer's Guide

|

|
|
|
|

|
|
|

|
|
|
|

Table 7. Summary of ICSF Callable Services (continued)

Verb Service Name Function

CSNBDCO
CSNEDCO

Decode Decodes an 8-byte string of data using the
electronic code book mode of the DES. (This is
for DES encryption only.)

CSNBENC
CSNEENC
CSNBENC1
CSNEENC1

Encipher Enciphers data using the cipher block chaining
mode of the DES. (The method depends on the
token marking or keyword specification.) The
result is called ciphertext.

CSNBENC and CSNEENC require the
plaintext and ciphertext to reside in the caller's
primary address space.

CSNBENC1 and CSNEENC1 allow the
plaintext and ciphertext to reside in the caller's
primary address space or in a z/OS data
space.

CSNBECO
CSNEECO

Encode Encodes an 8-byte string of data using the
electronic code book mode of the DES. (This is
for DES encryption only.)

CSNBSAD
CSNESAD
CSNBSAD1
CSNESAD1

Symmetric algorithm decipher Deciphers data using the AES algorithm in an
address space or a data space using the cipher
block chaining or electronic code book modes.

CSNBSAD and CSNESAD require the plaintext
and ciphertext to reside in the caller's primary
address space.

CSNBSAD1 and CSNESAD1 allows the
plaintext and ciphertext to reside in the caller's
primary address space or in a z/OS data
space.

CSNBSAE
CSNESAE
CSNBSAE1
CSNESAE1

Symmetric algorithm encipher Enciphers data using the AES algorithm in an
address space or a data space using the cipher
block chaining or electronic code book modes.

CSNBSAE and CSNESAE require the plaintext
and ciphertext to reside in the caller's primary
address space.

CSNBSAE1 and CSNESAE1 allows the
plaintext and ciphertext to reside in the caller's
primary address space or in a z/OS data
space.

CSNBSYD
CSNBSYD1
CSNESYD
CSNESYD1

Symmetric key decipher Deciphers data using the AES or DES
algorithm in an address space or a data space
using the cipher block chaining or electronic
code book modes. Only clear keys are
supported.

CSNBSYD and CSNESYD require the plaintext
and ciphertext to reside in the caller's primary
address space.

CSNBSYD1 and CSNESYD1 allow the plaintext
and ciphertext to reside in the caller's primary
address space or in a z/OS data space.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 67

|
|
|
|

|
|
|

|
|
|
|

Table 7. Summary of ICSF Callable Services (continued)

Verb Service Name Function

CSNBSYE
CSNBSYE1
CSNESYE
CSNESYE1

Symmetric key encipher Enciphers data using the AES or DES
algorithm in an address space or a data space
using the cipher block chaining or electronic
code book modes. Only clear keys are
supported.

CSNBSYE and CSNESYE require the plaintext
and ciphertext to reside in the caller's primary
address space.

CSNBSYE1 and CSNESYE1 allows the
plaintext and ciphertext to reside in the caller's
primary address space or in a z/OS data
space.

Chapter 7, “Verifying Data Integrity and Authenticating Messages,” on page 405

CSNBHMG
CSNEHMG
CSNBHMG1
CSNEHMG1

HMAC generation Generates message authentication code (MAC)
for a text string that the application program
supplies. The MAC is computed using the
FIPS-198 Keyed-Hash Message Authentication
Code algorithm.

CSNBHMG and CSNEHMG require data to
reside in the caller’s primary address space.

CSNBHMG1 and CSNEHMG1 allow data to
reside in the caller’s primary address space or
in a z/OS data space.

CSNBHMV
CSNEHMV
CSNBHMV1
CSNEHMV1

HMAC verification Verifies message authentication code (MAC)
for a text string that the application program
supplies. The MAC is computed using the
FIPS-198 Keyed-Hash Message Authentication
Code algorithm.

CSNBHMV and CSNEHMV requires data to
reside in the caller’s primary address space.

CSNBHMV1 and CSNEHMV1 allows data to
reside in the caller’s primary address space or
in a z/OS data space.

CSNBMGN
CSNEMGN
CSNBMGN1
CSNEMGN1

MAC generate Generates a 4-, 6-, or 8-byte message
authentication code (MAC) for a text string
that the application program supplies. The
MAC is computed using the ANSI X9.9-1
algorithm, ANSI X9.19 optional double key
algorithm the EMV padding rules or the ISO
16609 TDES algorithm.

CSNBMGN and CSNEMGN require data to
reside in the caller's primary address space.

CSNBMGN1 and CSNEMGN1 allow data to
reside in the caller's primary address space or
in a z/OS data space.

68 z/OS ICSF Application Programmer's Guide

Table 7. Summary of ICSF Callable Services (continued)

Verb Service Name Function

CSNBMVR
CSNEMVR
CSNBMVR1
CSNEMVR1

MAC verify Verifies a 4-, 6-, or 8-byte message
authentication code (MAC) for a text string
that the application program supplies. The
MAC is computed using the ANSI X9.9-1
algorithm, ANSI X9.19 optional double key
algorithmthe EMV padding rules or the ISO
16609 TDES algorithm.

CSNBMVR and CSNEMVR require data to
reside in the caller's primary address space.

CSNBMVR1 and CSNEMVR1 allow data to
reside in the caller's primary address space or
in a z/OS data space.

CSNBMDG
CSNEMDG
CSNBMDG1
CSNEMDG1

MDC generate Generates a 128-bit modification detection code
(MDC) for a text string that the application
program supplies.

CSNBMDG and CSNEMDG require data to
reside in the caller's primary address space.

CSNBMDG1 and CSNEMDG1 allow data to
reside in the caller's primary address space or
in a z/OS data space.

CSNBOWH
CSNEOWH
CSNBOWH1
CSNEOWH1

One way hash generate Generates a one-way hash on specified text.

CSNBSMG,
CSNESMG
CSNBSMG1
CSNESMG1

Symmetric MAC Generate Use the symmetric MAC generate callable
service to generate a 96- or 128-bit message
authentication code (MAC) for an
application-supplied text string using a clear
AES key.

CSNBSMG1 allows data to reside in the caller's
primary address space or in a z/OS data
space.

CSNBSMV,
CSNESMV
CSNBSMV1
CSNESMV1

Symmetric MAC Verify Use the symmetric MAC verify callable service
to verify a 96- or 128-bit message
authentication code (MAC) for an
application-supplied text string using a clear
AES key.

CSNBSMV1 allows data to reside in the caller's
primary address space or in a z/OS data
space.

Chapter 8, “Financial Services,” on page 447

CSNBAPG
CSNEAPG

Authentication Parameter Generate Generate an authentication parameter (AP) and
optionally return it encrypted under a
supplied encrypting key.

CSNBCPE
CSNECPE

Clear PIN encrypt Formats a PIN into a PIN block format and
encrypts the results.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 69

|
|
||
|
|

Table 7. Summary of ICSF Callable Services (continued)

Verb Service Name Function

CSNBPGN
CSNEPGN

Clear PIN generate Generates a clear personal identification
number (PIN), a PIN verification value (PVV),
or an offset using one of these algorithms:

IBM 3624 (IBM-PIN or IBM-PINO)

IBM German Bank Pool (GBP-PIN or
GBP-PINO)

VISA PIN validation value (VISA-PVV)

Interbank PIN (INBK-PIN)

This service executes only in special secure
mode.

CSNBCPA
CSNECPA

Clear PIN generate alternate Generates a clear VISA PIN validation value
(PVV) from an input encrypted PIN block. The
PIN block may have been encrypted under
either an input or output PIN encrypting key.
The IBM-PINO algorithm is supported to
produce a 3624 offset from a customer selected
encrypted PIN.

CSNBCKC
CSNECKC

CVV Key Combine Combines two single-length CCA internal key
tokens into 1 double-length CCA key token
containing a CVVKEY-A key type.

CSNBEPG
CSNEEPG

Encrypted PIN generate Generates and formats a PIN and encrypts the
PIN block.

CSNBPTR
CSNEPTR

Encrypted PIN translate Reenciphers a PIN block from one
PIN-encrypting key to another and, optionally,
changes the PIN block format. UKPT
keywords are supported.

CSNBPVR
CSNEPVR

Encrypted PIN verify Verifies a supplied PIN using one of these
algorithms:

IBM 3624 (IBM-PIN or IBM-PINO)

IBM German Bank Pool (GBP-PIN or
GBP-PINO)

VISA PIN validation value (VISA-PVV)

Interbank PIN (INBK-PIN)

UKPT keywords are supported.

CSNBPCU
CSNEPCU

PIN Change/Unblock Supports the PIN change algorithms specified
in the VISA Integrated Circuit Card
Specification; only available on a z890 or
Requires May 2004 or later version of Licensed
Internal Code (LIC).

CSNBPFO
CSNEPFO

Recover PIN From Offset Calculate an encrypted customer-entered PIN
from a PIN generating key, account
information, and an offset, returnining the PIN
properly formatted and encrypted under a PIN
encryption key.

CSNBSKY
CSNESKY

Secure messaging for keys Encrypts a text block, including a clear key
value decrypted from an internal or external
DES token.

70 z/OS ICSF Application Programmer's Guide

|
|
||
|
|
|
|

Table 7. Summary of ICSF Callable Services (continued)

Verb Service Name Function

CSNBSPN
CSNESPN

Secure messaging for PINs Encrypts a text block, including a clear PIN
block recovered from an encrypted PIN block.

CSNDSBC
CSNFSBC

SET block compose Composes the RSA-OAEP block and the
DES-encrypted block in support of the SET
protocol.

CSNDSBD
CSNFSBD

SET block decompose Decomposes the RSA-OAEP block and the
DES-encrypted block to provide unencrypted
data back to the caller.

CSNBTRV
CSNETRV

Transaction Validation Supports the generation and validation of
American Express card security codes.

CSNBCSG
CSNECSG

VISA CVV service generate Generates a VISA Card Verification Value
(CVV) or a MasterCard Card Verification Code
(CVC).

CSNBCSV
CSNECSV

VISA CVV service verify Verifies a VISA Card Verification Value (CVV)
or a MasterCard Card Verification Code (CVC).

Chapter 11, “Key Data Set Management,” on page 595

CSNBKRC
CSNEKRC

CKDS key record create Adds a key record containing a key token set
to binary zeros to both the in-storage and
DASD copies of the CKDS.

CSNBKRC2
CSNEKRC2

CKDS key record create2 Adds a key record containing a key token to
both the in-storage and DASD copies of the
CKDS.

CSNBKRD
CSNEKRD

CKDS key record delete Deletes a key record from both the in-storage
and DASD copies of the CKDS.

CSNBKRR
CSNEKRR

CKDS key record read Copies an internal key token from the
in-storage copy of the CKDS to application
storage.

CSNBKRR2
CSNEKRR2

CKDS key record read2 Copies an internal key token from the
in-storage copy of the CKDS to application
storage.

CSNBKRW
CSNEKRW

CKDS key record write Writes an internal key token to the CKDS
record specified in the key label parameter.
Updates both the in-storage and DASD copies
of the CKDS currently in use.

CSNBKRW2
CSNEKRW2

CKDS key record write2 Writes an internal key token to the CKDS
record specified in the key label parameter.
Updates both the in-storage and DASD copies
of the CKDS currently in use.

CSFCRC
CSFCRC6

Coordinated KDS Administration Performs a CKDS refresh or CKDS reencipher
and change master key operation while
allowing applications to update the CKDS. In a
sysplex environment, this callable service
performs a coordinated sysplex-wide refresh or
change master key operation from a single
ICSF instance.

Chapter 12, “Utilities,” on page 627

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 71

|
|

Table 7. Summary of ICSF Callable Services (continued)

Verb Service Name Function

CSNBXBC or CSNBXCB Character/nibble conversion Converts a binary string to a character string
or vice versa.

CSNBXEA or CSNBXAE Code conversion Converts EBCDIC data to ASCII data or vice
versa.

CSFIQA
CSFIQA6

ICSF Query Algorithm Use this utility to retrieve information about
the cryptographic and hash algorithms
available. You can control the amount of data
that is returned by passing in different
rule_array keywords.

CSFIQF
CSFIQF6

ICSF Query Facility Provides ICSF status, as well as coprocessor
information.

CSFIQF2
CSFIQF26

ICSF Query Facility2 Provide information on the cryptographic
environment as currently known by ICSF. This
callable service is not SAF protected nor will it
call any cryptographic coprocessors.

CSNB9ED X9.9 data editing Edits an ASCII text string according to the
editing rules of ANSI X9.9–4.

Chapter 13, “Trusted Key Entry Workstation Interfaces,” on page 667

CSFPCI PCI interface Puts a request to a specific coprocessor queue
and removes the corresponding response when
complete. Only the Trusted Key Entry (TKE)
workstation uses this service.

72 z/OS ICSF Application Programmer's Guide

|

|
|
||
|
|
|

Chapter 3. Introducing PKA Cryptography and Using PKA
Callable Services

The preceding topic focused on DES cryptography or secret-key cryptography. This
is symmetric—senders and receivers use the same key (which must be exchanged
securely in advance) to encipher and decipher data.

Public key cryptography does not require exchanging a secret key. It is
asymmetric—the sender and receiver each have a pair of keys, a public key and a
different but corresponding private key.

You can use PKA support to exchange symmetric secret keys securely and to
compute digital signatures for authenticating messages to users. You can also use
public key cryptography in support of secure electronic transactions over open
networks, using SET protocols.

PKA Key Algorithms
Public key cryptography uses a key pair consisting of a public key and a private
key. The PKA public key uses one of the following algorithms:
v Rivest-Shamir-Adleman (RSA)

The RSA algorithm is the most widely used and accepted of the public key
algorithms. It uses three quantities to encrypt and decrypt text: a public
exponent (PU), a private exponent (PR), and a modulus (M). Given these three
and some cleartext data, the algorithm generates ciphertext as follows:
ciphertext = cleartextPU (modulo M)

Similarly, this operation recovers cleartext from ciphertext:
cleartext = ciphertextPR (modulo M)

An RSA key consists of an exponent and a modulus. The private exponent must
be secret, but the public exponent and modulus need not be secret.

v Elliptic Curve Digital Signature Algorithm (ECDSA)

The ECDSA algorithm uses elliptic curve cryptography (an encryption system
based on the properties of elliptic curves) to provide a variant of the Digital
Signature Algorithm.

PKA Master Keys

PKA master keys protect private keys.
v RSA keys are protected by the RSA Master Key (RSA-MK). The RSA-MK is a

triple-length DES key used to protect RSA private keys. On the IBM zEnterprise
196 or IBM zEnterprise EC12 with a CEX3C or CEX4C, there is an additional
master key: ECC. The ECC master key is a 256-bit AES key used to protect ECC
private keys and new format RSA private keys.

v In order for PKA services to function the RSA and/or ECC master keys must be
installed. The ICSF administrator installs the master keys on the CCA
coprocessors by using either the pass phrase initialization routine, the Clear
Master Key Entry panels, or the optional Trusted Key Entry (TKE) workstation.

© Copyright IBM Corp. 1997, 2013 73

|
|
|
|
|

|
|
|
|

Prior to PKA services being enabled on the CCA coprocessor, these conditions
must be met:
– The RSA and/or ECC master keys on the CCA coprocessor must be installed.
– The PKDS must be initialized with the RSA and/or ECC master keys installed

on the CCA coprocessor.

Operational private keys
RSA operational private keys are protected under two layers of DES encryption.
They are encrypted under an Object Protection Key (OPK) that in turn is encrypted
under the RSA master key. ECC operational private keys are protected under two
layers of AES encryption. They are encrypted under an AES OPK that in turn is
encrypted under the ECC master key. The OPK is dynamically generated for each
private key at import time or when the private key is generated on a CCA
coprocessor. ICSF provides a public key data set (PKDS) for the storage of
application PKA keys.

On systems with a PCIXCC or CCA Crypto Express coprocessor, changing the RSA
master key requires that the PKA callable services control be disabled. The new
master key value is loaded, the PKDS is reenciphered and the Change Asymmetric
Master Key utility makes the reenciphered PKDS the active PKDS. The PKA
callable services control will be enabled automatically.

On systems with the CEX3C or CEX4C, the ECC master key is changed in the
same manner as the DES and AES master keys. On systems with the CEX3C (with
the September 2011 licensed internal code) or the CEX4C, the RSA master key is
changed in the same manner as the DES, AES and ECC master keys.

Key Strength and Wrapping of Key
Key strength is measured as “bits of security” as described in the documentation of
NIST and other organizations. Each individual key will have its “bits of security”
computed, then the different key types (AES, DES, ECC, RSA, HMAC) can then
have their relative strengths compared on a single scale. When the raw value of a
particular key falls between discreet values of the NIST table, the lower value from
the table will be used as the “bits of security”.

The following tables show some examples of the restrictions due to key strength.

When wrapping an HMAC key with an AES key-encrypting key, the strength of
the AES key-encrypting key depends on the attributes of the HMAC key.

Table 8. AES EXPORTER strength required for exporting an HMAC key under an AES
EXPORTER

Key-usage field 2 in the
HMAC key

Minimum strength of AES EXPORTER to adequately
protect the HMAC key

SHA-256, SHA-384, SHA-512 256 bits

SHA-224 192 bits

SHA-1 128 bits

Table 9. Minimum RSA modulus length to adequately protect an AES key

Bit length of AES key to be
exported

Minimum strength of RSA wrapping key to adequately
protect the AES key

128 3072

74 z/OS ICSF Application Programmer's Guide

|
|

|

|
|

|
|
|
|
|
|
|
|

Table 9. Minimum RSA modulus length to adequately protect an AES key (continued)

Bit length of AES key to be
exported

Minimum strength of RSA wrapping key to adequately
protect the AES key

192 7860

256 15360

Key Strength and Key Wrapping Access Control Points
In order to comply with cryptographic standards, including ANSI X9.24 Part 1 and
PCI-HSM, ICSF provides a way to ensure that a key is not wrapped with a key
weaker than itself. ICSF provides a set of access control points in the domain role
to control the wrapping of keys. ICSF administrators can use these access control
points to meet an installation's individual requirements.

There are new and existing access control points that control the wrapping of keys
by master and key-encrypting keys. These access control points will either prohibit
the wrapping of a key by a key of weaker strength or will return a warning (return
code 0, reason code non-zero) when a key is wrapped by a weaker key. All of these
ACPs are disabled by default in the domain role.

The processing of callable services will be affected by these access control points.
Here is a description of the access control points, the wrapping they control, and
the effect on services. These access control points apply to symmetric and
asymmetric keys.

When the Prohibit weak wrapping - Transport keys access control point is
enabled, any service that attempts to wrap a key with a weaker transport key will
fail.

When the Prohibit weak wrapping - Master keys access control point is enabled,
any service that wraps a key under a master key will fail if the master key is
weaker than the key being wrapped.

When the Warn when weak wrap - Transport keys access control point is enabled,
any service that attempts to wrap a key with a weaker transport key will succeed
with a warning reason code.

When the Warn when weak wrap - Master keys access control point is enabled,
any service that attempts to wrap a key with a weaker master key will succeed
with a warning reason code.

24-byte DATA keys with a zero control vector can be wrapped with a 16-byte key,
the DES master key, or a key-encrypting key, which violates the wrapping
requirements. The Prohibit weak wrapping – Transport keys and Prohibit weak
wrapping – Master keys access control points do not cause services to fail for this
case. The Disallow 24-byte DATA wrapped with 16-byte Key access control point
does control this wrapping. When enabled, services will fail. The Warn when weak
wrap – Transport keys and Warn when weak wrap – Master keys access control
points will cause the warning to be returned when the access control points are
enabled.

When the RKX/TBC – Disallow triple-length MAC key access control point is
enabled, CSNDRKX will fail to import a triple-length MAC key under a
double-length key-encrypting key. CSNBTBC will not wrap a triple-length MAC
key under a double-length key-encrypting key. The Prohibit weak wrapping –

Chapter 3. Introducing PKA Cryptography and Using PKA Callable Services 75

Transport keys and Prohibit weak wrapping – Master keys access control points
do not cause services to fail for this case. The Warn when weak wrap – Transport
keys and Warn when weak wrap – Master keys access control points will cause
the warning to be returned when the ACPs are enabled.

If the Prohibit Weak Wrap access control point is enabled, RSA private keys may
not be wrapped using a weaker DES key-encrypting key. Enabling the Allow weak
DES wrap of RSA private key access control points will override this restriction.

RSA Private Key Tokens
The existing RSA private key tokens use a DES object protection key to wrap the
private key parts of the key. This wrapping is not compliant for large modulus
sizes. New private key sections have been introduced for RSA keys where the
object protection key is an AES key. These private key sections are compliant.

PKA Callable Services
CCA coprocessors provide RSA digital signature functions, key management
functions, and DES key distribution functions, PIN, MAC and data encryption
functions, and application programming interfaces to these functions through
callable services. You can also generate RSA keys on these coprocessors.

The CEX3C and the CEX4C provide support for ECC. Specifically, they provide
ECDSA digital signature functions, ECC key management functions, and
application programming interfaces to these functions through callable services.

Callable Services Supporting Digital Signatures
ICSF provides these services that support digital signatures.

Restrictions:
v ECDSA is only supported through the CEX3C and CEX4C cryptographic

hardware.

Digital Signature Generate Callable Service (CSNDDSG and
CSNFDSG)
This service generates a digital signature using an RSA or ECC private key. It
supports these methods of signature generation:
v ANSI X9.30 (ECDSA)
v ANSI X9.31 (RSA)
v ISO 9796-1 (RSA)
v RSA DSI PKCS 1.0 and 1.1 (RSA)
v Padding on the left with zeros (RSA)

The input text must have been previously hashed using the one-way hash generate
callable service or the MDC generation service.

Digital Signature Verify Callable Service (CSNDDSV and
CSNFDSG)
This service verifies a digital signature using an RSA or ECC public key. This
service supports these methods of signature generation:
v ANSI X9.30 (ECDSA)
v ANSI X9.31 (RSA)
v ISO 9796-1 (RSA)

76 z/OS ICSF Application Programmer's Guide

|
|

|
|

|

|

|

|

|

|
|

|

|

|

v RSA DSI PKCS 1.0 and 1.1 (RSA)
v Padding on the left with zeros (RSA)

The text that is input to this service must be previously hashed using the one-way
hash generate callable service or the MDC generation service.

Callable Services for PKA Key Management
ICSF provides these services for PKA key management.

PKA Key Generate Callable Service (CSNDPKG and CSNFPKG)
This service generates an RSA or ECC internal or external private key tokens. The
internal tokens can be used with services. You can extract the public key token
with the PKA Public Key Extract callable service from the private key token.

Input to the PKA key generate callable service is either a skeleton key token
created by the PKA key token build callable service or a valid key token.

PKA Key Import Callable Service (CSNDPKI and CSNFPKI)
This service imports a PKA private key, which may be RSA or ECC.

The key token to import can be in the clear or encrypted. The PKA key token build
utility creates a clear PKA key token. The PKA key generate callable service
generates either a clear or an encrypted PKA key token.

PKA Key Token Build Callable Service (CSNDPKB and
CSNFPKB)
The PKA key token build callable service is a utility you can use to create an
external PKA key token containing an unenciphered private RSA or ECC key. You
can supply this token as input to the PKA key import callable service to obtain an
operational internal token containing an enciphered private key. You can also use
this service to input a clear unenciphered public ECC or RSA key and return the
public key in a token format that other PKA services can use directly.

Use this service to build skeleton key tokens for input to the PKA key generate
callable service for creation of RSA or ECC keys.

PKA Key Token Change Callable Service (CSNDKTC and
CSNFKTC)
This service changes PKA key tokens (RSA and ECC) or trusted block key tokens,
from encipherment under the cryptographic coprocessor's old RSA master key or
ECC master key to encipherment under the current cryptographic coprocessor's
RSA master key or ECC master key. This callable service only changes private
internal tokens. An active CCA coprocessor is required.

PKA Key Translate (CSNDPKT and CSNFPKT)
This service translates a CCA RSA key token to an external smart card key token.
An active CCA Crypto Express coprocessor is required.

PKA Public Key Extract Callable Service (CSNDPKX and
CSNFPKX)
This service extracts a PKA public key token from a PKA internal (operational) or
external (importable) private key token. It performs no cryptographic verification
of the PKA private key token.

Chapter 3. Introducing PKA Cryptography and Using PKA Callable Services 77

|

|

|
|
|

|
|

|

|

|

|
|

|
|
|
|
|

Callable Services to Update the Public Key Data Set (PKDS)
The Public Key Data Set (PKDS) is a repository for ECC, and RSA public and
private keys and trusted blocks. An application can store keys in the PKDS and
refer to them by label when using any of the callable services which accept public
key tokens as input. The PKDS update callable services provide support for
creating and writing records to the PKDS and reading and deleting records from
the PKDS.

Coordinated KDS Administration Callable Service (CSFCRC and
CSFCRC6)
This service performs a dynamic PKDS refresh or a dynamic PKDS change master
key operation. This callable service performs the refresh or change master key
operation while allowing applications to update the PKDS. In a sysplex
environment, this callable service enables an application to perform a coordinated
sysplex-wide refresh or change master key operation from a single ICSF instance.

PKDS Key Record Create Callable Service (CSNDKRC and
CSNFKRC)
This service accepts an RSA or ECC private key token in either external or internal
format, or an RSA or ECC public key token or trusted blocks and writes a new
record to the PKDS. An application can create a null token in the PKDS by
specifying a token length of zero. The key label must be unique.

PKDS Key Record Delete Callable Service (CSNDKRD and
CSNFKRD)
This service deletes a record from the PKDS. An application can specify that the
entire record be deleted, or that only the contents of the record be deleted. If only
the contents of the record are deleted, the record will still exist in the PKDS but
will contain only binary zeros. The key label must be unique.

Note: Retained keys cannot be deleted from the PKDS with this service. See
“Retained Key Delete (CSNDRKD and CSNFRKD)” on page 589 for information on
deleting retained keys.

PKDS Key Record Read Callable Service (CSNDKRR and
CSNFKRR)
This service reads a record from the PKDS and returns the contents of that record
to the caller. The key label must be unique.

PKDS Key Record Write Callable Service (CSNDKRW and
CSNFKRW)
This service accepts an RSA or ECC private key token in either external or internal
format, or an RSA or ECC public key token or trusted blocks and writes over an
existing record in the PKDS. An application can check the PKDS for a null record
with the label provided and overwrite this record if it does exist. Alternatively, an
application can specify to overwrite a record regardless of the contents of the
record.

Note: Retained keys cannot be written to the PKDS with the PKDS Key Record
Write service, nor can a retained key record in the PKDS be overwritten with this
service.

Callable Services for Working with Retained Private Keys
Private keys can be generated, retained, and used within the secure boundary of a
CCA coprocessor. Retained keys are generated by the PKA Key Generate

78 z/OS ICSF Application Programmer's Guide

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

(CSNDPKG) callable service. The private key values of retained keys never appear
in any form outside the secure boundary. All retained keys have an entry in the
PKDS that identifies the CCA coprocessor where the retained private key is stored.
ICSF provides these callable services to list and delete retained private keys.

Retained Key Delete Callable Service (CSNDRKD and CSNFRKD)
The retained key delete callable service deletes a key that has been retained within
a CCA Crypto Express and also deletes the record containing the key token from
the PKDS.

Retained Key List Callable Service (CSNDRKL and CSNFKRL)
The retained key list callable service lists the key labels of private keys that are
retained within the boundaries of a CCA coprocessor installed on your server.

Clearing the retained keys on a coprocessor
The retained keys on a CCA coprocessor may be cleared. These are the conditions
under which the retained key will be lost:
v If the CCA coprocessor detects tampering (the intrusion latch is tripped), ALL

installation data is cleared: master keys, retained keys for all domains, as well as
roles and profiles.

v If the CCA coprocessor detects tampering (the secure boundary of the card is
compromised), it self-destructs and can no longer be used.

v If you issue a command from the TKE workstation to zeroize a domain
This command zeroizes the data specific to a domain: master keys and retained
keys.

v If you issue a command from the Support Element panels to zeroize all
domains.
This command zeroizes ALL installation data: master keys, retained keys and
access control roles and profiles.

Callable Services for SET Secure Electronic Transaction
SET is an industry-wide open standard for securing bankcard transactions over
open networks. The SET protocol addresses the payment phase of a transaction
from the individual, to the merchant, to the acquirer (the merchant's current
bankcard processor). It can be used to help ensure the privacy and integrity of real
time bankcard payments over the Internet. In addition, with SET in place, everyone
in the payment process knows who everyone else is. The card holder, the
merchant, and the acquirer can be fully authenticated because the core protocol of
SET is based on digital certificates. Each participant in the payment transaction
holds a certificate that validates his or her identity. The public key infrastructure
allows these digital certificates to be exchanged, checked, and validated for every
transaction made over the Internet. The mechanics of this operation are transparent
to the application.

Under the SET protocol, every online purchase must be accompanied by a digital
certificate which identifies the card-holder to the merchant. The buyer's digital
certificate serves as an electronic representation of the buyer's credit card but does
not actually show the credit card number to the merchant. Once the merchant's
SET application authenticates the buyer's identity, it then decrypts the order
information, processes the order, and forwards the still-encrypted payment
information to the acquirer for processing. The acquirer's SET application
authenticates the buyer's credit card information, identifies the merchant, and
arranges settlement. With SET, the Internet becomes a safer, more secure
environment for the use of payment cards.

Chapter 3. Introducing PKA Cryptography and Using PKA Callable Services 79

|
|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

|

|
|

|
|

|
|

ICSF provides these callable services that can be used in developing SET
applications that make use of the IBM eServer zSeries cryptographic hardware at
the merchant and acquirer payment gateway.

SET Block Compose Callable Service (CSNDSBC and CSNFSBC)
The SET Block Compose callable service performs DES encryption of data,
OAEP-formatting through a series of SHA-1 hashing operations, and the
RSA-encryption of the Optimal Asymmetric Encryption Padding (OAEP) block.

SET Block Decompose Callable Service (CSNDSBD and
CSNFSBD)
The SET Block Decompose callable service decrypts both the RSA-encrypted and
the DES-encrypted data.

PKA Key Tokens
PKA key tokens contain RSA or ECC private or public keys. PKA tokens are
variable length because they contain either RSA or ECC key values, which are
variable in length. Consequently, length parameters precede all PKA token
parameters. The maximum allowed size is 3500 bytes. PKA key tokens consist of a
token header, any required sections, and any optional sections. Optional sections
depend on the token type. PKA key tokens can be public or private, and private
key tokens can be internal or external. Therefore, there are three basic types of
tokens, each of which can contain either RSA or ECC information:
v A public key token
v A private external key token
v A private internal key token

Public key tokens contain only the public key. Private key tokens contain the
public and private key pair. Table 10 summarizes the sections in each type of
token.

Table 10. Summary of PKA Key Token Sections

Section
Public External Key
Token

Private External Key
Token

Private Internal Key
Token

Header X X X

RSA or ECC private key information X X

RSA or ECC public key information X X X

Key name (optional) X X

Internal information X

As with DES and AES key tokens, the first byte of a PKA key token contains the
token identifier which indicates the type of token.

A first byte of X'1E' indicates an external token with a cleartext public key and
optionally a private key that is either in cleartext or enciphered by a transport
key-encrypting key. An external key token is in importable key form. It can be sent
on the link.

A first byte of X'1F' indicates an internal token with a cleartext public key and a
private key that is enciphered by the PKA master key and ready for internal use.

80 z/OS ICSF Application Programmer's Guide

|
|
|

|
|
|
|
|
|
|
|

|

|

|

|
|
|

|

|

An internal key token is in operational key form. A PKA private key token must be
in operational form for ICSF to use it. (PKA public key tokens are used directly in
the external form.)

Formats for public and private external and internal RSA or ECC key tokens begin
in “RSA Public Key Token” on page 819.

PKA Key Management
You can also generate PKA keys in several ways.
v Using the ICSF PKA key generate callable service.
v Using the Transaction Security System PKA key generate verb, or a comparable

product from another vendor.

With a CCA coprocessor, you can use the ICSF PKA key generate callable service
to generate internal and external PKA tokens. You can also generate RSA keys on
another system. To input a clear RSA key to ICSF, create the token with the PKA
key token build callable service and import it using the PKA key import callable
service. To input an encrypted RSA key, generate the key on the Transaction
Security System and import it using the PKA key import callable service.

In either case, use the PKA key token build callable service to create a skeleton key
token as input (see “PKA Key Token Build (CSNDPKB and CSNFPKB)” on page
567).

The PKA key import callable service uses the clear token from the PKA key token
build service or a clear or encrypted token from the Transaction Security System to
securely import the key token into operational form for ICSF to use. ICSF does not
permit the export of the imported PKA key.

The PKA public key extract callable service builds a public key token from a
private key token.

Application RSA or ECC public and private keys can be stored in the public key
data set (PKDS), a VSAM data set.

External encrypted
PKA token

PKA Key Import

Clear Key Values

PKA Key Token
Build Service

External unencrypted
PKA token

TSS Skeleton Key Token

PKA Key Generate
Service

Clear external
PKA token

Internal PKA
token

Figure 7. PKA Key Management

Chapter 3. Introducing PKA Cryptography and Using PKA Callable Services 81

|
|

|
|
|
|
|
|

|
|

Security and Integrity of the Token
PKA private key tokens may optionally have a 64-byte private_key_name field. If
private_key_name exists, ICSF uses RACROUTE REQUEST=AUTH to verify it prior
to using the token in a callable service. For additional security, the processor also
validates the entire private key token.

Key Identifier for PKA Key Token
A key identifier for a PKA key token is a variable length (maximum allowed size is
3500 bytes) area that contains one of these:
v Key label identifies keys that are in the PKDS. Ask your ICSF administrator for

the key labels that you can use.
v Key token can be either an internal key token, an external key token, or a null

key token. Key tokens are generated by an application (for example, using the
PKA key generate callable service), or received from another system that can
produce external key tokens.
An internal key token can be used only on ICSF, because a PKA master key
encrypts the key value. Internal key tokens contain keys in operational form
only.
An external key token can be exchanged with other systems because a transport
key that is shared with the other system encrypts the key value. External key
tokens contain keys in either exportable or importable form.
A null key token consists of 8 bytes of binary zeros. The PKDS Key Record
Create service can be used to write a null token to the PKDS. This PKDS record
can subsequently be identified as the target token for the PKA key import or
PKA key generate service.

The term key identifier is used when a parameter could be one of the previously
discussed items and to indicate that different inputs are possible. For example, you
may want to specify a specific parameter as either an internal key token or a key
label. The key label is, in effect, an indirect reference to a stored internal key token.

Key Label
If the first byte of the key identifier is greater than X'40', the field is considered to
be holding a key label. The contents of a key label are interpreted as a pointer to a
public key data set (PKDS) key entry. The key label is an indirect reference to an
internal key token.

A key label is specified on callable services with the key_identifier parameter as a
64-byte character string, left-justified, and padded on the right with blanks. In most
cases, the callable service does not check the syntax of the key label beyond the
first byte. One exception is the CKDS key record create callable service which
enforces the KGUP rules for key labels unless syntax checking is bypassed by a
preprocessing exit.

A key label has this form:

Offset Length Data

00-63 64 Key label name

82 z/OS ICSF Application Programmer's Guide

Key Token
A key token is a variable length (maximum allowed size is 3500 bytes) field
composed of key value and control information. PKA keys can be either public or
private RSA or ECC keys. Each key token can be either an internal key token (the
first byte of the key identifier is X'1F'), an external key token (the first byte of the
key identifier is X'1E'), or a null private key token (the first byte of the key
identifier is X'00'). For the format of each token type, refer to Appendix B, “Key
Token Formats,” on page 801.

An internal key token is a token that can be used only on the ICSF system that
created it (or another ICSF system with the same PKA master key). It contains a
key that is encrypted under the PKA master key.

An application obtains an internal key token by using one of the callable services
such as those listed. The callable services are described in detail in Chapter 10,
“Managing PKA Cryptographic Keys,” on page 557.
v PKA key generate
v PKA key import

The PKA Key Token Change callable service can reencipher private internal tokens
from encryption under the old master key (either RSA or ECC) to encryption
under the current master key.

For debugging information, see Appendix B, “Key Token Formats,” on page 801 for
the format of an internal key token.

If the first byte of the key identifier is X'1E', the key identifier is interpreted as an
external key token. An external PKA key token contains key (possibly encrypted)
and control information. By using the external key token, you can exchange keys
between systems.

An application obtains the external key token by using one of the callable services
such as those listed. They are described in detail in Chapter 10, “Managing PKA
Cryptographic Keys,” on page 557.
v PKA public key extract
v PKA key token build
v PKA key generate

For debugging information, see Appendix B, “Key Token Formats,” on page 801 for
the format of an external key token.

If the first byte of the key identifier is X'00', the key identifier is interpreted as a
null key token.

For debugging information, see Appendix B, “Key Token Formats,” on page 801 for
the format of a null key token.

The Transaction Security System and ICSF Portability
The Transaction Security System PKA verbs from releases prior to 1996 can run
only on the Transaction Security System. The PKA96 release of the Transaction
Security System PKA verbs generally runs on ICSF without change. As with DES
cryptography, you cannot interchange internal PKA tokens but can interchange
external tokens.

Chapter 3. Introducing PKA Cryptography and Using PKA Callable Services 83

|

|
|
|

Summary of the PKA Callable Services
Table 11 lists the PKA callable services, described in this publication, and their
corresponding verbs. (The PKA services start with CSNDxxx and have
corresponding CSFxxx names.) This table also references the topic that describes
the callable service.

Table 11. Summary of PKA Callable Services

Verb Service Name Function

Chapter 8, “Financial Services,” on page 447

CSNDSBC
CSNFSBC

SET block compose Composes the RSA-OAEP block and the DES-encrypted
block in support of the SET protocol.

CSNDSBD SET block decompose Decomposes the RSA-OAEP block and the
DES-encrypted block to provide unencrypted data back
to the caller.

Chapter 9, “Using Digital Signatures,” on page 545

CSNDDSG
CSNFDSG

Digital signature generate Generates a digital signature using a PKA private key
supporting RSA and ECDSA algorithms.

CSNDDSV
CSNFDSV

Digital signature verify Verifies a digital signature using a PKA public key
supporting RSA and ECDSA algorithms.

Chapter 10, “Managing PKA Cryptographic Keys,” on page 557

CSNDPKG
CSNFPKG

PKA key generate Generate RSA and ECC private keys.

CSNDPKI
CSNFPKI

PKA key import Imports a PKA key token containing either a clear PKA
key or a PKA key enciphered under a limited authority
IMP-PKA KEK.

CSNDPKB
CSNFPKB

PKA key token build Creates an external PKA key token containing a clear
private RSA or ECC key. Using this token as input to
the PKA key import callable service returns an
operational internal token containing an enciphered
private key. Using CSNDPKB on a clear public RSA or
ECC key, returns the public key in a token format that
other PKA services can directly use. CSNDPKB can also
be used to create a skeleton token for input to the PKA
Key Generate service for the generation of an internal
ECC or RSA key token.

CSNDKTC
CSNFKTC

PKA key token change Changes PKA key tokens (RSA and ECC) or trusted
block key tokens, from encipherment under the
cryptographic coprocessor's old RSA master key or ECC
master key to encipherment under the current
cryptographic coprocessor's RSA master key or ECC
master key. This callable service only changes private
internal tokens.

CSNDPKT
CSNFPKT

PKA key translate Translates a CCA RSA key token to a smart card format.

CSNDPKX PKA public key extract Extracts a PKA public key token from a supplied PKA
internal or external private key token. Performs no
cryptographic verification of the PKA private token.

84 z/OS ICSF Application Programmer's Guide

|
|

|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

Table 11. Summary of PKA Callable Services (continued)

Verb Service Name Function

CSNDRKD
CSNFRKD

Retained key delete Deletes a key that has been retained within a CCA
Crypto Express coprocessor.

CSNDRKL
CSNFRKL

Retained key list Lists key labels of keys that have been retained within
all currently active CCA coprocessors.

Chapter 11, “Key Data Set Management,” on page 595

CSNDKRC
CSNFKRC

PKDS key record create Writes a new record to the PKDS.

CSNDKRD
CSNFKRD

PKDS key record delete Delete a record from the PKDS.

CSNDKRR
CSNFKRR

PKDS key record read Read a record from the PKDS and return the contents of
that record.

CSNDKRW
CSNFKRW

PKDS key record write Write over an existing record in the PKDS.

Chapter 3. Introducing PKA Cryptography and Using PKA Callable Services 85

|
|

|
|

86 z/OS ICSF Application Programmer's Guide

Chapter 4. Introducing PKCS #11 and using PKCS #11 callable
services

The Integrated Cryptographic Service Facility has implemented callable service in
support of PKCS #11. A callable service is a routine that receives control using a
CALL statement in an application language. Each callable service performs one or
more functions, including:
v initializing and deleting PKCS11 tokens
v creating, reading, updating and deleting PKCS11 objects
v performing cryptographic operations

Many services have hardware requirements. See each service for details. All new
callable services will be invocable in AMODE(24), AMODE(31), or AMODE(64).

For more information about PKCS #11 see z/OS Cryptographic Services ICSF Writing
PKCS #11 Applications.

PKCS #11 Services
ICSF provides callable services that support PKCS #11 token and object creation
and use. The following table summarizes these callable services. For complete
syntax and reference information, refer to Part 3, “PKCS #11 Callable Services,” on
page 675.

Table 12. Summary of PKCS #11 callable services

Verb Service Name Function

CSFPDVK PKCS #11 Derive key Generate a new secret key object from an
existing key object

CSFPDMK PKCS #11 Derive multiple
keys

Generate multiple secret key objects and
protocol dependent keying material from
an existing secret key object

CSFPHMG PKCS #11 Generate HMAC Generate a hashed message authentication
code (MAC)

CSFPGKP PKCS #11 Generate key
pair

Generate an RSA, DSA, Elliptic Curve, or
Diffie-Hellman key pair

CSFPGSK PKCS #11 Generate secret
key

Generate a secret key or set of domain
parameters

CSFPGAV PKCS #11 Get attribute
value

List the attributes of a PKCS11 object

CSFPOWH PKCS #11 One-way hash,
sign, or verify

Generate a one-way hash on specified text,
sign specified text, or verify a signature on
specified text

CSFPPKS PKCS #11 Private key sign v Decrypt or sign data using an RSA
private key using zero-pad or PKCS #1
v1.5 formatting

v Sign data using a DSA private key

v Sign data using an Elliptic Curve private
key in combination with DSA

© Copyright IBM Corp. 1997, 2013 87

|
|

Table 12. Summary of PKCS #11 callable services (continued)

Verb Service Name Function

CSFPPRF PKCS #11 Pseudo-random
function

Generate pseudo-random output of
arbitrary length.

CSFPPKV PKCS #11 Public key verify v Encrypt or verify data using an RSA
public key using zero-pad or PKCS #1
v1.5 formatting. For encryption, the
encrypted data is returned

v Verify a signature using a DSA public
key. No data is returned

v Verify a signature using an Elliptic
Curve public key in combination with
DSA. No data is returned

CSFPSKD PKCS #11 Secret key
decrypt

Decipher data using a clear symmetric key

CSFPSKE PKCS #11 Secret key
encrypt

Encipher data using a clear symmetric key

CSFPSAV PKCS #11 Set attribute
value

Update the attributes of a PKCS11 object

CSFPTRC PKCS #11 Token record
create

Initialize or re-initialize a z/OS PKCS #11
token, creates or copies a token object in
the token data set and creates or copies a
session object for the current PKCS #11
session

CSFPTRD PKCS #11 Token record
delete

Delete a z/OS PKCS #11 token, token
object, or session object

CSFPTRL PKCS #11 Token record list Obtain a list of z/OS PKCS #11 tokens. The
caller must have SAF authority to the
token. Also obtains a list of token and
session objects for a token. Use a search
template to restrict the search for specific
attributes.

CSFPUWK PKCS #11 Unwrap key Unwrap and create a key object using
another key

CSFPHMV PKCS #11 Verify HMAC Verify a hash message authentication code
(MAC)

CSFPWPK PKCS #11 Wrap key Wrap a key with another key

Attribute List
The attributes of an object can be the input and the output of a service. The format
of the attributes is shown here and applies to all PKCS #11 callable services. For
the token record list service, the search_template has the same format as an
attribute list. The lengths in the attribute list and attribute structures are unsigned
integers.

An attribute_list is a structure in this format:

Number of attributes Attribute Attribute ...

2 bytes 4 + 2 + length of
value bytes

4 + 2 + length of
value bytes

...

88 z/OS ICSF Application Programmer's Guide

Each attribute is a structure in this format:

Attribute name Length of value (n) Value

4 bytes 2 bytes n bytes

Handles
A handle is a 44-byte identifier for a token or an object. The format of the handle is
as follows:

Name of token
or object Sequence number ID

32 bytes 8 bytes 4 bytes

The token name in the first 32 bytes of the handle is provided by the PKCS #11
application when the token or object is created. The first character of the name
must be alphabetic or a national character (“#”, “$”, or “@”). Each of the remaining
characters can be alphanumeric, a national character (“#”, “$”, or“ @”), or a
period(“.”)

The sequence number is a hexadecimal number stored as the EBCDIC
representation of 8 hexadecimal numbers. The sequence number field in a token is
EBCDIC blanks. The token record contains a last-used sequence number field,
which is incremented each time an object associated with the token is created. This
sequence number value is placed in the handle of the newly-created object.

The ID field is 4 characters. The first character (EBCDIC) identifies the object’s
category:

S the handle belongs to a clear session object

T the handle belongs to a clear token object

U the handle belongs to a clear state object

X the handle belongs to a secure session object

Y the handle belongs to a secure token object

Z the handle belongs to a secure state object

If the first character is blank, the handle belongs to a token.

The last three characters must be EBCDIC blanks.

Chapter 4. Introducing PKCS #11 and using PKCS #11 callable services 89

90 z/OS ICSF Application Programmer's Guide

Part 2. CCA Callable Services

This publication introduces DES, AES and PKA callable services.

© Copyright IBM Corp. 1997, 2013 91

|

92 z/OS ICSF Application Programmer's Guide

Chapter 5. Managing Symmetric Cryptographic Keys

This topic describes the callable services that generate and maintain cryptographic
keys.

Using ICSF, you can generate keys using either the key generator utility program
or the key generate callable service. ICSF provides a number of callable services to
assist you in managing and distributing keys and maintaining the cryptographic
key data set (CKDS).

This topic describes these callable services:
v “Clear Key Import (CSNBCKI and CSNECKI)” on page 94
v “Control Vector Generate (CSNBCVG and CSNECVG)” on page 96
v “Control Vector Translate (CSNBCVT and CSNECVT)” on page 101
v “Cryptographic Variable Encipher (CSNBCVE and CSNECVE)” on page 104
v “Data Key Export (CSNBDKX and CSNEDKX)” on page 107
v “Data Key Import (CSNBDKM and CSNEDKM)” on page 110
v “Diversified Key Generate (CSNBDKG and CSNEDKG)” on page 113
v “ECC Diffie-Hellman (CSNDEDH and CSNFEDH)” on page 119
v “Key Export (CSNBKEX and CSNEKEX)” on page 128
v “Key Generate (CSNBKGN and CSNEKGN)” on page 132
v “Key Generate2 (CSNBKGN2 and CSNEKGN2)” on page 143
v “Key Import (CSNBKIM and CSNEKIM)” on page 154
v “Key Part Import (CSNBKPI and CSNEKPI)” on page 158
v “Key Part Import2 (CSNBKPI2 and CSNEKPI2)” on page 162
v “Key Test (CSNBKYT and CSNEKYT)” on page 166
v “Key Test2 (CSNBKYT2 and CSNEKYT2)” on page 170
v “Key Test Extended (CSNBKYTX and CSNEKTX)” on page 175
v “Key Token Build (CSNBKTB and CSNEKTB)” on page 179
v “Key Token Build2 (CSNBKTB2 and CSNEKTB2)” on page 189
v “Key Translate (CSNBKTR and CSNEKTR)” on page 196
v “Key Translate2 (CSNBKTR2 and CSNEKTR2)” on page 199
v “Multiple Clear Key Import (CSNBCKM and CSNECKM)” on page 206
v “Multiple Secure Key Import (CSNBSKM and CSNESKM)” on page 210
v “PKA Decrypt (CSNDPKD and CSNFPKD)” on page 216
v “PKA Encrypt (CSNDPKE and CSNFPKE)” on page 221
v “Prohibit Export (CSNBPEX and CSNEPEX)” on page 225
v “Prohibit Export Extended (CSNBPEXX and CSNEPEXX)” on page 227
v “Random Number Generate (CSNBRNG, CSNERNG, CSNBRNGL and

CSNERNGL)” on page 229
v “Remote Key Export (CSNDRKX and CSNFRKX)” on page 233
v “Restrict Key Attribute (CSNBRKA and CSNERKA)” on page 243
v “Secure Key Import (CSNBSKI and CSNESKI)” on page 247
v “Secure Key Import2 (CSNBSKI2 and CSNESKI2)” on page 251
v “Symmetric Key Export (CSNDSYX and CSNFSYX)” on page 256

© Copyright IBM Corp. 1997, 2013 93

v “Symmetric Key Generate (CSNDSYG and CSNFSYG)” on page 266
v “Symmetric Key Import (CSNDSYI and CSNFSYI)” on page 273
v “Symmetric Key Import2 (CSNDSYI2 and CSNFSYI2)” on page 278
v “Trusted Block Create (CSNDTBC and CSNFTBC)” on page 283
v “TR-31 Export (CSNBT31X and CSNET31X)” on page 287
v “TR-31 Import (CSNBT31I and CSNET31I)” on page 301
v “TR-31 Optional Data Build (CSNBT31O and CSNET31O)” on page 315
v “TR-31 Optional Data Read (CSNBT31R and CSNET31R)” on page 318
v “TR-31 Parse (CSNBT31P and CSNET31P)” on page 322
v “Unique Key Derive (CSNBUKD and CSNEUKD)” on page 326

Clear Key Import (CSNBCKI and CSNECKI)
Use the clear key import callable service to import a clear DATA key that is to be
used to encipher or decipher data. This callable service can import only DATA
keys. Clear key import accepts an 8-byte clear DATA key, enciphers it under the
master key, and returns the encrypted DATA key in operational form in an internal
key token.

If the clear key value does not have odd parity in the low-order bit of each byte,
the service returns a warning value in the reason_code parameter. The callable
service does not adjust the parity of the key.

Note: To import 16-byte or 24-byte DATA keys, use the multiple clear key import
callable service that is described in “Multiple Clear Key Import (CSNBCKM and
CSNECKM)” on page 206. The multiple clear key import service supports AES
DATA keys.

The callable service name for AMODE(64) invocation is CSNECKI.

Format
CALL CSNBCKI(

return_code,
reason_code,
exit_data_length,
exit_data,
clear_key,
key_identifier)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

94 z/OS ICSF Application Programmer's Guide

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF
and TSS Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

clear_key

Direction Type

Input String

The clear_key specifies the 8-byte clear key value to import.

key_identifier

Direction Type

Input/Output String

A 64-byte string that is to receive the internal key token. “Key Identifier for
Key Token” on page 8 describes the internal key token.

Access Control Points
The Clear Key Import/Multiple Clear Key Import - DES access control point
controls the function of this service.

When the Disallow 24-byte DATA wrapped with 16-byte Key access control point
is enabled, this service will fail if the source key is a triple-length DATA key and
the DES master key is a 16-byte key.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Clear Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 95

Table 13. Clear key import required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
890

IBM eServer zSeries
990

PCI X Cryptographic
Coprocessor/Crypto
Express2 Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Control Vector Generate (CSNBCVG and CSNECVG)
The Control Vector Generate callable service builds a control vector from keywords
specified by the key_type and rule_array parameters.

The callable service name for AMODE(64) is CSNECVG.

Format
CALL CSNBCVG(

return_code,
reason_code,
exit_data_length,
exit_data,
key_type,
rule_array_count,
rule_array,
reserved,
control_vector)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Clear Key Import

96 z/OS ICSF Application Programmer's Guide

||

||
|
|

|

|
|

|
|

|
|
|

|

|

|

|
|
|

|

|

|
|

|
|

|

|

|

|
|
|

|

|

|
|

|
|

|

|

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

key_type

Direction Type

Input String

A string variable containing a keyword for the key type. The keyword is 8
bytes in length, left justified, and padded on the right with space characters. It
is taken from this list:
v CIPHER
v CIPHERXI
v CIPHERXL
v CIPHERXO
v CVARDEC
v CVARENC
v CVARPINE
v CVARXCVL
v CVARXCVR
v DATA
v DATAM
v DATAMV
v DECIPHER
v DKYGENKY
v ENCIPHER
v EXPORTER
v IKEYXLAT
v IMPORTER
v IPINENC
v KEYGENKY

Control Vector Generate

Chapter 5. Managing Symmetric Cryptographic Keys 97

v MAC
v MACVER
v OKEYXLAT
v OPINENC
v PINGEN
v PINVER
v SECMSG

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter.

rule_array

Direction Type

Input Character String

Keywords that provide control information to the callable service. Each
keyword is left justified in 8-byte fields, and padded on the right with blanks.
All keywords must be in contiguous storage. “Key Token Build (CSNBKTB and
CSNEKTB)” on page 179 illustrates the key type and key usage keywords that
can be combined in the Control Vector Generate and Key Token Build callable
services to create a control vector. The rule array keywords are:
v AMEX-CSC
v ANSIX9.9
v ANY
v ANY-MAC
v CLR8-ENC
v CPINENC
v CPINGEN
v CPINGENA
v CVVKEY-A
v CVVKEY-B
v DALL
v DATA
v DDATA
v DEXP
v DIMP
v DKYL0
v DKYL1
v DKYL2
v DKYL3
v DKYL4
v DKYL5
v DKYL6
v DKYL7

Control Vector Generate

98 z/OS ICSF Application Programmer's Guide

v DMAC
v DMKEY
v DMPIN
v DMV
v DOUBLE
v DOUBLE-O
v DPVR
v ENH-ONLY
v EPINGEN
v EPINGENA
v EPINVER
v EXEX
v EXPORT
v GBP-PIN
v GBP-PINO
v IBM-PIN
v IBM-PINO
v IMEX
v IMIM
v IMPORT
v INBK-PIN
v KEY-PART
v KEYLN8
v KEYLN16
v LMTD-KEK
v MIXED
v NO-SPEC
v NO-XPORT
v NON-KEK
v NOOFFSET
v NOT31XPT
v OPEX
v OPIM
v REFORMAT
v SINGLE
v SMKEY
v SMPIN
v T31XPTOK
v TRANSLAT
v UKPT
v VISA-PVV
v XLATE
v XPORT-OK

Control Vector Generate

Chapter 5. Managing Symmetric Cryptographic Keys 99

Note: CLR8-ENC or UKPT must be coded in rule_array when the KEYGENKY
key type is coded. When the SECMSG key_type is coded, either SMKEY or
SMPIN must be specified in the rule_array. ENH-ONLY is not supported with
key type DATA.

reserved

Direction Type

Input String

The reserved parameter must be a variable of 8 bytes of X'00'.

control_vector

Direction Type

Output String

A 16-byte string variable in application storage where the service returns the
generated control vector.

Usage Notes
See Table 64 on page 186 for an illustration of key type and key usage keywords
that can be combined in the Control Vector Generate and Key Token Build callable
services to create a control vector.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 14. Control vector generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

IBM zEnterprise 196

z114

None.

IBM zEnterprise EC12

IBM zEnterprise BC12

None.

Control Vector Generate

100 z/OS ICSF Application Programmer's Guide

Control Vector Translate (CSNBCVT and CSNECVT)
The Control Vector Translate callable service changes the control vector used to
encipher an external key.

See “Changing Control Vectors with the Control Vector Translate Callable Service”
on page 875 for additional information about this service.

The callable service name for AMODE(64) invocation is CSNECVT.

Format
CALL CSNBCVT(

return_code,
reason_code,
exit_data_length,
exit_data,
KEK_key_identifier,
source_key_token,
array_key_left,
mask_array_left,
array_key_right,
mask_array_right,
rule_array_count,
rule_array,
target_key_token)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFFFF' (2 gigabytes). The data is defined in the
exit_data parameter.

exit_data

Control Vector Translate

Chapter 5. Managing Symmetric Cryptographic Keys 101

Direction Type

Input/Output String

The data that is passed to the installation exit.

KEK_key_identifier

Direction Type

Input/Output String

The 64-byte string variable containing an internal key token or the key label of
an internal key token record containing the key-encrypting key. The control
vector in the internal key token must specify the key type of IMPORTER,
EXPORTER, IKEYXLAT, or OKEYXLAT.

source_key_token

Direction Type

Input String

A 64-byte string variable containing the external key token with the key and
control vector to be processed.

array_key_left

Direction Type

Input/Output String

A 64-byte string variable containing an internal key token or a key label of an
internal key token record that deciphers the left mask array. The internal key
token must contain a control vector specifying a CVARXCVL key type.

mask_array_left

Direction Type

Input String

A string of seven 8-byte elements containing the mask array enciphered under
the left array key.

array_key_right

Direction Type

Input/Output String

A 64-byte string variable containing an internal key token or a key label of an
internal key token record that deciphers the right mask array. The internal key
token must contain a control vector specifying a CVARXCVR key type.

mask_array_right

Direction Type

Input String

Control Vector Translate

102 z/OS ICSF Application Programmer's Guide

A string of seven 8-byte elements containing the mask array enciphered under
the right array key.

rule_array_count

Direction Type

Input Integer

An integer containing the number of elements in the rule array. The value of
the rule_array_count must be 0, 1, or 2 for this service. If the rule_array_count is
0, the default keywords are used.

rule_array

Direction Type

Input Chracter String

The rule_array parameter is an array of keywords. The keywords must be 8
bytes of contiguous storage with the keyword left-justified in its 8-byte location
and padded on the right with blanks. The rule_array keywords are:

Table 15. Keywords for Control Vector Translate

Keyword Meaning

Parity Adjustment Rule (optional)

ADJUST Ensures that all target key bytes have odd parity. This is the
default.

NOADJUST Prevents the parity of the target being altered.

Key-portion Rule (optional)

BOTH Causes both halves of a 16-byte source key to be processed
with the result placed into corresponding halves of the
target key. When you use the BOTH keyword, the mask
array must be able to validate the translation of both halves.

LEFT Causes an 8-byte source key, or the left half of a 16-byte
source key, to be processed with the result placed into both
halves of the target key. This is the default.

RIGHT Causes the right half of a 16-byte source key to be processed
with the result placed into the right half of the target key.
The left half is copied unchanged (still enciphered) from the
source key.

SINGLE Causes the left half of the source key to be processed with
the result placed into the left half of the target key token.
The right half of the target key is unchanged.

target_key_token

Direction Type

Input/Output String

A 64-byte string variable containing an external key token with the new control
vector. This key token contains the key halves with the new control vector.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method

Control Vector Translate

Chapter 5. Managing Symmetric Cryptographic Keys 103

which is ANSI X9.24 compliant. The output target_key_token will be wrapped in
the same manner as the input source_key_token.

Restrictions
This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

If KEK_key_identifier is a label of an IMPORTER or EXPORTER key, the label must
be unique in the CKDS.

Access Control Point
The Control Vector Translate access control point controls the function of this
service.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 16. Control vector translate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

ENH-ONLY, USECONFG, WRAP-ENC and
WRAP-ECB not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

ENH-ONLY, USECONFG, WRAP-ENC and
WRAP-ECB not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

ENH-ONLY, USECONFG, WRAP-ENC and
WRAP-ECB not supported.

Crypto Express3
Coprocessor

Enhanced key token wrapping not
supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Cryptographic Variable Encipher (CSNBCVE and CSNECVE)
The Cryptographic Variable Encipher callable service uses a DES CVARENC key to
encrypt plaintext by using the Cipher Block Chaining (CBC) method. You can use
this service to prepare a mask array for the Control Vector Translate service. The
plaintext must be a multiple of eight bytes in length.

Control Vector Translate

104 z/OS ICSF Application Programmer's Guide

|
|
|
|

The callable service name for AMODE(64) invocation is CSNECVE.

Format
CALL CSNBCVE(

return_code,
reason_code,
exit_data_length,
exit_data,
c-variable_encrypting_key_identifier,
text_length,
plaintext,
initialization_vector,
ciphertext)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFFFF' (2 gigabytes). The data is defined in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

c-variable_encrypting_key_identifier

Direction Type

Input/Output String

Cryptographic Variable Encipher

Chapter 5. Managing Symmetric Cryptographic Keys 105

The 64-byte string variable containing an internal key or a key label of an
internal key token record in the CKDS. The internal key must contain a control
vector that specifies a CVARENC key type.

text_length

Direction Type

Input Integer

An integer variable containing the length of the plaintext and the returned
ciphertext.

plaintext

Direction Type

Input String

A string of length 8 to 256 bytes which contains the plaintext. The data must
be a multiple of 8 bytes.

initialization_vector

Direction Type

Input String

A string variable containing the 8-byte initialization vector that the service uses
in encrypting the plaintext.

ciphertext

Direction Type

Output String

The field which receives the ciphertext. The length of this field is the same as
the length of the plaintext.

Restrictions
v The text length must be a multiple of 8 bytes.
v The maximum length of text that the security server can process is 256 bytes.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Access Control Point
The Cryptographic Variable Encipher access control point controls the function of
this service.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Cryptographic Variable Encipher

106 z/OS ICSF Application Programmer's Guide

Table 17. Cryptographic variable encipher required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Data Key Export (CSNBDKX and CSNEDKX)
Use the data key export callable service to reencipher a data-encrypting key (key
type of DATA only) from encryption under the master key to encryption under an
exporter key-encrypting key. The reenciphered key is in a form suitable for export
to another system.

The data key export service generates a key token with the same key length as the
input token's key.

The callable service name for AMODE(64) invocation is CSNEDKX.

Format
CALL CSNBDKX(

return_code,
reason_code,
exit_data_length,
exit_data,
source_key_identifier,
exporter_key_identifier,
target_key_identifier)

Parameters
return_code

Direction Type

Output Integer

Cryptographic Variable Encipher

Chapter 5. Managing Symmetric Cryptographic Keys 107

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

source_key_identifier

Direction Type

Input/Output String

A 64-byte string for an internal key token or label that contains a
data-encrypting key to be reenciphered. The data-encrypting key is encrypted
under the master key.

exporter_key_identifier

Direction Type

Input/Output String

A 64-byte string for an internal key token or key label that contains the
exporter key_encrypting key. The data-encrypting key previously discussed will
be encrypted under this exporter key_encrypting key.

target_key_identifier

Direction Type

Input/Output String

A 64-byte field that is to receive the external key token, which contains the
reenciphered key that has been exported. The reenciphered key can now be
exchanged with another cryptographic system.

Data Key Export

108 z/OS ICSF Application Programmer's Guide

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output target_key_identifier will be
wrapped in the same manner as the source_key_identifier.

Restrictions
For existing TKE users, you may have to explicitly enable new access control
points. Current applications will fail if they use an equal key halves exporter to
export a key with unequal key halves. You must have access control point 'Data
Key Export - Unrestricted' explicitly enabled.

This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Table 18. Required access control points for Data key export

Access Control Point Restrictions

Data Key Export None

Data Key Export - Unrestricted Key-encrypting key may have equal key halves

To use a NOCV key-encrypting key with the data key export service, the NOCV
KEK usage for export-related functions access control point must be enabled in
addition to one or both of the access control points listed.

When the Disallow 24-byte DATA wrapped with 16-byte Key access control point
is enabled, this service will fail if the source key is a triple-length DATA key and
the DES master key is a 16-byte key.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 19. Data key export required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Data Key Export

Chapter 5. Managing Symmetric Cryptographic Keys 109

|
|
|
|

|

|
|

Table 19. Data key export required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Data Key Import (CSNBDKM and CSNEDKM)
Use the data key import callable service to import an encrypted source DES
single-length, double-length or triple-length DATA key and create or update a
target internal key token with the master key enciphered source key.

The callable service name for AMODE(64) invocation is CSNEDKM.

Format
CALL CSNBDKM(

return_code,
reason_code,
exit_data_length,
exit_data,
source_key_token,
importer_key_identifier,
target_key_identifier)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

Data Key Export

110 z/OS ICSF Application Programmer's Guide

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

source_key_token

Direction Type

Input/Output String

64-byte string variable containing the source key to be imported. The source
key must be an external token or null token. The external key token must
indicate that a control vector is present; however, the control vector is usually
valued at zero. A double-length key that should result in a default DATA
control vector must be specified in a version X'01' external key token.
Otherwise, both single and double-length keys are presented in a version X'00'
key token. For the null token, the service will process this token format as a
DATA key encrypted by the importer key and a null (all zero) control vector.

importer_key_identifier

Direction Type

Input/Output String

A 64-byte string variable containing the (IMPORTER) transport key or key
label of the transport key used to decipher the source key.

target_key_identifier

Direction Type

Input/Output String

A 64-byte string variable containing a null key token or an internal key token.
The key token receives the imported key.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. If a skeleton key token is provided as input to
this parameter, the wrapping method in the skeleton token will be used.
Otherwise, the system default key wrapping method will be used to wrap the
token.

Data Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 111

Restrictions
For existing TKE users, you may have to explicitly enable new access control
points. Current applications will fail if they use an equal key halves importer to
import a key with unequal key halves. You must have access control point 'Data
Key Import - Unrestricted' explicitly enabled.

This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

This service does not adjust the key parity of the source key.

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Table 20. Required access control points for Data key import

Access Control Point Restrictions

Data Key Import None

Data Key Import - Unrestricted Key-encrypting key may have equal key halves

To use a NOCV key-encrypting key with the data key import service, the NOCV
KEK usage for import-related functions access control point must be enabled in
addition to one or both of the access control points listed.

When the Disallow 24-byte DATA wrapped with 16-byte Key access control point
is enabled, this service will fail if the source key is a triple-length DATA key and
the DES master key is a 16-byte key.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 21. Data key import required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Data Key Import

112 z/OS ICSF Application Programmer's Guide

|
|
|
|

Table 21. Data key import required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Diversified Key Generate (CSNBDKG and CSNEDKG)
Use the diversified key generate service to generate a key based on the
key-generating key, the processing method, and the parameter supplied. The
control vector of the key-generating key also determines the type of target key that
can be generated.

To use this service, specify:
v The rule array keyword to select the diversification process.
v The operational key-generating key from which the diversified keys are

generated. The control vector associated with this key restricts the use of this
key to the key generation process. This control vector also restricts the type of
key that can be generated.

v The data and length of data used in the diversification process.
v The generated-key may be an internal token or a skeleton token containing the

desired CV of the generated-key. The generated key CV must be one that is
permitted by the processing method and the key-generating key. The
generated-key will be returned in this parameter.

v A key generation method keyword.

This service generates diversified keys as follows:
v Determines if it can support the process specified in rule array.
v Recovers the key-generating key and checks the key-generating key class and

the specified usage of the key-generating key.
v Determines that the control vector in the generated-key token is permissible for

the specified processing method.
v Determines that the control vector in the generated-key token is permissible by

the control vector of the key-generating key.
v Determines the required data length from the processing method and the

generated-key CV. Validates the data_length.
v Generates the key appropriate to the specific processing method. Adjusts parity

of the key to odd. Creates the internal token and returns the generated
diversified key.

The callable service name for AMODE(64) invocation is CSNEDKG.

Data Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 113

|

Format
CALL CSNBDKG(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
generating_key_identifier,
data_length,
data,
key_identifier,
generated_key_identifier)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The only
valid value is 1, 2, or 3.

Diversified Key Generate

114 z/OS ICSF Application Programmer's Guide

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. The
processing method is the algorithm used to create the generated key. The
keywords must be 8 bytes of contiguous storage with the keyword left-justified
in its 8-byte location and padded on the right with blanks.

Table 22. Rule Array Keywords for Diversified Key Generate

Keyword Meaning

Processing Method for generating or updating diversified keys (required)

CLR8-ENC Specifies that 8-bytes of clear data shall be multiply
encrypted with the generating key. The
generating_key_identifier must be a KEYGENKY key type
with bit 19 of the control vector set to 1. The control
vector in generated_key_identifier must specify a
single-length key. The key type may be DATA, MAC, or
MACVER.
Note: CIPHER class keys are not supported.

SESS-XOR Modifies an existing DATA, DATAC, MAC, DATAM, or
MACVER, DATAMV single- or double-length key.
Specifies the VISA method for session key generation.
Data supplied may be 8 or 16 bytes of data depending on
whether the generating_key_identifier is a single or double
length key. The 8 or 16 bytes of data is XORed with the
clear value of the generating_key_identifier. The
generated_key_identifier has the same control vector as the
generating_key_identifier. The generating_key_identifier may
be DATA/DATAC, MAC/DATAM or
MACVER/DATAMV key types.

TDES-DEC Data supplied may be 8 or 16 bytes of clear data. If the
generated_key_identifier specifies a single length key, then
8-bytes of data is TDES decrypted under the
generating_key_identifier. If the generated_key_identifier
specifies a double length key, then 16-bytes of data is
TDES ECB mode decrypted under the
generating_key_identifier. No formating of data is done
prior to encryption. The generating_key_identifier must be a
DKYGENKY key type, with appropriate usage bits for the
desired generated key.

TDES-ENC Data supplied may be 8 or 16 bytes of clear data. If the
generated_key_identifier specifies a single length key, then
8-bytes of data is TDES encrypted under the
generating_key_identifier. If the generated_key_identifier
specifies a double length key, then 16-bytes of data is
TDES ECB mode encrypted under the
generating_key_identifier. No formatting of data is done
prior to encryption. The generating_key_identifier must be a
DKYGENKY key type, with appropriate usage bits for the
desired generated key. The generated_key_identifier may be
a single or double length key with a CV that is permitted
by the generating_key_identifier.

Diversified Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 115

Table 22. Rule Array Keywords for Diversified Key Generate (continued)

Keyword Meaning

TDES-CBC Data supplied must be 16 bytes of clear data. The
generated_key_identifier must specify a double length key,
then the 16 bytes of data is TDES-CBC mode encrypted
under the generating_key_identifier. No formatting of data
is done prior to encryption. The generating_key_identifier
must be a DKYGENKY key type, with appropriate usage
bits for the desired generated key. The
generated_key_identifier must be a double length key with
a CV that is permitted by the generating_key_identifier.

TDES-XOR Combines the function of the existing TDES-ENC and
SESS-XOR into one step.

The generating key must be a level 0 DKYGENKY and
cannot have replicated halves. The session key generated
must be double length and the allowed key types are
DATA, DATAC, MAC, MACVER, SMPIN and SMKEY.
Key type must be allowed by the generating key control
vector.

TDESEMV2 Supports generation of a session key by the EMV 2000
algorithm (This EMV2000 algorithm uses a branch factor
of 2). The generating key must be a level 0 DKYGENKY
and cannot have replicated halves. The session key
generated must be double length and the allowed key
types are DATA, DATAC, MAC, MACVER, SMPIN and
SMKEY. Key type must be allowed by the generating key
control vector.

TDESEMV4 Supports generation of a session key by the EMV 2000
algorithm (This EMV2000 algorithm uses a branch factor
of 4). The generating key must be a level 0 DKYGENKY
and cannot have replicated halves. The session key
generated must be double length and the allowed key
types are DATA, DATAC, MAC, MACVER, SMPIN and
SMKEY. Key type must be allowed by the generating key
control vector.

Key Wrapping Method (optional)

USECONFG Specifies that the system default configuration should be
used to determine the wrapping method. This is the
default keyword.

The system default key wrapping method can be
specified using the DEFAULTWRAP parameter in the
installation options data set. See the z/OS Cryptographic
Services ICSF System Programmer's Guide.

WRAP-ENH Use enhanced key wrapping method, which is compliant
with the ANSI X9.24 standard.

WRAP-ECB Use original key wrapping method, which uses ECB
wrapping for DES key tokens and CBC wrapping for AES
key tokens.

Translation Control (optional)

ENH-ONLY Restrict rewrapping of the generated_key_identifier token.
Once the token has been wrapped with the enhanced
method, it cannot be rewrapped using the original
method.

Diversified Key Generate

116 z/OS ICSF Application Programmer's Guide

||
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

generating_key_identifier

Direction Type

Input/Output String

The label or internal 64 byte token of a key-generating key. The type of key
depends on the processing method.

data_length

Direction Type

Input Integer

The length of the data parameter that follows. Length depends on the
processing method and the generated key. The data length for TDESEMV4 or
TDESEMV2 is either 18 or 34.

data

Direction Type

Input String

Data input to the diversified key or session key generation process. Data
depends on the processing method and the generated_key_identifier.

For TDESEMV4 or TDESEMV2 the data is either 18 bytes (36 digits) or 34
bytes 68 digits) or data comprised of:
v 16 bytes (32 digits) of card specific data used to create the card specific

intermediate key (UDK) as per the TDES-ENC method. This will typically be
the PAN and PAN Sequence number as per the EMV specifications

v 2 bytes (4 digits) of ATC (Application Transaction Count)
v (optional) 16 bytes (32 digits) of IV (Initial Value) used in the EMV

key_identifier

Direction Type

Input/Output String

This parameter is currently not used. It must be a 64-byte null token.

generated_key_identifier

Direction Type

Input/Output String

The internal token of an operational key, a skeleton token containing the
control vector of the key to be generated, or a null token. A null token can be
supplied if the generated_key_identifier will be a DKYGENKY with a CV derived
from the generating_key_identifier. A skeleton token or internal token is required
when generated_key_identifier will not be a DKYGENKY key type or the
processing method is not SESS-XOR. For SESS-XOR, this must be a null token.
On output, this parameter contains the generated key.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method

Diversified Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 117

|
|

which is ANSI X9.24 compliant. The output generated_key_token will use the
default method unless a rule array keyword overriding the default is specified.

Restrictions
This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Refer to Appendix C, “Control Vectors and Changing Control Vectors with the CVT
Callable Service,” on page 865 for information on the control vector bits for the
DKG key generating key.

For Session key algorithm (EMV Smartcard specific), a master derivation key
(MDK) can be used in two ways:
v To calculate the Card Specific Key (or UDK) in the personalization process, call

this service with the TDES-ENC or TDES-CBC method using an output token
that has been primed with the CV of the final session key, for instance, if the
MDK is a DMPIN, the token should have the CV of an SMPIN key; DMAC; a
double length MAC; DDATA, a double length DATA key, etc.
The result would then be exported in the personalization file. This key is not
usable in this form for any other calculations.

v To use the session key, call this service with the TDESEMV4 method. Provide,
for input, the same card data that was used to create the UDK as well as the
ATC and optionally the IV value. This is the key that will be used in EMV
related Smartcard processing.
This same processing applies to those API's the generate the session key on your
behalf, like CSNBPCU.

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Table 23. Required access control points for Diversified Key Generate

Rule array keyword Access control point

CLR8-ENC Diversified Key Generate - CLR8-ENC

SESS-XOR Diversified Key Generate - SESS-XOR

TDES-DEC Diversified Key Generate - TDES-DEC

TDES-ENC Diversified Key Generate - TDES-ENC

TDES-CBC Diversified Key Generate - TDES-CBC

TDES-XOR Diversified Key Generate - TDES-XOR

TDESEMV2 or TDESEMV4 Diversified Key Generate - TDESEMV2/TDESEMV4

WRAP-ECB or WRAP-ENH and
default key-wrapping method
setting does not match the
keyword

Diversified Key Generate - Allow wrapping override
keywords

Diversified Key Generate

118 z/OS ICSF Application Programmer's Guide

|
|
|
|
|

|
|

||

When a key-generating key of key type DKYGENKY is specified with control
vector bits (19 – 22) of B'1111', the Diversified Key Generate - DKYGENKY –
DALL access control point must also be enabled in the domain role.

When using the TDES-ENC or TDES-DEC modes, you can specifically enable
generation of a single-length key or a double-length key with equal key-halves by
enabling the Diversified Key Generate - Single length or same halves access
control point.

When the Disallow 24-byte DATA wrapped with 16-byte Key access control point
is enabled, this service will fail if the source key is a triple-length DATA key and
the DES master key is a 16-byte key.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 24. Diversified key generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Keywords ENH-ONLY, USECONFG,
WRAP-ENH, WRAP-ECB and TDES-CBC
not supported.

Enhanced key token wrapping not
supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Keywords ENH-ONLY, USECONFG,
WRAP-ENH, WRAP-ECB and TDES-CBC
not supported.

Enhanced key token wrapping not
supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Keywords ENH-ONLY, USECONFG,
WRAP-ENH, WRAP-ECB and TDES-CBC
not supported.

Enhanced key token wrapping not
supported.

Crypto Express3
Coprocessor

Keyword TDES-CBC is not supported.

Enhanced key token wrapping not
supported.

z196

IBM zEnterprise 114

Crypto Express3
Coprocessor

Keyword TDES-CBC is not supported.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

TDES-CBC support requires the Sep. 2013
or later licensed internal code (LIC).

ECC Diffie-Hellman (CSNDEDH and CSNFEDH)
Use the ECC Diffie-Hellman callable service to create:

Diversified Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 119

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|

|
|

|

|
|

v Symmetric key material from a pair of ECC keys using the Elliptic Curve
Diffie-Hellman protocol and the static unified model key agreement scheme.

v “Z” – The “secret” material output from D-H process.

Output may be one of the following forms:
v Internal CCA Token (DES or AES): AES keys are in the "Variable-length

Symmetric Key Token" format. DES keys are in the "DES Internal Key Token"
format.

v External CCA Token (DES or AES): AES keys are in the "Variable-length
Symmetric Key Token" format. DES keys are in the "DES External Key Token"
format.

v “Z” – The “secret” material output from D-H process.

Format
CALL CSNDEDH(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
private_key_identifier_length,
private_key_identifier,
private_KEK_key_identifier_length,
private_KEK_key_identifier,
public_key_identifier_length,
public_key_identifier,
chaining_vector_length,
chaining_vector,
party_identifier_length,
party_identifier,
key_bit_length,
reserved_length,
reserved,
reserved2_length,
reserved2,
reserved3_length,
reserved3,
reserved4_length,
reserved4,
reserved5_length,
reserved5,
output_KEK_key_identifier_length,
output_KEK_key_identifier,
output_key_identifier_length,
output_key_identifier)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

ECC Diffie-Hellman

120 z/OS ICSF Application Programmer's Guide

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. Valid
values are between 1 and 5.

rule_array

Direction Type

Input String

The rule_array parameter is an array of keywords. The keywords must be 8
bytes of contiguous storage with the keyword left-justified in its 8-byte location
and padded on the right with blanks. The rule_array keywords are:

Table 25. Keywords for ECC Diffie-Hellman

Keyword Meaning

Key agreement (one required)

DERIV01 Use the static unified model key agreement scheme.

PASSTHRU Skip Key derivation step and return raw “Z" material.

Transport Key Type (one optional if output KEK key identifier is present)

OKEK-DES The output KEK key identifier is a “DES” KEK token.

OKEK-AES The output KEK key identifier is a “AES” KEK token.

Output Key Type (one optional if output key identifier is present)

KEY-DES The output key identifier is a “DES” skeleton token.

KEY-AES The output key identifier is an “AES” skeleton token.

ECC Diffie-Hellman

Chapter 5. Managing Symmetric Cryptographic Keys 121

Table 25. Keywords for ECC Diffie-Hellman (continued)

Keyword Meaning

Key Wrapping Method (one optional, only supported when the output type is DES)

USECONFG Specifies that the configuration setting for the default
wrapping method is to be used to wrap the key. This is the
default.

WRAP-ENH Specifies that the new enhanced wrapping method is to be
used to wrap the key.

WRAP-ECB Specifies that the original wrapping method is to be used.

Translation Control (one optional, only supported when the output type is DES)

ENH-ONLY Specify this keyword to indicate that the key once wrapped
with the enhanced method cannot be wrapped with the
original method. This restricts translation to the original
method. If the keyword is not specified translation to the
original method will be allowed. This turns on bit 56 (ENH
ONLY) in the control vector. This keyword is not valid if
processing a zero CV data key.

private_key_identifier_length

Direction Type

Input Integer

The length of the private_key_identifier parameter.

private_key_identifier

Direction Type

Input String

The private_key_identifier must contain an internal or an external token or a
label of an internal or external ECC key. The ECC key token must contain a
public-private key pair. Clear keys will be accepted.

private_KEK_key_identifier_length

Direction Type

Input Integer

The length of the private_KEK_key_identifier in bytes. The maximum value is
900. If the private_key_identifier contains an internal ECC token this value must
be a zero.

private_KEK_key_identifier

Direction Type

Input String

The private_KEK_key_identifier must contain a KEK key token, the label of a
KEK key token, or a null token. The KEK key token must be present if the
private_key_identifier contains an external ECC token.

public_key_identifier_length

Direction Type

Input Integer

ECC Diffie-Hellman

122 z/OS ICSF Application Programmer's Guide

The length of the public_key_identifier.

public_key_identifier

Direction Type

Input String

The public_key_identifier parameter must contain an ECC public token or the
label of an ECC Public token. The public_key_identifier specifies the other
party’s ECC public key which is enabled for key management functions. If the
public_key_identifier identifies a token containing a public-private key pair, no
attempt to decrypt the private part will be made.

chaining_vector_length

Direction Type

Input/Output Integer

The chaining_vector_length parameter must be zero.

chaining_vector

Direction Type

Input/Output String

The chaining_vector parameter is ignored.

party_identifier_length

Direction Type

Input/Output Integer

The length of the party_identifier parameter. Valid values are 0, or between 8
and 64. The party_identifier_length must be 0 when the PASSTHRU rule array
keyword is specified.

party_identifier

Direction Type

Input/Output String

The party_identifier parameter contains the entity identifier information. This
information should contain the both entities data according to NIST SP800-56A
Section 5.8 when the DERIV01 rule array keyword is specified.

key_bit_length

Direction Type

Input/Output Integer

The key bit length parameter contains the number of bits of key material to
derive and place in the provided key token. The value must be 0 if the
PASSTHRU rule array keyword was specified. Otherwise it must be 64 - 2048.

reserved_length

Direction Type

Input/Output Integer

The reserved_length parameter must be zero.

ECC Diffie-Hellman

Chapter 5. Managing Symmetric Cryptographic Keys 123

reserved

Direction Type

Input/Output String

This parameter is ignored.

reserved2_length

Direction Type

Input/Output Integer

The reserved2_length parameter must be zero.

reserved2

Direction Type

Input/Output String

This parameter is ignored.

reserved3_length

Direction Type

Input/Output Integer

The reserved3_length parameter must be zero.

reserved3

Direction Type

Input/Output String

This parameter is ignored.

reserved4_length

Direction Type

Input/Output Integer

The reserved4_length parameter must be zero.

reserved4

Direction Type

Input/Output String

This parameter is ignored.

reserved5_length

Direction Type

Input/Output Integer

The reserved5_length parameter must be zero.

reserved5

Direction Type

Input/Output String

ECC Diffie-Hellman

124 z/OS ICSF Application Programmer's Guide

This parameter is ignored.

output_KEK_key_identifier_length

Direction Type

Input Integer

The length of the output_KEK_key_identifier. The maximum value is 900. The
output_KEK_key_identifier_length must be zero if output_key_identifier will
contain an internal token or if the PASSTHRU rule array keyword was
specified.

output_KEK_key_identifier

Direction Type

Input/Output String

The output_KEK_key_identifier contains a KEK key token or the label of a KEK
key if the output_key_identifier will contain an external ECC token. Otherwise
this field is ignored.

If the output KEK key identifier identifies a DES KEK, then it must be an
IMPORTER or an EXPORTER key type, and have the export bit set. The
XLATE bit is not checked. If the output KEK key identifier identifies an AES
KEK, then it must be either an IMPORTER or an EXPORTER key type and
have the export/import bit set in key usage field 1 and the derivation bit set in
key usage field 4.

output_key_identifier_length

Direction Type

Input/Output Integer

The length of the output_key_identifier. The service checks the field to ensure it
is at least equal to the size of the token to return. On return from this service,
this field is updated with the exact length of the key token created. The
maximum allowed value is 900 bytes.

output_key_identifier

Direction Type

Input/Output String

On input, the output_key_identifier must contain a skeleton token or a null
token.

On output, the output_key_identifier will contain:
v An internal or an external key token containing the generated symmetric key

material.
v “Z” data (in the clear) if the PASSTHRU rule array keyword was specified.

If this variable specifies an external DES key token then the output KEK key
identifier must identify a DES KEK key token. If this specifies an external key
token other than a DES key token then the output KEK key identifier must
identify an AES KEK key token.

Restrictions
The NIST security strength requirements will be enforced, with respect to ECC
Curve type (input) and derived key length.

ECC Diffie-Hellman

Chapter 5. Managing Symmetric Cryptographic Keys 125

Only the following key types will be generated, skeleton key tokens of any other
type will fail.
v DES: (Legacy DES token)

– CIPHER
– CIPHERXI
– CIPHERXL
– CIPHERXO
– DECIPHER
– ENCIPHER
– IMPORTER
– EXPORTER
– IMP-PKA

v AES
– DATA (Legacy AES token)
– CIPHER (Variable-length symmetric key-token)
– IMPORTER (Variable-length symmetric key-token)
– EXPORTER (Variable-length symmetric key-token)

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

This table lists the valid key bit lengths and the minimum curve size required for
each of the supported output key types.

Table 26. Valid key bit lengths and minimum curve size required for the supported output
key types.

Output Key ID type Valid Key Bit Lengths Minimum Curve Required

DES 64 P160

128 P160

AES 128 P256

192 P384

256 P512

If the output key-encrypting key identifier is a weaker key than the key being
generated, then:
v the service will fail if the Prohibit weak wrapping - Transport keys access

control point is enabled.
v the service will complete successfully with a warning return code if the Warn

when weak wrap - Transport keys access control point is enabled.

When the Disallow 24-byte DATA wrapped with 16-byte Key access control point
is enabled, this service will fail if the source key is a triple-length DATA key and
the DES master key is a 16-byte key or the key-encrypting key is a double-length
key.

ECC Diffie-Hellman

126 z/OS ICSF Application Programmer's Guide

Access Control Points
The ECC Diffie-Hellman callable service requires the ECC Diffie-Hellman Callable
Service access control point to be enabled in the active role.

Specifying the PASSTHRU rule array keyword requires that the ECC
Diffie-Hellman – Allow PASSTHRU access control point be enabled in the active
role.

If the output_key_identifier parameter references a DES key token and the wrapping
method specified in not the default method, then the ECC Diffie-Hellman – Allow
key wrap override access control point must be enabled in the active role.

Each Elliptic Curve type supported has its own access control point. The access
control point must be enabled to use the curve type and strength.
v ECC Diffie-Hellman – Allow Prime Curve 192
v ECC Diffie-Hellman – Allow Prime Curve 224
v ECC Diffie-Hellman – Allow Prime Curve 256
v ECC Diffie-Hellman – Allow Prime Curve 384
v ECC Diffie-Hellman – Allow Prime Curve 521
v ECC Diffie-Hellman – Allow BP Curve 160
v ECC Diffie-Hellman – Allow BP Curve 192
v ECC Diffie-Hellman – Allow BP Curve 224
v ECC Diffie-Hellman – Allow BP Curve 256
v ECC Diffie-Hellman – Allow BP Curve 320
v ECC Diffie-Hellman – Allow BP Curve 384
v ECC Diffie-Hellman – Allow BP Curve 512

To prevent a weaker key from being used to generate a stronger key, enable the
ECC Diffie-Hellman – Prohibit weak key generate access control point in the
domain role.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 27. ECC Diffie-Hellman required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

This callable service is not supported.

IBM System z9 EC

IBM System z9 BC

This callable service is not supported.

IBM System z10 EC

IBM System z10 BC

This callable service is not supported.

ECC Diffie-Hellman

Chapter 5. Managing Symmetric Cryptographic Keys 127

Table 27. ECC Diffie-Hellman required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

ECC Clear Key and Internal tokens support
requires the Sep. 2010 licensed internal code
(LIC).

ECC External and Diffie-Hellman support
requires Sep. 2011 licensed internal code
(LIC).

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Key Export (CSNBKEX and CSNEKEX)
Use the key export callable service to reencipher any type of key (except an
IMP-PKA) from encryption under a master key variant to encryption under the
same variant of an exporter key-encrypting key. The reenciphered key can be
exported to another system.

If the key to be exported is a DATA key, the key export service generates a key
token with the same key length as the input token's key.

This service supports the no-export bit that the prohibit export service sets in the
internal token.

The callable service name for AMODE(64) invocation is CSNEKEX.

Format
CALL CSNBKEX(

return_code,
reason_code,
exit_data_length,
exit_data,
key_type,
source_key_identifier,
exporter_key_identifier,
target_key_identifier)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

ECC Diffie-Hellman

128 z/OS ICSF Application Programmer's Guide

|
|
|
|

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

key_type

Direction Type

Input Character Integer

The parameter is an 8-byte field that contains either a key type value or the
keyword TOKEN. The keyword is left-justified and padded on the right with
blanks.

If the key type is TOKEN, ICSF determines the key type from the control
vector (CV) field in the internal key token provided in the source_key_identifier
parameter.

Key type values for the Key Export callable service are: CIPHER, CIPHERXI,
CIPHERXL, CIPHERXO, DATA, DATAC, DATAM, DATAMV, DECIPHER,
ENCIPHER, EXPORTER, IKEYXLAT, IMPORTER, IPINENC, MAC, MACVER,
OKEYXLAT, OPINENC, PINGEN and PINVER. For information on the
meaning of the key types, see Table 3 on page 21.

source_key_identifier

Direction Type

Input String

A 64-byte string of the internal key token that contains the key to be
reenciphered. This parameter must identify an internal key token in application
storage, or a label of an existing key in the cryptographic key data set.

If you supply TOKEN for the key_type parameter, ICSF looks at the control
vector in the internal key token and determines the key type from this

Key Export

Chapter 5. Managing Symmetric Cryptographic Keys 129

|
|
|

|
|
|
|
|

information. If you supply TOKEN for the key_type parameter and supply a
label for this parameter, the label must be unique in the cryptographic key data
set.

exporter_key_identifier

Direction Type

Input/Output String

A 64-byte string of the internal key token or key label that contains the
exporter key-encrypting key. This parameter must identify an internal key
token in application storage, or a label of an existing key in the cryptographic
key data set.

If the NOCV bit is on in the internal key token containing the key-encrypting
key, the key-encrypting key itself (not the key-encrypting key variant) is used
to encipher the generated key. For example, the key has been installed in the
cryptographic key data set through the key generator utility program or the
key entry hardware using the NOCV parameter; or you are passing the
key-encrypting key in the internal key token with the NOCV bit on and your
program is running in supervisor state or in key 0-7.

Control vectors are explained in “Control Vector for DES Keys” on page 18 and
the NOCV bit is shown in Table 346 on page 803.

target_key_identifier

Direction Type

Output String

The 64-byte field external key token that contains the reenciphered key. The
reenciphered key can be exchanged with another cryptographic system.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output target_key_identifier will be
wrapped in the same manner as the source_key_identifier.

Restrictions
For existing TKE users, you may have to explicitly enable new access control
points. Current applications will fail if they use an equal key halves exporter to
export a key with unequal key halves. You must have access control point 'Key
Export - Unrestricted' explicitly enabled.

This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

For key export, you can use these combinations of parameters:
v A valid key type in the key_type parameter and an internal key token in the

source_key_identifier parameter. The key type must be equivalent to the control
vector specified in the internal key token.

Key Export

130 z/OS ICSF Application Programmer's Guide

|
|
|
|

v A key_type parameter of TOKEN and an internal key token in the
source_key_identifier parameter. The source_key_identifier can be a label with
TOKEN only if the labelname is unique on the CKDS. The key type is extracted
from the control vector contained in the internal key token.

v A valid key type in the key_type parameter, and a label in the source_key_identifier
parameter.

If internal key tokens are supplied in the source_key_identifier or
exporter_key_identifier parameters, the key in one or both tokens can be
reenciphered. This occurs if the master key was changed since the internal key
token was last used. The return and reason codes that indicate this do not indicate
which key was reenciphered. Therefore, assume both keys have been reenciphered.

If running with a PCIXCC, CEX2C, or CEX3C, existing internal tokens created with
key type MACD must be exported with either a TOKEN or DATAM key type. The
external CV will be DATAM CV.

For key types CIPHERXI, CIPHERXL, and CIPHERXO, the key-encrypting key in
the exporter_key_identifier parameter must have a control vector with the key
halves guaranteed unique flag on in the key form bits. An existing key-encrypting
key can have its control vector updated using the restrict key attribute callable
service.

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Table 28. Required access control points for Key Export

Access Control Point Restrictions

Key Export None

Key Export - Unrestricted Key-encrypting key may have equal key halves

To use a NOCV key-encrypting key with the key export service, the NOCV KEK
usage for export-related functions access control point must be enabled in
addition to one or both of the access control points listed.

If the output key-encrypting key identifier is a weaker key than the key being
exported, then:
v the service will fail if the Prohibit weak wrapping - Transport keys access

control point is enabled.
v the service will complete successfully with a warning return code if the Warn

when weak wrap - Transport keys access control point is enabled.

When the Disallow 24-byte DATA wrapped with 16-byte Key access control point
is enabled, this service will fail if the source key is a triple-length DATA key and
the key-encrypting key is a double-length key.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Key Export

Chapter 5. Managing Symmetric Cryptographic Keys 131

|

Table 29. Key export required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Key types CIPHERXI, CIPHERXL,
CIPHERXO and MACD are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Key types CIPHERXI, CIPHERXL and
CIPHERXO are not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Key types CIPHERXI, CIPHERXL and
CIPHERXO are not supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

Key types CIPHERXI, CIPHERXL and
CIPHERXO are not supported.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Key Generate (CSNBKGN and CSNEKGN)
Use the key generate callable service to generate either one or two odd parity DES
keys of any type. The keys can be single-length (8 bytes), double-length (16 bytes),
or, in the case of DATA keys, triple-length (24 bytes). The callable service does not
produce keys in clear form and all keys are returned in encrypted form. When two
keys are generated, each key has the same clear value, although this clear value is
not exposed outside the secure cryptographic feature.

Use the key generate callable service to generate an AES key of DATA type. The
callable service does not produce AES keys in clear form and all AES keys are
returned in encrypted form. Only one AES key is generated.

The callable service name for AMODE (64) invocation is CSNEKGN.

Format
CALL CSNBKGN(

return_code,
reason_code,
exit_data_length,
exit_data,
key_form,
key_length,
key_type_1,
key_type_2,
KEK_key_identifier_1,
KEK_key_identifier_2,
generated_key_identifier_1,
generated_key_identifier_2)

Key Export

132 z/OS ICSF Application Programmer's Guide

|
|

|
|

|
|

|

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

key_form

Direction Type

Input Character String

A 4-byte keyword that defines the type of key(s) you want to generate. This
parameter also specifies if each key should be returned for either operational,
importable, or exportable use. The keyword must be in a 4-byte field,
left-justified, and padded with blanks.

The first two characters refer to key_type_1. The next two characters refer to
key_type_2.

These keywords are allowed: OP, IM, EX, OPIM, OPEX, IMEX, EXEX, OPOP,
and IMIM. See Table 30 on page 134 for their meanings.

If the key_form is OP, EX or IM, the KEK_key_identifier_2, key_type_2, and
generated_key_identifier_2 should be set to NULL.

Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 133

Table 30. Key Form values for the Key Generate callable service

Keyword Meaning

EX One key that can be sent to another system.

EXEX A key pair; both keys to be sent elsewhere, possibly for exporting
to two different systems. The key pair has the same clear value.

IM One key that can be locally imported. The key can be imported
onto this system to make it operational at another time.

IMEX A key pair to be imported; one key to be imported locally and
one key to be sent elsewhere. Both keys have the same clear
value.

IMIM A key pair to be imported; both keys to be imported locally at
another time.

OP One operational key. The key is returned to the caller in the key
token format. Specify the OP key form when generating AES
keys.

OPEX A key pair; one key that is operational and one key to be sent
from this system. Both keys have the same clear value.

OPIM A key pair; one key that is operational and one key to be
imported to the local system. Both keys have the same clear
value. On the other system, the external key token can be
imported to make it operational.

OPOP A key pair; normally with different control vector values.

The key forms are defined as follows:

Operational (OP)
The key value is enciphered under a master key. The result is placed
into an internal key token. The key is then operational at the local
system.

Importable (IM)
The key value is enciphered under an importer key-encrypting key.
The result is placed into an external key token.

Exportable (EX)
The key value is enciphered under an exporter key-encrypting key. The
result is placed into an external key token. The key can then be
transported or exported to another system and imported there for use.
This key form cannot be used by any ICSF callable service.

The keys are placed into tokens that the generated_key_identifier_1 and
generated_key_identifier_2 parameters identify.

Valid key type combinations depend on the key form. See Table 35 on page 140
for valid key combinations.

key_length

Direction Type

Input Character String

An 8-byte value that defines the length of the key. The keyword must be
left-justified and padded on the right with blanks. You must supply one of the
key length values in the key_length parameter.

Key Generate

134 z/OS ICSF Application Programmer's Guide

|
|
|

Table 31. Key Length values for the Key Generate callable service

Value Description Algorithm

SINGLE or KEYLN8 The key should be a single
length (8-byte) key.

DES

SINGLE-R The key should be a double
length (16-byte) key. The two
key halves will be the same.
This makes the key
effectively a single length
key.

DES

DOUBLE or KEYLN16 The key should be a double
length (16-byte or 128-bit)
key

AES or DES

DOUBLE-O The key should be a double
length (16-byte) key. Each of
the two key halves will be
unique (not the same value).

DES

KEYLN24 The key should be a 24-byte
(192-bit) key.

AES or DES

KEYLN32 The key should be a 32-byte
(256-bit) key.

AES

DES Keys: Double-length (16-byte) keys have an 8-byte left half and an 8-byte
right half. Both halves can have identical clear values or not. If you want the
same value to be used in both key halves (refered to as replicated key values),
specify key_length as SINGLE, SINGLE-R or KEYLN8. If you want different
values to be the basis of each key half, specify key_length as DOUBLE,
DOUBLE-O or KEYLN16.

Triple-length (24-byte) keys have three 8-byte key parts. This key length is
valid for DATA keys only. To generate a triple-length DATA key with three
different values to be the basis of each key part, specify key_length as
KEYLN24.

Use SINGLE/SINGLE-R if you want to create a DES transport key that you
would use to exchange DATA keys with a PCF system.

AES Keys: AES only allows KEYLN16, KEYLN24, KEYLN32. To generate a
128-bit AES key, specify key_length as KEYLN16. For 192-bit AES keys specify
key_length as KEYLN24. A 256-bit AES key requires a key_length of KEYLN32.
All AES keys are DATA keys.

This table shows the valid key lengths for each key type supported by DES
keys. An X indicates that a key length is permitted for a key type. A Y
indicates that the key generated will be a double-length key with replicated
key values. It is preferred that SINGLE-R be used for this result.

Table 32. Key lengths for DES keys

Key Type
Single -
KEYLN8 Single-R

Double -
KEYLN16 DOUBLE-O KEYLN24

MAC
MACVER

X
X

X
X

X
X

X
X

DATA X X X

Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 135

|
|

|
|
|
|

Table 32. Key lengths for DES keys (continued)

Key Type
Single -
KEYLN8 Single-R

Double -
KEYLN16 DOUBLE-O KEYLN24

DATAC*
DATAM
DATAMV

X
X
X

X
X
X

X
X
X

EXPORTER
IMPORTER

Y
Y

X
X

X
X

X
X

IKEYXLAT
OKEYXLAT

Y
Y

X
X

X
X

X
X

CIPHER
DECIPHER
ENCIPHER

X
X
X

X
X
X

X
X
X

X
X
X

IPINENC
OPINENC
PINGEN
PINVER

Y
Y
Y
Y

X
X
X
X

X
X
X
X

X
X
X
X

CVARDEC*
CVARENC*
CVARPINE*
CVARXCVL*
CVARXCVR*

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

DKYGENKY*
KEYGENKY*

X
X

X
X

X
X

CIPHERXI
CIPHERXL
CIPHERXO

X
X
X

X
X
X

This table shows the valid key lengths for each key type supported by AES
keys. An X indicates that a key length is permitted for that key type.

Table 33. Key lengths for AES keys

Key Type 128-byte 192-byte 256-byte

AESTOKEN
AESDATA

X
X

X
X

X
X

key_type_1

Direction Type

Input Character String

Use the key_type_1 parameter for the first, or only key, that you want
generated. The keyword must be left-justified and padded with blanks. Valid
type combinations depend on the key form.

Key Generate

136 z/OS ICSF Application Programmer's Guide

The 8-byte keyword for the key_type_1 parameter can be one of the following:
v AESDATA, AESTOKEN, CIPHER, CIPHERXI, CIPHERXL, CIPHERXO,

DATA, DATAC, DATAM, DATAMV, DECIPHER, ENCIPHER, EXPORTER,
IKEYXLAT, IMPORTER, IPINENC, MAC, MACVER, OKEYXLAT,
OPINENC, PINGEN and PINVER

v or the keyword TOKEN

For information on the meaning of the key types, see Table 3 on page 21.

If key_type_1 is TOKEN, ICSF examines the control vector (CV) field in the
generated_key_identifier_1 parameter to derive the key type. When key_type_1 is
TOKEN, ICSF does not check for the length of the key for DATA keys. Instead,
ICSF uses the key_length parameter to determine the length of the key.

If key_type_1 is AESDATA or AESTOKEN, the key generated will be an AES
key of type DATA. When key_type_1 is AESTOKEN, ICSF uses the key_length
parameter to determine the length of the key.

See Table 34 on page 140 and Table 35 on page 140 for valid key type and key
form combinations.

key_type_2

Direction Type

Input Character String

Use the key_type_2 parameter for a key pair, which is shown in Table 35 on
page 140. The keyword must be left-justified and padded with blanks. Valid
type combinations depend on the key form. key_type_2 is only used when DES
keys are generated.

The 8-byte keyword for the key_type_2 parameter can be one of the following:
v CIPHER, CIPHERXI, CIPHERXL, CIPHERXO, DATA, DATAC, DATAM,

DATAMV, DECIPHER, ENCIPHER, EXPORTER, IKEYXLAT, IMPORTER,
IPINENC, MAC, MACVER, OKEYXLAT, OPINENC, PINGEN and PINVER

v or the keyword TOKEN

For information on the meaning of the key types, see Description of Key Types,
Table 3 on page 21.

If key_type_2 is TOKEN, ICSF examines the control vector (CV) field in the
generated_key_identifier_2 parameter to derive the key type. When key_type_2 is
TOKEN, ICSF does not check for the length of the key for DATA keys. Instead,
ICSF uses the key_length parameter to determine the length of the key.

If only one key is to be generated, key_type_2 and KEK_key_identifier_2 are
ignored.

See Table 34 on page 140 and Table 35 on page 140 for valid key type and key
form combinations.

KEK_key_identifier_1

Direction Type

Input/Output String

A 64-byte string of a DES internal key token containing the importer or
exporter key-encrypting key, or a key label. If you supply a key label that is

Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 137

|
|
|
|

|
|
|

less than 64-bytes, it must be left-justified and padded with blanks.
KEK_key_identifier_1 is required for a key_form of IM, EX, IMEX, EXEX, or
IMIM.

When key_form OP is used, parameters KEK_key_identifier_1 and
KEK_key_identifier_2 are ignored. In this case, it is recommended that the
parameters are initialized to 64-bytes of X'00'.

If the NOCV bit is on in the internal key token containing the key-encrypting
key, the key-encrypting key itself (not the key-encrypting key variant) is used
to encipher the generated key. For example, the key has been installed in the
cryptographic key data set through the key generator utility program or the
key entry hardware using the NOCV parameter; or you are passing the
key-encrypting key in the internal key token with the NOCV bit on and your
program is running in supervisor state or key 0-7.

Control vectors are explained in “Control Vector for DES Keys” on page 18 and
the NOCV bit is shown in Table 346 on page 803.

KEK_key_identifier_1 cannot be an AES key token or label.

KEK_key_identifier_2

Direction Type

Input/Output String

A 64-byte string of a DES internal key token containing the importer or
exporter key-encrypting key, or a key label of an internal token. If you supply
a key label that is less than 64-bytes, it must be left-justified and padded with
blanks. KEK_key_identifier_2 is required for a key_form of OPIM, OPEX, IMEX,
IMIM, or EXEX. This field is ignored for key_form keywords OP, IM and EX.
When key_form OP is used, parameter KEK_key_identifier_2 is ignored. In this
case, it is recommended that the parameter is initialized to 64-bytes of X'00'.

If the NOCV bit is on in the internal key token containing the key-encrypting
key, the key-encrypting key itself (not the key-encrypting key variant) is used
to encipher the generated key. For example, the key has been installed in the
cryptographic key data set through the key generator utility program or the
key entry hardware using the NOCV parameter; or you are passing the
key-encrypting key in the internal key token with the NOCV bit on and your
program is running in supervisor state or in key 0-7.

Control vectors are explained in “Control Vector for DES Keys” on page 18 and
the NOCV bit is shown in Table 346 on page 803.

KEK_key_identifier_2 cannot be an AES key token or label.

generated_key_identifier_1

Direction Type

Input/Output String

This parameter specifies either a generated:
v Internal DES or AES key token for an operational key form, or
v External DES key tokens containing a key enciphered under the

KEK_key_identifier_1 parameter.

Key Generate

138 z/OS ICSF Application Programmer's Guide

If you specify a key_type_1 of TOKEN, then this field contains a valid DES
token of the key type you want to generate. Otherwise, on input, this
parameter must be binary zeros. See key_type_1 for a list of valid key types.

If you specify a key_type_1 of IMPORTER or EXPORTER and a key_form of
OPEX, and if the generated_key_identifier_1 parameter contains a valid DES
internal token of the SAME type, the NOCV bit, if on, is propagated to the
generated key token.

When key_type_1 parameter is AESDATA, then generated_key_identifier_1 is
ignored. In this case, it is recommended that the parameter be initialized to
64-bytes of X'00'. If you specify a key_type_1 of AESTOKEN, the
generated_key_identifier_1 parameter must be an internal AES key token or a
clear AES key token. Information in this token can be used to determine the
key type:
v The key_type_1 parameter overrides the type in the token.
v The key_length parameter overrides the length value in the generated key

token.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output generated_key_identifier_1 will use
the default wrapping method unless a skeleton token is supplied as input. If a
skeleton token is supplied as input, the wrapping method in the skeleton token
will be used.

generated_key_identifier_2

Direction Type

Input/Output String

This parameter specifies either a generated:
v internal DES key token or
v external DES key token enciphered under KEK_key_identifier_2.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output generated_key_identifier_2 will use
the default wrapping method unless a skeleton token is supplied as input. If a
skeleton token is supplied as input, the wrapping method in the skeleton token
will be used.

Restrictions
This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

For key types CIPHERXI, CIPHERXL, and CIPHERXO, the key-encrypting keys in
the KEK_key_identifier_1 and KEK_key_identifier_2 parameters must have a
control vector with the key halves guaranteed unique flag on in the key form bits.
An existing key-encrypting key can have its control vector updated using the
restrict key attribute callable service.

Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 139

|
|
|
|
|

Usage Notes — Key type and key form combinations
Table 34 shows the valid key type and key form combinations for a single DES or
AES key. Key types marked with an "*" must be requested through the
specification of a proper control vector in a key token and through the use of the
TOKEN keyword.

Note: Not all keytypes are valid on all hardware. See Table 3 on page 21.

Table 34. Key Generate Valid Key Types and Key Forms for a Single Key

Key Type 1 Key Type 2 OP IM EX

AESDATA Not applicable X

AESTOKEN Not applicable X

DATA Not applicable X X X

DATAC* Not applicable X X X

DATAM Not applicable X X X

DKYGENKY* Not applicable X X X

KEYGENKY* Not applicable X X X

MAC Not applicable X X X

PINGEN Not applicable X X X

Table 35 shows the valid key type and key form combinations for a DES key pair.
Key types marked with an "*" must be requested through the specification of a
proper control vector in a key token and through the use of the TOKEN keyword.

See Table 36 on page 142 for an explanation of the differences between E as
compared to X.

Table 35. Key Generate Valid Key Types and Key Forms for a Key Pair

Key Type 1 Key Type 2 OPEX EXEX OPIM,
OPOP,
IMIM

IMEX

CIPHER
CIPHER
CIPHERXI
CIPHERXL
CIPHERXO
DECIPHER
ENCIPHER

X X X X

CIPHERXI
CIPHER
ENCIPHER

E X X E

CIPHERXI CIPHERXO E X E

CIPHERXL CIPHER E X X E

CIPHERXL CIPHERXL E X E

CIPHERXO
CIPHER
DECIPHER

E X X E

CIPHERXO CIPHERXI E X E

Key Generate

140 z/OS ICSF Application Programmer's Guide

Table 35. Key Generate Valid Key Types and Key Forms for a Key Pair (continued)

Key Type 1 Key Type 2 OPEX EXEX OPIM,
OPOP,
IMIM

IMEX

CVARDEC*
CVARENC*
CVARPINE*

E E

CVARENC*
CVARDEC*
CVARXCVL*
CVARXCVR*

E E

CVARXCVL* CVARENC* E E

CVARXCVR* CVARENC* E E

CVARPINE* CVARDEC* E E

DATA
DATA

X X X X

DATAC* DATAC* X X X X

DATAM
DATAM
DATAMV

X X X X

DECIPHER
CIPHER
CIPHERXO
ENCIPHER

X X X X

DKYGENKY* DKYGENKY* X X X X

ENCIPHER
CIPHER
CIPHERXI
DECIPHER

X X X X

EXPORTER
IKEYXLAT
IMPORTER

X X X

IKEYXLAT
EXPORTER
OKEYXLAT

X X X

IMPORTER
EXPORTER
OKEYXLAT

X X X

IPINENC OPINENC X X E X

KEYGENKY* KEYGENKY* X X X X

MAC
MAC
MACVER

X X X X

OKEYXLAT
IKEYXLAT
IMPORTER

X X X

OPINENC IPINENC X X E X

OPINENC OPINENC X

PINVER PINGEN X X X

Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 141

Table 35. Key Generate Valid Key Types and Key Forms for a Key Pair (continued)

Key Type 1 Key Type 2 OPEX EXEX OPIM,
OPOP,
IMIM

IMEX

PINGEN PINVER X X X

If you need to use NOCV key-encrypting keys, you need to enable NOCV
IMPORTER and NOCV EXPORTER access control points

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Table 36. Required access control points for Key Generate

Usage Access Control Point

The key-form and key-type
combinations shown with an 'X' in
the Key_Form OP column in
Table 34 on page 140.

Key Generate – OP

The key-form and key-type
combinations shown with an 'X' in
the Key_Form IM column in
Table 34 on page 140.

Key Generate – Key set

The key-form and key-type
combinations shown with an 'X 'in
the Key_Form EX column in
Table 34 on page 140.

Key Generate - Key set

The key-form and key-type
combinations shown with an 'X' in
Table 35 on page 140

Key Generate - Key set

The key-form and key-type
combinations shown with an 'E' in
Table 35 on page 140

Key Generate - Key set extended

The SINGLE-R key-length keyword
is specified

Key Generate - SINGLE-R

To use a NOCV IMPORTER key-encrypting key with the key generate service, the
NOCV KEK usage for import-related functions access control point must be
enabled in addition to one or both of the access control points listed.

To use a NOCV EXPORTER key-encrypting key with the key generate service, the
NOCV KEK usage for export-related functions access control point must be
enabled in addition to one or both of the access control points listed.

To use the SINGLE-R rule array keyword, the Key Generate – SINGLE-R access
control point must be enable.

If a key-encrypting key identifier is a weaker key than the key being generated,
then:
v the service will fail if the Prohibit weak wrapping - Transport keys access

control point is enabled.

Key Generate

142 z/OS ICSF Application Programmer's Guide

|
|

v the service will complete successfully with a warning return code if the Warn
when weak wrap - Transport keys access control point is enabled.

When the Disallow 24-byte DATA wrapped with 16-byte Key access control point
is enabled, this service will fail if the source key is a triple-length DATA key and
the DES master key is a 16-byte key or the key-encrypting key is a double-length
key.

Required Hardware
Table 37 lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 37. Key generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Key types CIPHERXI, CIPHERXL and
CIPHERXO are not supported.

Key length DOUBLE-O is not supported

Secure AES keys are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor Key types CIPHERXI, CIPHERXL and

CIPHERXO are not supported.

Key length DOUBLE-O is not supported

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

IBM System z10 EC
IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Key types CIPHERXI, CIPHERXL and
CIPHERXO are not supported.

Key length DOUBLE-O is not supported

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor Key types CIPHERXI, CIPHERXL and

CIPHERXO are not supported.

Key length DOUBLE-O is not supported

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Key Generate2 (CSNBKGN2 and CSNEKGN2)
Use the Key Generate2 callable service to generate either one or two keys of any
type. This callable service does not produce keys in clear form and all keys are
returned in encrypted form. When two keys are generated, each key has the same
clear value, although this clear value is not exposed outside the secure
cryptographic feature.

Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 143

|
|

|
|

|
|

|
|

This service returns variable-length CCA key tokens and uses the AESKW
wrapping method.

This service supports HMAC and AES keys. Operational keys will be encrypted
under the AES master key.

The callable service name for AMODE(64) is CSNEKGN2.

Format
CALL CSNBKGN2(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
clear_key_bit_length,
key_type_1,
key_type_2,
key_name_1_length,
key_name_1,
key_name_2_length,
key_name_2,
user_associated_data_1_length,
user_associated_data_1,
user_associated_data_2_length,
user_associated_data_2,
key_encrypting_key_identifier_1_length,
key_encrypting_key_identifier_1,
key_encrypting_key_identifier_2_length,
key_encrypting_key_identifier_2,
generated_key_identifier_1_length,
generated_key_identifier_1,
generated_key_identifier_2_length,
generated_key_identifier_2)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Key Generate2

144 z/OS ICSF Application Programmer's Guide

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. Valid
values are 2, 3 or 4.

rule_array

Direction Type

Input String

The rule_array contains keywords that provide control information to the
callable service. The keywords must be in contiguous storage with each of the
keywords left-justified in its own 8-byte location and padded on the right with
blanks.

Table 38. Keywords for Key Generate2 Control Information

Keyword Meaning

Token algorithm (required)

HMAC Specifies to generate an HMAC key token.

AES Specifies to generate an AES key token.

Key Form (required)

The first two characters refer to key_type_1. The next two characters refer to key_type_2.
See the Usage Notes section for further details.

EX One key that can be sent to another system.

EXEX A key pair; both keys to be sent elsewhere, possibly for
exporting to two different systems. Both keys have the same
clear value.

IM One key that can be locally imported. The key can be
imported onto this system to make it operational at another
time.

IMEX A key pair to be imported; one key to be imported locally
and one key to be sent elsewhere. Both keys have the same
clear value.

IMIM A key pair to be imported; both keys to be imported locally
at another time. Both keys have the same clear value.

Key Generate2

Chapter 5. Managing Symmetric Cryptographic Keys 145

|
|

Table 38. Keywords for Key Generate2 Control Information (continued)

Keyword Meaning

OP One operational key. The key is returned to the caller in
operational form to be used locally.

OPEX A key pair; one key that is operational and one key to be
sent elsewhere. Both keys have the same clear value.

OPIM A key pair; one key that is operational and one key to be
imported locally at another time. Both keys have the same
clear value.

OPOP A key pair; either with the same key type with different
associated data or complementary key types. Both keys have
the same clear value.

Payload Version for generated_key_identifier_1 (optional)

Only valid with CIPHER, IMPORTER and EXPORTER key types.

V0PYLDK1 Build a token with the variable length payload format for
the generated_key_identifier_1 parameter. This is the default.

V1PYLDK1 Build a token with the fixed length payload format for the
generated_key_identifier_1 parameter.

Payload Version for generated_key_identifier_2 (optional)

Only valid with CIPHER, IMPORTER and EXPORTER key types.

V0PYLDK2 Build a token with the variable length payload format for
the generated_key_identifier_2 parameter. This is the default.

V1PYLDK2 Build a token with the fixed length payload format for the
generated_key_identifier_2 parameter.

clear_key_bit_length

Direction Type

Input Integer

The size (in bits) of the key to be generated.
v For the HMAC algorithm, this is a value between 80 and 2048, inclusive.
v For the AES algorithm, this is a value of 128, 192, or 256.

When key_type_1 or key_type_2 is TOKEN, this value overrides the key length
contained in generated_key_identifier_1 or generated_key_identifier_2, respectively.

key_type_1

Direction Type

Input String

Use the key_type_1 parameter for the first, or only, key that you want
generated. The keyword must be left-justified and padded with blanks. Valid
type combinations depend on the key form, and are documented in Table 41
on page 151 and Table 42 on page 151.

The 8-byte keyword for the key_type_1 parameter can be one of the following:

Key Generate2

146 z/OS ICSF Application Programmer's Guide

|

|

||
|

||
|

|

|

||
|

||
|

Table 39. Keywords and associated algorithms for key_type_1 parameter

Keyword Algorithm

CIPHER AES

EXPORTER AES

IMPORTER AES

MAC HMAC

MACVER HMAC

Specify the keyword TOKEN when supplying a key token in the generated_key_identifier_1
parameter.

If key_type_1 is TOKEN, the associated data in the generated_key_identifier_1
parameter is examined to derive the key type.

key_type_2

Direction Type

Input String

Use the key_type_2 parameter for a key pair, which is shown in Table 42 on
page 151. The keyword must be left-justified and padded with blanks. Valid
type combinations depend on the key form.

The 8-byte keyword for the key_type_2 parameter can be one of the following:

Table 40. Keywords and associated algorithms for key_type_2 parameter

Keyword Algorithm

CIPHER AES

EXPORTER AES

IMPORTER AES

MAC HMAC

MACVER HMAC

Specify the keyword TOKEN when supplying a key token in the generated_key_identifier_2
parameter.

If key_type_2 is TOKEN, the associated data in the generated_key_identifier_2
parameter is examined to derive the key type.

When only one key is being generated, this parameter is ignored.

key_name_1_length

Direction Type

Input Integer

The length of the key_name parameter for generated_key_identifier_1. Valid values
are 0 and 64 bytes.

key_name_1

Direction Type

Input String

Key Generate2

Chapter 5. Managing Symmetric Cryptographic Keys 147

A 64-byte key store label to be stored in the associated data structure of
generated_key_identifier_1.

key_name_2_length

Direction Type

Input Integer

The length of the key_name parameter for generated_key_identifier_2. Valid values
are 0 and 64 bytes.

When only one key is being generated, this parameter is ignored.

key_name_2

Direction Type

Input String

A 64-byte key store label to be stored in the associated data structure of
generated_key_identifier_2.

When only one key is being generated, this parameter is ignored.

user_associated_data_1_length

Direction Type

Input Integer

The length of the user-associated data parameter for generated_key_identifier_1.
The valid values are 0 to 255 bytes.

user_associated_data_1

Direction Type

Input String

User-associated data to be stored in the associated data structure for
generated_key_identifier_1.

user_associated_data_2_length

Direction Type

Input Integer

The length of the user-associated data parameter for generated_key_identifier_2.
The valid values are 0 to 255 bytes.

When only one key is being generated, this parameter is ignored.

user_associated_data_2

Direction Type

Input String

User associated data to be stored in the associated data structure for
generated_key_identifier_2.

When only one key is being generated, this parameter is ignored.

Key Generate2

148 z/OS ICSF Application Programmer's Guide

key_encrypting_key_identifier_1_length

Direction Type

Input Integer

The length of the buffer for key_encrypting_key_identifier_1 in bytes. When the
Key Form rule is OP, OPOP, OPIM, or OPEX, this length must be zero. When
the Key Form rule is EX, EXEX, IM, IMEX, or IMIM, the value must be
between the actual length of the token and 725 bytes when
key_encrypting_key_identifier_1 is a token.

The value must be 64 bytes when key_encrypting_key_identifier_1 is a label.

key_encrypting_key_identifier_1

Direction Type

Input/Output String

When key_encrypting_key_identifier_1_length is zero, this parameter is ignored.
Otherwise, key_encrypting_key_identifier_1 contains an internal key token
containing the AES importer or exporter key-encrypting key, or a key label.

If the token supplied was encrypted under the old master key, the token will
be returned encrypted under the current master key.

key_encrypting_key_identifier_2_length

Direction Type

Input Integer

The length of the buffer for key_encrypting_key_identifier_2 in bytes. When the
Key Form rule is OPOP, this length must be zero. When the Key Form rule is
EXEX, IMEX, IMIM, OPIM, or OPEX, the value must be between the actual
length of the token and 725 when key_encrypting_key_identifier_2 is a token. The
value must be 64 when key_encrypting_key_identifier_2 is a label.

When only one key is being generated, this parameter is ignored.

key_encrypting_key_identifier_2

Direction Type

Input/Output String

When key_encrypting_key_identifier_2_length is zero, this parameter is ignored.
Otherwise, key_encrypting_key_identifier_2 contains an internal key token
containing the AES importer or exporter key-encrypting key, or a key label.

If the token supplied was encrypted under the old master key, the token will
be returned encrypted under the current master key.

When only one key is being generated, this parameter is ignored.

generated_key_identifier_1_length

Direction Type

Input/Output Integer

Key Generate2

Chapter 5. Managing Symmetric Cryptographic Keys 149

On input, the length of the buffer for the generated_key_identifier_1 parameter in
bytes. The maximum value is 900 bytes.

On output, the parameter will hold the actual length of the
generated_key_identifier_1.

generated_key_identifier_1

Direction Type

Input/Output String

The buffer for the first generated key token.

On input, if you specify a key_type_1 of TOKEN, then the buffer contains a
valid key token of the key type you want to generate. The key token must be
left justified in the buffer. See key_type_1 for a list of valid key types.

On output, the buffer contains the generated key token.

generated_key_identifier_2_length

Direction Type

Input/Output Integer

On input, the length of the buffer for the generated_key_identifier_2 in bytes. The
maximum value is 900 bytes.

On output, the parameter will hold the actual length of the
generated_key_identifier_2.

When only one key is being generated, this parameter is ignored.

generated_key_identifier_2

Direction Type

Input/Output String

The buffer for the second generated key token.

On input, if you specify a key_type_2 of TOKEN, then the buffer contains a
valid key token of the key type you want to generate. The key token must be
left justified in the buffer. See key_type_2 for a list of valid key types.

On output, the buffer contains the generated key token.

When only one key is being generated, this parameter is ignored.

Usage Notes
The key forms are defined as follows:

Operational (OP)
The key value is enciphered under a master key. The result is placed into
an internal key token. The key is then operational at the local system.

Importable (IM)
The key value is enciphered under an importer key-encrypting key. The
result is placed into an external key token. The corresponding
key_encrypting_key_identifier_x parameter must contain an AES IMPORTER
key token or label.

Key Generate2

150 z/OS ICSF Application Programmer's Guide

Exportable (EX)
The key value is enciphered under an exporter key-encrypting key. The
result is placed into an external key token. The corresponding
key_encrypting_key_identifier_x parameter must contain an AES EXPORTER
key token or label.

These tables list the valid key type and key form combinations.

Table 41. Key Generate2 valid key type and key form for one key

key_type_1 Key Form OP, IM, EX

CIPHER X

MAC X

Table 42. Key Generate2 Valid key type and key forms for two keys

key_type_1 key_type_2 Key Form OPOP,
OPIM, IMIM

Key Form OPEX,
EXEX, IMEX

CIPHER CIPHER X X

MAC MAC X X

MAC MACVER X X

MACVER MAC X X

IMPORTER EXPORTER X

EXPORTER IMPORTER X

For AES CIPHER keys, there further restrictions for key usage bits when TOKEN is
used in place of the key type. This table lists the allowable combinations of
key-usage bits in the skeleton token supplied in generated key identifier
parameters. CIPHER is the default which has the ENCRYPT and DECRYPT bits on
in the usage field. CIPHERe has only the ENCRYPT bit on in the usage field.
CIPHERd has only the DECRYPT bit on in the usage field. Adding x to either
name means the TRANSLAT bit is on in the usage field for that key. (For example,
CIPHERex means a variable length token with the ENCRYPT and TRANSLAT bits
turned on.)

See Table 45 on page 153 for an explanation of the differences between E as
compared to X.

Table 43. Key Generate2 Valid key forms for CIPHER keys

generated_key_identifier_1
token

generated_key_identifier_2 token Key Form
OPOP,
OPIM,
IMIM

Key
Form
OPEX

Key
Form
EXEX

Key
Form
IMEX

CIPHER
CIPHER
CIPHERd
CIPHERe

X X X X

CIPHERd
CIPHER
CIPHERe

X X X X

CIPHERe
CIPHER
CIPHERd

X X X X

Key Generate2

Chapter 5. Managing Symmetric Cryptographic Keys 151

|
|

Table 43. Key Generate2 Valid key forms for CIPHER keys (continued)

generated_key_identifier_1
token

generated_key_identifier_2 token Key Form
OPOP,
OPIM,
IMIM

Key
Form
OPEX

Key
Form
EXEX

Key
Form
IMEX

CIPHER
CIPHERdx
CIPHERedx
CIPHERex

X X X X

CIPHERd CIPHERex X X X X

CIPHERe CIPHERdx X X X X

CIPHERdx CIPHER X E X E

CIPHERedx CIPHER X E X E

CIPHERex
CIPHER
CIPHERd

X E X E

CIPHERdx
CIPHERe

X E X E

CIPHERedx CIPHERedx E X E

CIPHERdx CIPHERex E X E

CIPHERex CIPHERdx E X E

The strength of the key-encrypting key used to wrap a generated key will affect
the results of the service. The resulting return code and reason code when using a
key-encrypting key that is weaker than the key being generated depends on the
Prohibit weak wrapping - Transport keys and Warn when weak wrap - Transport
keys access control points:
v If the Prohibit weak wrapping - Transport keys access control point is disabled,

the key strength requirement will not be enforced. Using a weaker key will
result in return code 0 with a non-zero reason code if the Warn when weak
wrap - Transport keys access control point is enabled. Otherwise, a reason code
of zero will be returned.

v If the Prohibit weak wrapping - Transport keys access control point is enabled,
the key strength requirement will be enforced, and attempting to use a weaker
key will result in return code 8.

For AES keys, the AES KEK must be at least as strong as the key being generated
to be considered sufficient strength.

For HMAC keys, the AES KEK must be sufficient strength as described in the
following table.

Table 44. AES KEK strength required for generating an HMAC key under an AES KEK

Key-usage field 2 in the HMAC
key contains

Minimum strength of AES KEK to adequately
protect the HMAC key

SHA-256, SHA-384, SHA-512 256 bits

SHA-224 192 bits

SHA-1 128 bits

Key Generate2

152 z/OS ICSF Application Programmer's Guide

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Table 45. Required access control points for Key Generate2

Access Control Point Function control

Key Generate2 – OP Key Form OP, EX, IM

Key Generate2 – Key set The key-form and key-type combinations shown with
an X in Table 42 on page 151 and Table 43 on page 151

Key Generate2 – Key set extended The key-form and key-type combinations shown with
an E in Table 43 on page 151

Prohibit weak wrapping –
Transport keys

Prohibit wrapping a key with a weaker key

Warn when weak wrap –
Transport keys

Issue a non-zero reason code when using a weak
wrapping key

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 46. Key Generate2 required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

This service is not supported.

Crypto Express3
Coprocessor

This service is not supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor AES key support require the Sep. 2011 or

later licensed internal code (LIC).

HMAC key support requires the Nov. 2010
or later licensed internal code (LIC).

V0PYLD and V1PYLD keywords are not
supported.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

V0PYLD and V1PYLD keywords require the
Sep. 2013 or later licensed internal code
(LIC).

Key Generate2

Chapter 5. Managing Symmetric Cryptographic Keys 153

|
|

|
|
|

Key Import (CSNBKIM and CSNEKIM)
Use the key import callable service to reencipher a key from encryption under an
importer key-encrypting key to encryption under the master key. The reenciphered
key is in operational form.

Choose one of these options:
v Specify the key_type parameter as TOKEN and specify the external key token in

the source_key_identifier parameter. The key type information is determined from
the control vector in the external key token.

v Specify a key type in the key_type parameter and specify an external key token
in the source_key_identifier parameter. The specified key type must be compatible
with the control vector in the external key token.

v Specify a valid key type in the key_type parameter and a null key token in the
source_key_identifier parameter. The default control vector for the key_type
specified will be used to process the key.

For DATA keys, this service generates a key of the same length as that contained in
the input token.

The callable service name for AMODE(64) invocation is CSNEKIM.

Format
CALL CSNBKIM(

return_code,
reason_code,
exit_data_length,
exit_data,
key_type,
source_key_identifier,
importer_key_identifier,
target_key_identifier)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Key Import

154 z/OS ICSF Application Programmer's Guide

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

key_type

Direction Type

Input Character String

The type of key you want to reencipher under the master key. Specify an
8-byte keyword or the keyword TOKEN. The keyword must be left-justified
and padded on the right with blanks.

If the key type is TOKEN, ICSF determines the key type from the control
vector (CV) field in the external key token provided in the source_key_identifier
parameter.

TOKEN is never allowed when the importer_key_identifier is NOCV.

Supported key_type values are CIPHER, CIPHERXI, CIPHERXL, CIPHERXO,
DATA, DATAM, DATAMV, DECIPHER, ENCIPHER, EXPORTER, IKEYXLAT,
IMPORTER, IPINENC, MAC, MACVER, OKEXLAT, OPINENC, PINGEN and
PINVER. Use key_type TOKEN for all other key types.

For information on the meaning of the key types, see Table 3 on page 21.

source_key_identifier

Direction Type

Input String

The key you want to reencipher under the master key. The parameter is a
64-byte field for the enciphered key to be imported containing either an
external key token or a null key token. If you specify a null token, the token is
all binary zeros, except for a key in bytes 16-23 or 16-31, or in bytes 16-31 and
48-55 for triple-length DATA keys. Refer to Table 349 on page 806.

If key type is TOKEN, this field may not specify a null token.

This service supports the no-export function in the CV.

importer_key_identifier

Direction Type

Input/Output String

The importer key-encrypting key that the key is currently encrypted under.
The parameter is a 64-byte area containing either the key label of the key in the

Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 155

|
|
|
|

cryptographic key data set or the internal key token for the key. If you supply
a key label that is less than 64-bytes, it must be left-justified and padded with
blanks.

Note: If you specify a NOCV importer in the importer_key_identifier parameter,
the key to be imported must be enciphered under the importer key itself.

target_key_identifier

Direction Type

Input/Output String

This parameter is the generated reenciphered key. The parameter is a 64-byte
area that receives the internal key token for the imported key.

If the imported key TYPE is IMPORTER or EXPORTER and the token key
TYPE is the same, the target_key_identifier parameter changes direction to both
input and output. If the application passes a valid internal key token for an
IMPORTER or EXPORTER key in this parameter, the NOCV bit is propagated
to the imported key token.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output target_key_identifier will use the
default wrapping method unless a skeleton token is supplied as input. If a
skeleton token is supplied as input, the wrapping method in the skeleton token
will be used.

Restrictions
For existing TKE users, you may have to explicitly enable new access control
points. Current applications will fail if they use an equal key halves importer to
import a key with unequal key halves. You must have access control point 'Key
Import - Unrestricted' explicitly enabled.

This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Use of NOCV keys are controlled by an access control point. Creation of NOCV
key-encrypting keys is only available for standard IMPORTERs and EXPORTERs.

This service will mark an imported KEK as a NOCV-KEK:
v If a token is supplied in the target token field, it must be a valid importer or

exporter token. If the token fails token validation, processing continues, but the
NOCV flag will not be copied

v The source token (key to be imported) must be a importer or exporter with the
default control vector.

v If the target token is valid and the NOCV flag is on and the source token is
valid and the control vector of the target token is exactly the same as the source
token, the imported token will have the NOCV flag set on.

Key Import

156 z/OS ICSF Application Programmer's Guide

|
|

v If the target token is valid and the NOCV flag is on and the source token is
valid and the control vector of the target token is NOT exactly the same as the
source token, a return code will be given.

v All other scenarios will complete successfully, but the NOCV flag will not be
copied

The software bit used to mark the imported token with export prohibited is not
supported. The internal token for an export prohibited key will have the
appropriate control vector that prohibits export.

For key types CIPHERXI, CIPHERXL, and CIPHERXO, the key-encrypting key in
the importer_key_identifier parameter must have a control vector with the key
halves guaranteed unique flag on in the key form bits. An existing key-encrypting
key can have its control vector updated using the restrict key attribute callable
service.

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Table 47. Required access control points for Key Import

Access Control Point Restrictions

Key Import None

Key Import - Unrestricted Key-encrypting key may have equal key halves

To use a NOCV key-encrypting key with the key import service, the NOCV KEK
usage for import-related functions access control point must be enabled in
addition to one or both of the access control points listed.

When the Disallow 24-byte DATA wrapped with 16-byte Key access control point
is enabled, this service will fail if the source key is a triple-length DATA key and
the DES master key is a 16-byte key.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 48. Key import required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Key types CIPHERXI, CIPHERXL and
CIPHERXO are not supported.

IMP-PKA keys are not supported.

IBM System z9 EC
IBM System z9 BC

Crypto Express2
Coprocessor Key types CIPHERXI, CIPHERXL and

CIPHERXO are not supported.

IMP-PKA keys are not supported.

Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 157

|
|
|

|
|

|

|
|

|

Table 48. Key import required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Key types CIPHERXI, CIPHERXL and
CIPHERXO are not supported.

IMP-PKA keys are not supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor Key types CIPHERXI, CIPHERXL and

CIPHERXO are not supported.

IMP-PKA keys are not supported.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Key types CIPHERXI, CIPHERXL and
CIPHERXO are not supported.

IMP-PKA keys are not supported.

Key Part Import (CSNBKPI and CSNEKPI)
Use the key part import callable service to combine, by exclusive ORing, the clear
key parts of any DES key type and return the combined key value either in an
internal token or as an update to the CKDS.

Prior to using the key part import service for the first key part, you must use the
key token build service to create the internal key token into which the key will be
imported. Subsequent key parts are combined with the first part in internal token
form or as a label from the CKDS.

The preferred way to specify key parts is FIRST, ADD-PART, and COMPLETE in
the rule_array. Only when the combined key parts have been marked as
COMPLETE can the key token be used in any other service. Key parts can also be
specified as FIRST, MIDDLE, or LAST in the rule_array. ADD-PART or MIDDLE
can be executed multiple times for as many key parts as necessary. Only when the
LAST part has been combined can the key token be used in any other service.

New applications should employ the ADD-PART and COMPLETE keywords in
lieu of the MIDDLE and LAST keywords in order to ensure a separation of
responsibilities between someone who can add key-part information and someone
who can declare that appropriate information has been accumulated in a key.

The key part import callable service can also be used to import a key without
using key parts. Call the key part import service FIRST with key part value
X'0000...' then call the key part import service LAST with the complete value.

Keys created via this service have odd parity. The FIRST key part is adjusted to
odd parity. All subsequent key parts are adjusted to even parity prior to being
combined.

The callable service name for AMODE(64) invocation is CSNEKPI.

Key Import

158 z/OS ICSF Application Programmer's Guide

|
|

|

|
|

|

|
|

|

|

Format
CALL CSNBKPI(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_part,
key_identifier)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value
must be 1 or 2.

rule_array

Key Part Import

Chapter 5. Managing Symmetric Cryptographic Keys 159

Direction Type

Input String

Keywords that provide control information to the callable service. The
keywords must be 8 bytes of contiguous storage with the keyword left-justified
in its 8-byte location and padded on the right with blanks.

Table 49. Keywords for Key Part Import Control Information

Keyword Meaning

Key Part (Required)

FIRST This keyword specifies that an initial key part is being
entered. The callable service returns this key-part encrypted
by the master key in the key token that you supplied.

ADD-PART This keyword specifies that additional key-part information is
provided.

COMPLETE This keyword specifies that the key-part bit shall be turned off
in the control vector of the key rendering the key fully
operational. Note that no key-part information is added to the
key with this keyword.

MIDDLE This keyword specifies that an intermediate key part, which is
neither the first key part nor the last key part, is being
entered. Note that the command control point for this
keyword is the same as that for the LAST keyword and
different from that for the ADD-PART keyword.

LAST This keyword specifies that the last key part is being entered.
The key-part bit is turned off in the control vector.

Key Wrapping Method (optional)

USECONFG Specifies that the system default configuration should be used
to determine the wrapping method. This is the default
keyword.

The system default key wrapping method can be specified
using the DEFAULTWRAP parameter in the installation
options data set. See the z/OS Cryptographic Services ICSF
System Programmer's Guide.

WRAP-ENH Use enhanced key wrapping method, which is compliant with
the ANSI X9.24 standard.

WRAP-ECB Use original key wrapping method, which uses ECB wrapping
for DES key tokens and CBC wrapping for AES key tokens.

key_part

Direction Type

Input String

A 16-byte field containing the clear key part to be entered. If the key is a
single-length key, the key part must be left-justified and padded on the right
with zeros. This field is ignored if COMPLETE is specified.

key_identifier

Direction Type

Input/Output String

Key Part Import

160 z/OS ICSF Application Programmer's Guide

A 64-byte field containing an internal token or a label of an existing CKDS
record. If rule_array is FIRST, this field is the skeleton of an internal token of a
single- or double-length key with the KEY-PART marking. If rule_array is
MIDDLE or LAST, this is an internal token or the label of a CKDS record of a
partially combined key. Depending on the input format, the accumulated
partial or complete key is returned as an internal token or as an updated
CKDS record. The returned key_identifier will be encrypted under the current
master key.

ICSF supports two methods of wrapping the key value in a DES key token: the
original ECB wrapping and an enhanced CBC wrapping method which is
ANSI X9.24 compliant. The output key_identifier will use the default method
unless a rule array keyword overriding the default for the FIRST key part is
specified. When the key_identifier is an existing token, the same wrapping
method as the existing token will be used.

Restrictions
If a label is specified on key_identifier, the label must be unique. If more than one
record is found, the service fails.

For existing TKE users, you may have to explicitly enable new access control
points. You must have access control point 'Key Part Import - Unrestricted'
explicitly enabled. Otherwise, current applications will fail with either of these
conditions:
v the first 8 bytes of key identifier is different than the second 8 bytes AND the

first 8 bytes of the combined key are the same as the last second 8 bytes
v the first 8 bytes of key identifier is the same as the second 8 bytes AND the first

8 bytes of the combined key are different than the second 8 bytes.

This callable service only supports version X'00' or X'01' DES key tokens.

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Table 50. Required access control points for Key Part Import

Rule array keyword Access control point

FIRST Key Part Import - first key part

MIDDLE or LAST Key Part Import - middle and last

ADD-PART Key Part Import - ADD-PART

COMPLETE Key Part Import - COMPLETE

WRAP-ECB or WRAP-ENH and
default key-wrapping method
setting does not match keyword

Key Part Import - Allow wrapping override keywords

A “replicated key-halves” key (both cleartext halves of a double-length key are
equal) is not as secure as a double-length key with key halves that are not the
same. The key part import service verb enforces the key-halves restriction
documented above when the Key Part Import - Unrestricted access control point is
disabled in the domain role.

Key Part Import

Chapter 5. Managing Symmetric Cryptographic Keys 161

|

|
|
|
|

|
|

|
|

|

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 51. Key part import required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

Crypto Express3
Coprocessor Enhanced key token wrapping not

supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Related Information
This service is consistent with the Transaction Security System key part import
verb.

Key Part Import2 (CSNBKPI2 and CSNEKPI2)
Use the Key Part Import2 callable service to combine, by exclusive ORing, the clear
key parts of any key type and return the combined key value either in a
variable-length internal token or as an update to the CKDS.

Prior to using the key part import2 service for the first key part, you must use the
Key Token Build2 service to create the internal key token into which the key will
be imported. Subsequent key parts are combined with the first part in internal
token form or as a label from the CKDS.

On each call to Key Part Import2 (except with the COMPLETE keyword), specify
the number of bits to use for the clear key part. Place the clear key part in the
key_part parameter, and specify the number of bits using the key_part_length
variable. Any extraneous bits of key_part data will be ignored.

Consider using the Key Test2 callable service to ensure a correct key value has
been accumulated prior to using the COMPLETE option to mark the key as fully
operational.

Key Part Import

162 z/OS ICSF Application Programmer's Guide

The callable service name for AMODE(64) is CSNEKPI2.

Format
CALL CSNBKPI2(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_part_bit_length,
key_part,
key_identifier_length,
key_identifier)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

Key Part Import2

Chapter 5. Managing Symmetric Cryptographic Keys 163

The number of keywords you supplied in the rule_array parameter. The value
may be 2 or 3.

rule_array

Direction Type

Input Integer

The rule_array contains keywords that provide control information to the
callable service. The keywords must be in contiguous storage with each of the
keywords left-justified in its own 8-byte location and padded on the right with
blanks.

Table 52. Keywords for Key Part Import2 Control Information

Keyword Meaning

Token Algorithm (Required)

HMAC Specifies to import an HMAC key token.

AES Specifies to import an AES key token.

Key Part (One required)

FIRST This keyword specifies that an initial key part is being
entered. The callable service returns this key-part encrypted
by the master key in the key token that you supplied.

ADD-PART This keyword specifies that additional key-part information
is provided.

COMPLETE This keyword specifies that the key-part bit shall be turned
off in the control vector of the key rendering the key fully
operational. Note that no key-part information is added to
the key with this keyword.

Split Knowledge (One required). Use only with FIRST keyword.

MIN3PART Specifies that the key must be entered in at least three parts.

MIN2PART Specifies that the key must be entered in at least two parts.

MIN1PART Specifies that the key must be entered in at least one part.

key_part_bit_length

Direction Type

Input Integer

The length of the clear key in bits. This indicates the bit length of the key
supplied in the key_part field. For FIRST and ADD-PART keywords, valid
values are 80 to 2048 for HMAC keys or 128, 192, or 256 for AES keys. The
value must be 0 for the COMPLETE keyword.

key_part

Direction Type

Input String

This parameter is the clear key value to be applied. The key part must be
left-justified. This parameter is ignored if COMPLETE is specified.

key_identifier_length

Key Part Import2

164 z/OS ICSF Application Programmer's Guide

Direction Type

Input/Output Integer

On input, the length of the buffer for the key_identifier parameter. For labels,
the value is 64 bytes. The key_identifier must be left justified in the buffer. The
buffer must be large enough to receive the updated token. The maximum value
is 725 bytes. The output token will be longer when the first key part is
imported.

On output, the actual length of the token returned to the caller. For labels, the
value will be 64.

key_identifier

Direction Type

Input/Output String

The parameter containing an internal token or a 64-byte label of an existing
CKDS record. If the Key Part rule is FIRST, the key is a skeleton token. If the
Key Part rule is ADD-PART, this is an internal token or the label of a CKDS
record of a partially combined key. Depending on the input format, the
accumulated partial or complete key is returned as an internal token or as an
updated CKDS record. The returned key_identifier will be encrypted under the
current master key.

Usage Notes
On each call to Key Part Import2, also specify a rule-array keyword to define the
service action: FIRST, ADD-PART, or COMPLETE.
v With the FIRST keyword, the input key-token must be a skeleton token (no key

material).
v With the ADD-PART keyword, the service exclusive-ORs the clear key-part with

the key value in the input key-token. The key remains incomplete in the
updated key token returned from the service.

v With the COMPLETE keyword, the KEY-PART bit is set off in the updated key
token that is returned from the service. The key_part_bit_length parameter must
be set to zero.

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Table 53. Required access control points for Key Part Import2

Rule array keywords Access control point

ADD-PART Key Part Import2 - Add second of three or more key parts

ADD-PART Key Part Import2 - Add last required key part

ADD-PART Key Part Import2 - Add optional key part

COMPLETE Key Part Import2 - Complete key

FIRST MIN3PART Key Part Import2 - Load first key part, require 3 key parts

FIRST MIN2PART Key Part Import2 - Load first key part, require 2 key parts

FIRST MIN1PART Key Part Import2 - Load first key part, require 1 key parts

Key Part Import2

Chapter 5. Managing Symmetric Cryptographic Keys 165

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 54. Key Part Import2 required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

This service is not supported.

Crypto Express3
Coprocessor

This service is not supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor AES key support requires the Sep. 2011 or

later licensed internal code (LIC).

HMAC key support requires the Nov. 2010
or later licensed internal code (LIC).

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Key Test (CSNBKYT and CSNEKYT)
Use the key test callable service to generate or verify a secure, cryptographic
verification pattern for keys. The key to test can be in the clear or encrypted under
the master key. Keywords in the rule_array specify whether the callable service
generates or verifies a verification pattern.

DES keys use the algorithm defined in “DES Algorithm (single- and double-length
keys)” on page 917 as the default algorithm (except for triple-length DATA keys).
When generating a verification pattern, the service generates a random number
and calculates the verification pattern. The random number and verification
pattern are returned to the caller. When verifying a key, the random number and
key are used to verify the verification pattern.

AES keys use the SHA-256 algorithm as the default algorithm. An 8-byte
verification pattern is generated for the key specified. The random number
parameter is not used.

The optional ENC-ZERO algorithm can be used with any key. A 4-byte verification
pattern is generated. The random number parameter is not used.

Key Part Import2

166 z/OS ICSF Application Programmer's Guide

CSNBKYT is consistent with the Transaction Security System verb of the same
name. If you generate a key on the Transaction Security System, you can verify it
on ICSF and vice versa.

See “Key Test Extended (CSNBKYTX and CSNEKTX)” on page 175 to verify the
value of a DES key encrypted using a KEK.

The callable service name for AMODE(64) invocation is CSNEKYT.

Format
CALL CSNBKYT(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier,
random_number,
verification_pattern)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

Key Test

Chapter 5. Managing Symmetric Cryptographic Keys 167

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value
can be 2, 3 or 4.

rule_array

Direction Type

Input String

Keywords provide control information to the callable service. Table 55 lists the
keywords. The keywords must be in contiguous storage with each of the
keywords left-justified in its own 8-byte location and padded on the right with
blanks.

Table 55. Keywords for Key Test Control Information

Keyword Meaning

Key or key part rule (one keyword required)

CLR-A128 Process a 128–bit AES clear key.

CLR-A192 Process a 192–bit AES clear key.

CLR-A256 Process a 256–bit AES clear key.

KEY-CLR Specifies the key supplied in key_identifier is a
single-length clear key.

KEY-CLRD Specifies the key supplied in key_identifier is a
double-length clear key.

KEY-ENC Specifies the key supplied in key_identifier is a
single-length encrypted key.

KEY-ENCD Specifies the key supplied in key_identifier is a
double-length encrypted key.

TOKEN Process an AES clear or encrypted key token.

Process Rule (one keyword required)

GENERATE Generate a verification pattern for the key supplied in
key_identifier.

VERIFY Verify a verification pattern for the key supplied in
key_identifier.

Parity Adjustment - can not be specified with any of the AES keywords (optional)

ADJUST Adjust the parity of test key to odd prior to generating or
verifying the verification pattern. The key_identifier field
itself is not adjusted.

NOADJUST Do not adjust the parity of test key to odd prior to
generating or verifying the verification pattern. This is the
default.

Verification Process Rule (optional)

ENC-ZERO ENC-ZERO can be used with any of the rules.

SHA-256 Use the 'SHA-256' method. Use with CLR-A128,
CLR-A192, CLR-A256, and TOKEN. SHA-256 is also the
default for the AES rules.

Key Test

168 z/OS ICSF Application Programmer's Guide

key_identifier

Direction Type

Input/Output String

The key for which to generate or verify the verification pattern. The parameter
is a 64-byte string of an internal token, key label, or a clear key value
left-justified.

Note: If you supply a key label for this parameter, it must be unique on the
CKDS.

random_number

Direction Type

Input/Output String

This is an 8-byte field that contains a random number supplied as input for the
test pattern verification process and returned as output with the test pattern
generation process. random_number is only used with the default algorithm for
DES operational keys.

verification_pattern

Direction Type

Input/Output String

This is an 8-byte field that contains a verification pattern supplied as input for
the test pattern verification process and returned as output with the test
pattern generation process.

Restrictions
This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

You can generate the verification pattern for a key when you generate the key. You
can distribute the pattern with the key and it can be verified at the receiving node.
In this way, users can ensure using the same key at the sending and receiving
locations. You can generate and verify keys of any combination of key forms, that
is, clear, operational or external.

The parity of the key is not tested.

There is support for the generation and verification of single, double and
triple-length keys for the ENC-ZERO verification process. For triple-length keys,
use KEY-ENC or KEY-ENCD with ENC-ZERO. Clear triple-length keys are not
supported.

In the Transaction Security System, KEY-ENC and KEY-ENCD both support
enciphered single-length and double-length keys. They use the key-form bits in

Key Test

Chapter 5. Managing Symmetric Cryptographic Keys 169

|
|
|
|

byte 5 of CV to determine the length of the key. To be consistent, in ICSF, both
KEY-ENC and KEY-ENCD handle single- and double-length keys. Both products
effectively ignore the keywords, which are supplied only for compatibility reasons.

Access Control Points
The access control point in the domain role that controls the function of this
service is Key Test and Key Test 2. This access control point cannot be disabled. It
is required for ICSF master key validation.

If the access control point Key Test - Warn when keyword inconsistent with key
length is enabled, a warning will be generated if the Key Rule specified does not
match the key_identifier provided.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 56. Key test required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Clear triple-length keys are not supported.
Encrypted triple-length keys are supported
with the ENC-ZERO keyword only.

AES keys are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Clear triple-length keys are not supported.
Encrypted triple-length keys are supported
with the ENC-ZERO keyword only.

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Clear triple-length keys are not supported.
Encrypted triple-length keys are supported
with the ENC-ZERO keyword only.

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

Clear triple-length keys are not supported.
Encrypted triple-length keys are supported
with the ENC-ZERO keyword only.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Clear triple-length keys are not supported.
Encrypted triple-length keys are supported
with the ENC-ZERO keyword only.

Key Test2 (CSNBKYT2 and CSNEKYT2)
Use this callable service to generate or verify a secure, cryptographic verification
pattern for keys. The key to test can be in the clear, encrypted under the master
key, or encrypted under a key-encrypting key. Keywords in the rule_array specify
whether the callable service generates or verifies a verification pattern.

The callable service name for AMODE(64) invocation is CSNEKYT2.

Key Test

170 z/OS ICSF Application Programmer's Guide

Format
CALL CSNBKYT2(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
key_encrypting_key_identifier_length,
key_encrypting_key_identifier,
reserved_length,
reserved,
verification_pattern_length,
verification_pattern)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

Key Test2

Chapter 5. Managing Symmetric Cryptographic Keys 171

The number of keywords you supplied in the rule_array parameter. The value
must be 2, 3, 4, or 5.

rule_array

Direction Type

Input String

The rule_array contains keywords that provide control information to the
callable service. The keywords must be in contiguous storage with each of the
keywords left-justified in its own 8-byte location and padded on the right with
blanks.

Table 57. Keywords for Key Test2 Control Information

Keyword Meaning

Token algorithm (Required)

AES Specifies the key token is an AES key token.

DES Specifies the key token is a DES token. CCA internal, CCA
external, and TR-31 token types are supported. Clear keys
are not supported for this rule.

HMAC Specifies the key token is an HMAC key token.

Process rule (One required)

GENERATE Generate a verification pattern for the specified key.

VERIFY Verify that a verification pattern matches the specified key.

Verification pattern calculation algorithm (Optional)

ENC-ZERO Verification pattern for AES and DES keys calculated by
encrypting a data block filled with 0x00 bytes.

This is the default and only method available for DES. This
method is only available for AES if Access Control Point
"Key Test2 - AES, ENC-ZERO" is enabled.

SHA-256 Verification pattern will be calculated for an AES token
using the same method as the Key Test service with the
SHA-256 rule.

This rule can be used to verify that the same key value is
present in a version 4 DATA token and version 5 AES
CIPHER token or to verify that the same key value is
present in a version 5 AES IMPORTER/EXPORTER pair.

SHA2VP1 Specifies to use the SHA-256 based verification pattern
calculation algorithm. For more information, see “SHAVP1
Algorithm” on page 917. This is the default and only
method available for HMAC.

Token type rule (One required if the DES token algorithm is specified and a TR-31 token or
DESUSECV token is passed; not valid otherwise)

TR-31 Specifies that key_identifier contains a TR-31 key block.

AESKWCV Specifies that key_identifier contains an external variable
length symmetric key token whose type is DESUSECV. The
IKEK-AES keyword must be specified for the KEK identifier
rule.

KEK identifier rules (One required if the AESKWCV token type is specified)

Key Test2

172 z/OS ICSF Application Programmer's Guide

|
|

||
|
|
|

|

Table 57. Keywords for Key Test2 Control Information (continued)

Keyword Meaning

IKEK-AES The wrapping KEK for the key to test is an AES KEK. This
is the default for AES and HMAC Token algorithms.

IKEK-DES The wrapping KEK for the key to test is a DES KEK. This is
the default for DES Token algorithm, and is only allowed
with the DES Token algorithm.

IKEK-PKA The wrapping KEK for the key to test is an RSA or (other
key stored in PKA key storage.) This is not the default for
any Token algorithm and must be specified if an RSA KEK
is used. This rule is not allowed with DES Token algorithm.

key_identifier_length

Direction Type

Input Integer

The length of the key_identifier in bytes. The maximum value is 9992.

key_identifier

Direction Type

Input String

The key for which to generate or verify the verification pattern. This is an
internal or external token or the 64-byte label of a key in the CKDS. This token
may be a DES internal or external token, AES internal version ‘04’X token,
internal or external variable-length symmetric token, or a TR-31 key block.

Clear DES tokens are not supported.

If an internal token was supplied and was encrypted under the old master key,
the token will be returned encrypted under the current master key.

key_encrypting_key_identifier_length

Direction Type

Input Integer

The length of the key_encrypting_key_identifier parameter. When key_identifier is
an internal token, the value must be zero.

If key_encrypting_key_identifier is a label for either the CKDS (IKEK-AES or
IKEK-DES rules) or PKDS (IKEK-PKA rule), the value must be 64. If
key_encrypting_key_identifier is an AES KEK, the value must be between the
actual length of the token and 725. If key_encrypting_key_identifier is a DES
KEK, the value must be 64. If key_encrypting_key_identifier is an RSA KEK, the
maximum length is 3500.

key_encrypting_key_identifier

Direction Type

Input/Output String

Key Test2

Chapter 5. Managing Symmetric Cryptographic Keys 173

|

||

||
|

When key_encrypting_key_identifier_length is non-zero,
key_encrypting_key_identifier contains an internal key token containing the
key-encrypting key, or a key label.

If the key identifier supplied was an AES or DES token encrypted under the
old master key, the token will be returned encrypted under the current master
key.

reserved_length

Direction Type

Input Integer

The length of the reserved parameter. The value must be zero.

reserved

Direction Type

Input/Output String

This parameter is ignored.

verification_pattern_length

Direction Type

Input Integer

The length of the verification_pattern parameter.

On input: For GENERATE, the length must be at least 8 bytes; For VERIFY, the
length must be 8 bytes.

On output for GENERATE, the length of the verification pattern returned.

verification_pattern

Direction Type

Input/Output String

For GENERATE, the verification pattern generated for the key.

For VERIFY, the supplied verification pattern to be verified.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS.

You can generate the verification pattern for a key when you generate the key. You
can distribute the pattern with the key and it can be verified at the receiving node.
In this way, users can ensure using the same key at the sending and receiving
locations. You can generate and verify keys of any combination of key forms: clear,
operational or external.

Access Control Point
The access control point in the domain role that controls the function of this
service is Key Test and Key Test 2. This access control point cannot be disabled. It
is required for ICSF master key validation.

Key Test2

174 z/OS ICSF Application Programmer's Guide

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 58. Key Test2 required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

IBM System z10 EC

IBM System z10 BC

This service is not supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor DES/AES key support requires the Sep.

2011 or later licensed internal code (LIC).

HMAC key support requires the Nov. 2010
or later licensed internal code (LIC).

The AESKWCV keyword is not supported.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

The AESKWCV keyword requires the Sep.
2013 or later licensed internal code (LIC).

Key Test Extended (CSNBKYTX and CSNEKTX)
Use the key test extended service to generate or verify a secure, cryptographic
verification pattern for keys. The key to test can be in the clear or encrypted under
the master key. The callable service also supports keys encrypted under a
key-encrypting key (KEK). AES keys are not supported by this service. Keywords
in the rule array specify whether the callable service generates or verifies a
verification pattern.

This algorithm is supported for encrypted single and double length keys. Single,
double and triple length keys are also supported with the ENC-ZERO algorithm.

When the service generates a verification pattern, it creates and cryptographically
processes a random number. The service returns the random number with the
verification pattern.

When the service tests a verification pattern against a key, you must supply the
random number and the verification pattern from a previous call to key test
extended. The service returns the verification result in the return and reason codes.

The callable service name for AMODE(64) invocation is CSNEKTX.

Key Test2

Chapter 5. Managing Symmetric Cryptographic Keys 175

|

|
|

Format
CALL CSNBKYTX(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier,
random_number,
verification_pattern,
KEK_key_identifier)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value
can be 2, 3 or 4.

Key Test Extended

176 z/OS ICSF Application Programmer's Guide

rule_array

Direction Type

Input String

Two or three keywords that provide control information to the callable service.
Table 59 lists the keywords. The keywords must be in 16 or 24 bytes of
contiguous storage with each of the keywords left-justified in its own 8-byte
location and padded on the right with blanks.

Table 59. Keywords for Key Test Extended Control Information

Keyword Meaning

Key Rule (required)

KEY-ENC Specifies the key supplied in key_identifier is a
single-length encrypted DES key.

KEY-ENCD Specifies the key supplied in key_identifier is a
double-length encrypted DES key.

Process Rule (required)

GENERATE Generate a verification pattern for the key supplied in
key_identifier.

VERIFY Verify a verification pattern for the key supplied in
key_identifier.

Parity Adjustment (optional)

ADJUST Adjust the parity of test key to odd prior to generating or
verifying the verification pattern. The key_identifier field
itself is not adjusted.

NOADJUST Do not adjust the parity of test key to odd prior to
generating or verifying the verification pattern. This is the
default.

Verification Process Rule (optional)

ENC-ZERO Specifies use of the "encrypted zeros" method.

key_identifier

Direction Type

Input/Output String

The key for which to generate or verify the verification pattern. The parameter
is a 64-byte string of an internal token or key label that is left-justified.

Note: If you supply a key label for this parameter, it must be unique on the
CKDS.

random_number

Direction Type

Input/Output String

This is an 8-byte field that contains a random number supplied as input for the
test pattern verification process and returned as output with the test pattern
generation process.

Key Test Extended

Chapter 5. Managing Symmetric Cryptographic Keys 177

verification_pattern

Direction Type

Input/Output String

This is an 8-byte field that contains a verification pattern supplied as input for
the test pattern verification process and returned as output with the test
pattern generation process.

KEK_key_identifier

Direction Type

Input/Output String

If key_identifier is an external token, then this is a 64-byte string of an internal
token or a key label of an IMPORTER or EXPORTER used to encrypt the test
key. If key_identifier is an internal token, then the parameter is ignored.

Note: If you supply a key label for this parameter, it must be unique on the
CKDS.

Restrictions
This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

You can generate the verification pattern for a key when you generate the key. You
can distribute the pattern with the key and it can be verified at the receiving node.
In this way, users can ensure using the same key at the sending and receiving
locations. You can generate and verify keys of any combination of key forms, that
is, clear, operational or external.

The parity of the key is not tested.

When using the ENC-ZERO verification rule, there is support for enciphered single
and double-length DES keys.

Access Control Point
The access control point in the domain role that controls the function of this
service is Key Test and Key Test 2. This access control point cannot be disabled. It
is required for ICSF master key validation.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Key Test Extended

178 z/OS ICSF Application Programmer's Guide

|
|

Table 60. Key test extended required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Clear triple-length keys are not supported.
Encrypted triple-length keys are supported
with the ENC-ZERO keyword only.

AES keys are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Clear triple-length keys are not supported.
Encrypted triple-length keys are supported
with the ENC-ZERO keyword only.

AES keys are not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Clear triple-length keys are not supported.
Encrypted triple-length keys are supported
with the ENC-ZERO keyword only.

AES keys are not supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

Clear triple-length keys are not supported.
Encrypted triple-length keys are supported
with the ENC-ZERO keyword only.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Clear triple-length keys are not supported.
Encrypted triple-length keys are supported
with the ENC-ZERO keyword only.

Key Token Build (CSNBKTB and CSNEKTB)
Use the key token build callable service to build an external or internal key token
from information which you supply. The token can be used as input for the key
generate and key part import callable services. You can specify a control vector or
the service can build a control vector based upon the key type you specify and the
control vector-related keywords in the rule array. ICSF supports the building of an
internal key token with the key encrypted under a master key other than the
current master key and building internal clear AES and DES tokens.

The callable service name for AMODE(64) invocation is CSNEKTB.

Format
CALL CSNBKTB(

return_code,
reason_code,
exit_data_length,
exit_data,
key_token,
key_type,
rule_array_count,
rule_array,
key_value,
master_key_version_number,
key_register_number,
token_data_1,
control_vector,
initialization_vector,

Key Test Extended

Chapter 5. Managing Symmetric Cryptographic Keys 179

pad_character,
cryptographic_period_start,
master_key_verification_pattern)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

key_token

Direction Type

Output String

This field will contain the key token built.

key_type

Direction Type

Input String

An 8-byte field that specifies the type of key you want to build. The key types
are:

Key Token Build

180 z/OS ICSF Application Programmer's Guide

|

|

|
|

Table 61. Key type keywords for key token build

Key type Description Algorithm

CIPHER
CIPHERXI
CIPHERXL
CIPHERXO

See Table 3 on page 21. DES

CLRAES The key_token parameter is a clear AES token.
The rule_array must contain the keyword
INTERNAL and one of the optional keywords:
KEYLN16, KEYLN24 or KEYLN32. A key value
parameter must also be provided.

AES

CLRDES The key_token parameter is a clear DES token.
The rule_array must contain the keyword
INTERNAL and one of the optional keywords:
KEYLN8, KEYLN16 or KEYLN24. A key value
parameter must also be provided.

DES

CVARDEC
CVARENC
CVARPINE
CVARXCVL
CVARXCVR

See Table 3 on page 21. DES

DATA Valid for AES and DES keys and must be
specified with the rule_array keyword AES to
build an encrypted AES key token.

AES and DES

DATAC
DATAM
DATAMV
DECIPHER
DKYGENKY
ENCIPHER

See Table 3 on page 21. DES

EXPORTER If the key_type parameter is TOKEN, then this is
a 64-byte internal token that is updated as
specified in the rule_array.

DES

IKEYXLAT See Table 3 on page 21. DES

IMPORTER If the key_type parameter is TOKEN, then this is
a 64-byte internal token that is updated as
specified in the rule_array.

DES

KEYGENKY CLR8-ENC or UKPT must be coded in
rule_array parameter

DES

IPINENC
MAC
MACVER
OKEYXLAT
OPINENC
PINGEN
PINVER

See Table 3 on page 21. DES

SECMSG SMKEY or SMPIN must be specified in the
rule_array parameter.

DES

Key Token Build

Chapter 5. Managing Symmetric Cryptographic Keys 181

||

|||

|
|
|
|

||

||
|
|
|
|

|

||
|
|
|
|

|

|
|
|
|
|

||

||
|
|

|

|
|
|
|
|
|

||

||
|
|

|

|||

||
|
|

|

||
|
|

|
|
|
|
|
|
|

||

||
|
|

Table 61. Key type keywords for key token build (continued)

Key type Description Algorithm

USE-CV A user-supplied control vector is specified. The
key type should be obtained from the control
vector specified in the control_vector parameter.
The CV rule array keyword should be specified
if USE-CV is specified.

DES

For information on the meaning of the key types, see Table 3 on page 21.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter.

rule_array

Direction Type

Input String

The rule_array contains keywords that provide control information to the
callable service. See Table 62 for a list. The keywords must be in contiguous
storage with each of the keywords left-justified in its own 8-byte location and
padded on the right with blanks. For any key type, there are no more than
four valid rule_array values.

Table 62. Keywords for Key Token Build Control Information

Keyword Meaning Algorithm

Token Algorithm (optional - zero or one keyword)

AES Specifies that an AES key token will be
built. This keyword is required when
building an encrypted AES token. It is
optional when using the CLRAES key type
to build a clear AES token.

AES

DES Specifies a DES token will be built. DES

SYS-ENC Tolerated for compatibility reasons. DES

Token Type (one keyword required)

EXTERNAL Specifies that an external key token will be
built.

DES

INTERNAL Specifies that an internal key token will be
built.

AES or DES

Key Status (optional - zero or one keyword)

KEY This keyword indicates that the key token
to build will contain an encrypted key. The
key_value parameter identifies the field that
contains the key.

AES or DES

NO-KEY This keyword indicates that the key token
to build will not contain a key. This is the
default key status.

AES or DES

Key Length (one keyword required for AES keys)

Key Token Build

182 z/OS ICSF Application Programmer's Guide

|

|||

||
|
|
|
|

|

|

|

Table 62. Keywords for Key Token Build Control Information (continued)

Keyword Meaning Algorithm

KEYLN8 Single-length or 8-byte key. Default for
CLRDES.

DES

KEYLN16 Specifies that the key is 16-bytes long. AES or DES

KEYLN24 Specifies that the key is 24-bytes long. AES or DES

KEYLN32 Specifies that the key is 32-bytes long. AES

DOUBLE Double-length or 16-byte key. Synonymous
with KEYLN16. Not valid for CLRDES.
Note: See Table 64 on page 186 for valid
key types for these key length values.

DES

DOUBLE-O Double-length key with guaranteed unique
key values. The key is 16 bytes long. This
key length can be used with any key type
that supports DOUBLE.

DES

MIXED Double-length key. Indicates that the key
can either be a replicated single-length key
or a double-length key with two different
8–byte values. Not valid for CLRDES.

DES

SINGLE Single-length or 8-byte key. Synonymous
with KEYLN8. Not valid for CLRDES.

DES

Key Part Indicator (optional) — not valid for CLRDES

KEY-PART This token is to be used as input to the key
part import service.

DES

Control vector (CV) source (optional - zero or one of these keywords is permitted)

CV This specifies that the key token should be
built using the control_vector supplied in
the control_vector parameter.

DES

NO-CV This specifies that the key token should be
built using a control vector that is based on
the supplied key type control vector related
rule array keywords. It is the default.

DES

Control vector on the link specification (optional) — valid only for IMPORTER and
EXPORTER.

CV-KEK This keyword indicates marking the KEK as
a CV KEK. The control vector is applied to
the KEK prior to using it in encrypting
other keys. This is the default.

DES

NOCV-KEK This keyword indicates marking the KEK as
a NOCV KEK. The control vector is not
applied to the KEK prior to its use in
encrypting other keys.

DES

Control vector keywords (optional - zero or more of these keywords are permitted)

See Table 64 on page 186 for the key-usage keywords that can be
specified for a given key type.

DES

Master Key Verification Pattern (optional) — not valid for CLRDES or CLRAES keywords

Key Token Build

Chapter 5. Managing Symmetric Cryptographic Keys 183

Table 62. Keywords for Key Token Build Control Information (continued)

Keyword Meaning Algorithm

MKVP This keyword indicates that the key_value is
enciphered under the master key which
corresponds to the master key verification
pattern specified in the
master_key_verification_pattern parameter. If
this keyword is not specified, the key
contained in the key_value field must be
enciphered under the current master key.

AES and DES

Key Wrapping Method (optional)

WRAP-ENH Use enhanced key wrapping method, which
is compliant with the ANSI X9.24 standard.

DES

WRAP-ECB Use original key wrapping method, which
uses ECB wrapping for DES key tokens and
CBC wrapping for AES key tokens. This is
the default.

DES

Translation Control (optional)

ENH-ONLY Restrict rewrapping of the token. Once the
token has been wrapped with the enhanced
method, it cannot be rewrapped using the
original method. Can only be specified with
WRAP-ENH.

DES

key_value

Direction Type

Input String

If you use the KEY keyword, this parameter is a 16-byte string that contains
the encrypted key value. Single-length keys must be left-justified in the field
and padded on the right with X'00'. If you are building a triple-length DATA
key, this parameter is a 24-byte string containing the encrypted key value. If
you supply an encrypted key value and also specify INTERNAL, the service
will check for the presence of the MKVP keyword. If MKVP is present, the
service will assume the key_value is enciphered under the master key which
corresponds to the master key verification pattern specified in the
master_key_verification_pattern parameter, and will place the key into the
internal token along with the verification pattern from the
master_key_verification_pattern parameter. If MKVP is not specified, ICSF
assumes the key is enciphered under the current host master key and places
the key into an internal token along with the verification pattern for the
current master key. In this case, the application must ensure that the master
key has not changed since the key was generated or imported to this system.
Otherwise, use of this parameter is not recommended.

For key_type CLRDES and CLRAES, this field is required to contain the clear
key value. For KEYLN8, this is an 8-byte field. For KEYLN16, this is a 16-byte
field. For KEYLN24, this a 24-byte field. For KEYLN32, this is a 32-byte field.

Table 63. Key types and field lengths for AES keys

Key type Field length

AES-128 clear text key 16-bytes

Key Token Build

184 z/OS ICSF Application Programmer's Guide

Table 63. Key types and field lengths for AES keys (continued)

Key type Field length

AES-192 clear text key 24-bytes

AES-256 clear text key 32-bytes

AES-128, AES-192, AES-256 encrypted key 32-bytes

master_key_version_number

Direction Type

Input Integer

This field is examined only if the KEY keyword is specified, in which case, this
field must be zero.

key_register_number

Direction Type

Input Integer

This field is ignored.

token_data_1

Direction Type

Input String

This parameter is ignored for DES keys.

This parameter is the LRC value for AES keys. For clear AES keys it is 8-bytes
of X'00' indicating to the service that it must compute the LRC field value. For
encrypted AES keys, you provide a 1-byte area containing the LRC value for
the key passed in the key_value parameter. The service copies it into the LRC
field of the key token.

control_vector

Direction Type

Input String

A pointer to a 16 byte string variable. When the CV rule array keyword is
used, this parameter must point to a control vector which is copied into the
key token. This parameter is ignored for AES keys.

initialization_vector

Direction Type

Input String

This field is ignored.

pad_character

Direction Type

Input Integer

Key Token Build

Chapter 5. Managing Symmetric Cryptographic Keys 185

The only allowed value for key types MAC and MACVER is 0. This field is
ignored for all other key types.

cryptographic_period_start

Direction Type

Input String

This field is ignored.

master_key_verification_pattern

Direction Type

Input String

8-byte verification pattern of the master key used to encrypt the key value. It is
used when the KEY and INTERNAL rule_array keywords are specified. The
value is inserted into the master key verification pattern field of the key token.
If the KEY and INTERNAL keywords are specified in rule_array, the service
will check for the existence of the MKVP rule array keyword. This parameter is
ignored for any other rule_array keyword combinations.

Restrictions
This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
No pre- or post-processing or security exits are enabled for this service. No RACF
checking is done, and no calls to RACF are issued when this service is used.

You can use this service to create skeleton key tokens with the desired data
encryption algorithm bits for use in some key management services to override the
default system specifications.
v To create an internal token with a specified KEY value, supply a valid master

key verification pattern (MKVP).

NOCV keyword is only supported for the standard IMPORTERs and EXPORTERs
with the default CVs.

This illustrates the key type and key usage keywords that can be combined in the
Control Vector Generate and Key Token Build callable services to create a control
vector.

Table 64. Control Vector Generate and Key Token Build Control Vector Keyword Combinations

Key
Type

Key Usage

DATA SINGLE
KEYLN8
MIXED
DOUBLE
DOUBLE-O
KEYLN16
KEYLN24

XPORT-OK
NO-XPORT

KEY-PART

Key Token Build

186 z/OS ICSF Application Programmer's Guide

|
|

Table 64. Control Vector Generate and Key Token Build Control Vector Keyword Combinations (continued)

Key
Type

Key Usage

CIPHER
ENCIPHER
DECIPHER

SINGLE
KEYLN8
MIXED
DOUBLE
DOUBLE-O
KEYLN16

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

CIPHERXI
CIPHERXL
CIPHERXO

DOUBLE
DOUBLE-O
KEYLN16

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

MAC
MACVER

ANY-MAC
ANSIX9.9
CVVKEY-A
CVVKEY-B
AMEX-CSC

SINGLE
KEYLN8
MIXED
DOUBLE
DOUBLE-O
KEYLN16

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

CVARPINE
CVARENC
CVARDEC
CVARXCVL
CVARXCVR

SINGLE
KEYLN8

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

DATAC
DATAM
DATAMV

DOUBLE
DOUBLE-O
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

KEYGENKY CLR8-ENC
UKPT

DOUBLE
DOUBLE-O
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

DKYGENKY DDATA
DMAC
DMV
DIMP
DEXP
DPVR
DMKEY
DMPIN
DALL

DKYL0
DKYL1
DKYL2
DKYL3
DKYL4
DKYL5
DKYL6
DKYL7

DOUBLE
DOUBLE-O
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

SECMSG SMKEY
SMPIN

DOUBLE
DOUBLE-O
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

IKEYXLAT
OKEYXLAT

ANY
NOT-KEK
DATA
PIN
LMTD-KEK

DOUBLE
DOUBLE-O
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

IMPORTER OPIM*
IMEX*
IMIM*
IMPORT*

XLATE ANY
NOT-KEK
DATA
PIN
LMTD-KEK

DOUBLE
DOUBLE-O
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

Key Token Build

Chapter 5. Managing Symmetric Cryptographic Keys 187

|
|
|
|
|

Table 64. Control Vector Generate and Key Token Build Control Vector Keyword Combinations (continued)

Key
Type

Key Usage

EXPORTER OPEX*
IMEX*
EXEX*
EXPORT*

XLATE ANY
NOT-KEK
DATA
PIN
LMTD-KEK

DOUBLE
DOUBLE-O
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

PINVER NO-SPEC**
IBM-PIN**
GBP-PIN**
IBM-PINO
GBP-PINO
VISA-PVV
INBK-PIN

NOOFFSET DOUBLE
DOUBLE-O
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

PINGEN CPINGEN*
CPINGENA*
EPINGENA*
EPINGEN*
EPINVER*

NO-SPEC**
IBM-PIN**
GBP-PIN**
IBM-PINO
GBP-PINO
VISA-PVV
INBK-PIN

NOOFFSET DOUBLE
DOUBLE-O
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

IPINENC CPINGENA*
EPINVER*
REFORMAT*
TRANSLAT*

DOUBLE
DOUBLE-O
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

OPINENC CPINENC*
EPINGEN*
REFORMAT*
TRANSLAT*

DOUBLE
DOUBLE-O
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

Notes: Default keys are indicated in bold.

* All keywords in the list are defaults unless one or more keywords in the list are specified

** The NOOFFSET keyword is only valid if NO-SPEC, IBM-PIN, GBP-PIN, or the default
(NO-SPEC) is specified.

A key usage keyword is required for the KEYGENKY and SECMSG key types.

v CLR8-ENC and/or UKPT must be specified for the KEYGENKY key type

v SMKEY or SMPIN must be specified for the SECMSG key type

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 65. Key token build required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None.

Key Token Build

188 z/OS ICSF Application Programmer's Guide

Table 65. Key token build required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC
IBM System z10 BC

None.

z196

IBM zEnterprise 114

None.

IBM zEnterprise EC12

IBM zEnterprise BC12

None.

Key Token Build2 (CSNBKTB2 and CSNEKTB2)
Use the Key Token Build2 callable service to build a variable-length CCA
symmetric key token in application storage from information that you supply. A
clear key token built by this service can be used as input for the Key Test2 callable
service. A skeleton token built by this service can be used as input for the Key
Generate2 and Key Part Import2 callable services.

This service will build internal or external HMAC and AES tokens, both as clear
key tokens and as skeleton tokens containing no key.

The callable service name for AMODE(64) is CSNEKTB2.

Format
CALL CSNBKTB2(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
clear_key_bit_length,
clear_key_value,
key_name_length,
key_name,
user_associated_data_length,
user_associated_data,
token_data_length,
token_data,
reserved_length,
reserved,
target_key_token_length,
target_key_token)

Parameters
return_code

Direction Type

Output Integer

Key Token Build

Chapter 5. Managing Symmetric Cryptographic Keys 189

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The
minimum value is 3, and the maximum value is 34.

rule_array

Direction Type

Input String

The rule_array contains keywords that provide control information to the
callable service. The keywords must be in contiguous storage with each of the
keywords left-justified in its own 8-byte location and padded on the right with
blanks.

Table 66. Keywords for Key Token Build2 Control Information

Keyword Meaning

Token type (one required)

EXTERNAL Specifies to build an external key token.

INTERNAL Specifies to build an internal key token.

Token algorithm (one required)

AES Specifies to build an AES key token.

HMAC Specifies to build an HMAC key token.

Key Token Build2

190 z/OS ICSF Application Programmer's Guide

|

Table 66. Keywords for Key Token Build2 Control Information (continued)

Keyword Meaning

Key status (one, optional)

KEY-CLR Specifies to build the key token with a clear key value. This creates a key
token that can be used with the Key Test2 service to generate a verification
pattern for the key value.

NO-KEY Specifies to build the key token without a key value. This creates a skeleton
key token that can later be supplied to the Key Generate2 service. This is the
default.

Payload version (one, optional)
Only valid with CIPHER, IMPORTER and EXPORTER key types.

V0PYLD Build a token with the variable-length payload format. This is the default.

V1PYLD Build a token with the fixed-length payload format.

Key type (one required)

CIPHER Specifies that this key is for an AES CIPHER key. Only valid for AES
algorithm.

EXPORTER Specifies that this key is for an AES KEK EXPORTER. Only valid for AES
algorithm.

IMPORTER Specifies that this key is for an AES KEK IMPORTER. Only valid for AES
algorithm.

MAC Specifies that this key is for message authentication code operations. Only
valid for HMAC algorithm.

Key-management related keywords

Symmetric-key export control (one, optional)
Key-management field 1 for all algorithms and key types.

NOEX-SYM Prohibits the export of the key with a symmetric key.

XPRT-SYM Permits the export of the key with a symmetric key. This is the default.

Unauthenticated asymmetric-key export control (one, optional)
Key-management field 1 for all algorithms and key types.

NOEXUASY Prohibits the export of the key with an unauthenticated asymmetric key.

XPRTUASY Permits the export of the key with an unauthenticated asymmetric key. This
is the default.

Authenticated asymmetric-key export control (one, optional)
Key-management field 1 for all algorithms and key types.

NOEXAASY Prohibits the export of the key with an authenticated asymmetric key.

XPRTAASY Permits the export of the key with an authenticated asymmetric key. This is
the default.

RAW-format export control (one, optional)
Key-management field 1 for all algorithms and key types.

NOEX-RAW Prohibits the export of the key in RAW format. This is the default.

XPRT-RAW Permits the export of the key in RAW format.

DES-key export control (one, optional)
Key-management field 1 for all algorithms, all key types.

Key Token Build2

Chapter 5. Managing Symmetric Cryptographic Keys 191

|
|

||

||

Table 66. Keywords for Key Token Build2 Control Information (continued)

Keyword Meaning

NOEX-DES Prohibits the export of the key using DES key.

XPRT-DES Permits the export of the key using DES key. This is the default.

AES-key export control (one, optional)
Key-management field 1 for all algorithms, all key types.

NOEX-AES Prohibits the export of the key using AES key.

XPRT-AES Permits the export of the key using AES key. This is the default.

RSA-key export control (one, optional)
Key-management field 1 for all algorithms, all key types.

NOEX-RSA Prohibits the export of the key using RSA key.

XPRT-RSA Permits the export of the key using RSA key. This is the default.

Key-usage keywords (these are specific to the key type specified)

Generate control (one required)
Key-usage field 1 for HMAC algorithm, MAC key type.

GENERATE Specifies that this key can be used to generate a MAC. A key that can
generate a MAC can also verify a MAC.

VERIFY Specifies that this key cannot be used to generate a MAC. It can only be used
to verify a MAC.

Encrypt control (optional, any combination)
Key-usage field 1 for AES algorithm, CIPHER key type.
Note: All keywords in the list below are defaults unless one or more keywords in the list are specified.

ENCRYPT Specifies that this key can be used to encipher data using the AES algorithm.

DECRYPT Specifies that this key can be used to decipher data using the AES algorithm.

Ciphertext Translate Control (optional)
Key-usage field 1 for AES algorithm, CIPHER key type.

C-XLATE Specifies that this key can only be used for cipher text translation.

Exporter control (any combination, optional)
Key-usage field 1 for AES algorithm, EXPORTER key type.
Note: All keywords in the list below are defaults unless one or more keywords in the list are specified.

EXPORT Specifies that this key can be used for export.

TRANSLAT Specifies that this key can be used for translate.

GEN-OPEX Specifies that this key can be used for generate OPEX.

GEN-IMEX Specifies that this key can be used for generate IMEX.

GEN-EXEX Specifies that this key can be used for generate EXEX.

GEN-PUB Specifies that this key can be used for generate PUB.

Importer control (any combination, optional)
Key-usage field 1 for AES algorithm, IMPORTER key type.
Note: All keywords in the list below are defaults unless one or more keywords in the list are specified.

IMPORT Specifies that this key can be used for import.

Key Token Build2

192 z/OS ICSF Application Programmer's Guide

Table 66. Keywords for Key Token Build2 Control Information (continued)

Keyword Meaning

TRANSLAT Specifies that this key can be used for translate.

GEN-OPIM Specifies that this key can be used for generate OPIM.

GEN-IMEX Specifies that this key can be used for generate IMEX.

GEN-IMIM Specifies that this key can be used for generate IMIM.

GEN-PUB Specifies that this key can be used for generate PUB.

User-defined extension control (any combination, optional)
Low-order byte of key-usage field 1 for all algorithms and key types.
Note: The default is such that the key can be used in both UDXs and CCA and none of the user-defined UDX bits
are set.

UDX-ONLY Specifies that this key can only be used in UDXs.

UDX-001 Specifies that the rightmost user-defined UDX bit is set.

UDX-010 Specifies that the middle user-defined UDX bit is set.

UDX-100 Specifies that the leftmost user-defined UDX bit is set.

Hash method control (any combination, optional)
Key-usage field 2 for HMAC algorithm, MAC key type.
Note: All keywords in the list below are defaults unless one or more keywords in the list are specified.

SHA-1 Specifies that the SHA-1 hash method is allowed for the key.

SHA-224 Specifies that the SHA-224 hash method is allowed for the key.

SHA-256 Specifies that the SHA-256 hash method is allowed for the key.

SHA-384 Specifies that the SHA-384 hash method is allowed for the key.

SHA-512 Specifies that the SHA-512 hash method is allowed for the key.

Mode control (one, optional)
Key-usage field 2 for AES algorithm, CIPHER key type.

CBC Specifies that this key can be used for cipher block chaining. This is the
default.

CFB Specifies that this key can be used for cipher feedback.

ECB Specifies that this key can be used for electronic code book.

GCM Specifies that this key can be used for Galois/counter mode.

OFB Specifies that this key can be used for output feedback.

XTS Specifies that this key can be used for Xor-Encrypt-Xor-based Tweaked
Stealing.

Key-encrypting key control (any combination, optional)
Key-usage field 2 for AES algorithm, EXPORTER or IMPORTER key type.
Note: The default is such that the key cannot export a RAW key nor wrap or unwrap a TR-31 key block.

KEK-RAW Specifies that this key-encrypting key can export a RAW key. A RAW key is a
key that is encrypted but does not have any associated data.

WR-TR31 Specifies that this key-encrypting key can wrap or unwrap a TR-31 key block.

Key-usage wrap algorithm control (any combination, optional)
Key-usage field 3 for AES algorithm, EXPORTER or IMPORTER key type.
Note: All keywords in the list below are defaults unless one or more keywords in the list are specified.

Key Token Build2

Chapter 5. Managing Symmetric Cryptographic Keys 193

|

Table 66. Keywords for Key Token Build2 Control Information (continued)

Keyword Meaning

WR-DES Specifies that this key can be used to wrap DES keys.

WR-AES Specifies that this key can be used to wrap AES keys.

WR-HMAC Specifies that this key can be used to wrap HMAC keys.

WR-RSA Specifies that this key can be used to wrap RSA keys.

WR-ECC Specifies that this key can be used to wrap ECC keys.

Key-usage wrap class control (any combination, optional)
Key-usage field 4 for AES algorithm, EXPORTER or IMPORTER key type.
Note: Keywords WR-DATA, WR-KEK, WR-PIN, WRDERIVE and WR-CARD in the list below are defaults unless
one or more keywords in the list are specified.

WR-DATA Specifies that this key can be used to wrap DATA class keys.

WR-KEK Specifies that this key can be used to wrap KEK class keys.

WR-PIN Specifies that this key can be used to wrap PIN class keys.

WRDERIVE Specifies that this key can be used to wrap DERIVATION class keys.

WR-CARD Specifies that this key can be used to wrap CARD class keys.

WR-CVAR Specifies that this key can be used to wrap CVAR class keys.

clear_key_bit_length

Direction Type

Input Integer

The length of the clear key in bits. Specify 0 when no key value is supplied
(Key status rule NO-KEY). Specify a valid key bit length when a key value is
supplied (Key status rule KEY-CLR):
v For HMAC algorithm, MAC key type, this is a value between 80 and 2048.
v For AES algorithm, CIPHER/EXPORTER/IMPORTER key types, this is a

value of 128, 192, or 256.

clear_key_value

Direction Type

Input String

This parameter is used when the KEY-CLR keyword is specified. This
parameter is the clear key value to be put into the token being built.

key_name_length

Direction Type

Input Integer

The length of the key_name parameter. Valid values are 0 and 64.

key_name

Direction Type

Input String

Key Token Build2

194 z/OS ICSF Application Programmer's Guide

|
|

||

A 64-byte key store label to be stored in the associated data structure of the
token.

user_associated_data_length

Direction Type

Input Integer

The length of the user-associated data. The valid values are 0 to 255 bytes.

user_associated_data

Direction Type

Input String

User-associated data to be stored in the associated data structure.

token_data_length

Direction Type

Input Integer

This parameter is reserved. The value must be zero.

token_data

Direction Type

Ignored Integer

This parameter is ignored.

reserved_length

Direction Type

Input Integer

This parameter is reserved. The value must be zero.

reserved

Direction Type

Ignored Integer

This parameter is ignored because reserved_length must be zero.

target_key_token_length

Direction Type

Input/Output Integer

On input, the length of the target_key_token parameter supplied to receive the
token. On output, the actual length of the token returned to the caller.
Maximum length is 725 bytes.

target_key_token

Key Token Build2

Chapter 5. Managing Symmetric Cryptographic Keys 195

Direction Type

Output String

The key token built by this service.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 67. Key Token Build2 required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None

IBM System z9 EC

IBM System z9 BC

None

IBM System z10 EC

IBM System z10 BC

None

IBM zEnterprise 196

IBM zEnterprise 114

None

IBM zEnterprise EC12

IBM zEnterprise BC12

None

Key Translate (CSNBKTR and CSNEKTR)
The Key Translate callable service uses one key-encrypting key to decipher an
input key and then enciphers this key using another key-encrypting key within the
secure environment.

Note: All key labels must be unique.

The callable service name for AMODE(64) invocation is CSNEKTR.

Format
CALL CSNBKTR(

return_code,
reason_code,
exit_data_length,
exit_data,
input_key_token,
input_KEK_key_identifier,
output_KEK_key_identifier,
output_key_token)

Key Token Build2

196 z/OS ICSF Application Programmer's Guide

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

input_key_token

Direction Type

Input Integer

A 64-byte string variable containing an external key token. The external key
token contains the key to be re-enciphered (translated).

input_KEK_key_identifier

Direction Type

Input/Output String

A 64-byte string variable containing the internal key token or the key label of
an internal key token record in the CKDS. The internal key token contains the
key-encrypting key used to decipher the key. The internal key token must
contain a control vector that specifies an importer or IKEYXLAT key type. The
control vector for an importer key must have the XLATE bit set to 1.

output_KEK_key_identifier

Key Translate

Chapter 5. Managing Symmetric Cryptographic Keys 197

Direction Type

Input/Output String

A 64-byte string variable containing the internal key token or the key label of
an internal key token record in the CKDS. The internal key token contains the
key-encrypting key used to encipher the key. The internal key token must
contain a control vector that specifies an exporter or OKEYXLAT key type. The
control vector for an exporter key must have the XLATE bit set to 1.

output_key_token

Direction Type

Output String

A 64-byte string variable containing an external key token. The external key
token contains the re-enciphered key.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output_key_token will be wrapped in the
same manner as the input_key_token.

Restrictions
Triple length DATA key tokens are not supported.

This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Access Control Points
The Key Translate access control point controls the function of this service.

If the output key-encrypting key identifier is a weaker key than the key being
translated, then:
v the service will fail if the Prohibit weak wrapping - Transport keys access

control point is enabled.
v the service will complete successfully with a warning return code if the Warn

when weak wrap - Transport keys access control point is enabled.

When the Disallow 24-byte DATA wrapped with 16-byte Key access control point
is enabled, this service will fail if the source key is a triple-length DATA key and
the output key-encrypting key identifier key is a 16-byte key.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Key Translate

198 z/OS ICSF Application Programmer's Guide

Table 68. Key translate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Key Translate2 (CSNBKTR2 and CSNEKTR2)
The Key Translate2 callable service translates the input_key_token parameter in one
of several ways:
v Changes an external DES or variable-length symmetric key token from

encipherment under one key-encrypting key to another
v Changes the wrapping method of an external DES key token
v Converts an operational AES DATA token (version X’04’) to an operational AES

CIPHER token (version X’05’) or converts an operational AES CIPHER token
(version X’05’) to an operational AES DATA token (version X’04’)

To reencipher a key token, specify the TRANSLAT rule array keyword (the
default), the external key token, and the input and output key-encrypting keys. If
the input_key_token is a DES key token, you can also specify which key wrapping
method to use. If no wrapping method is specified, the system default wrapping
method will be used.

To change the wrapping method of an external DES key token, specify the
REFORMAT rule array keyword, the Key Wrapping Method to use, the external
key token and the input key-encrypting key. If no wrapping method is specified,
the system default wrapping method will be used. Note that the
output_KEK_identifier will be ignored.

To convert an operational AES DATA token (version X’04’) to an operational AES
CIPHER token (version X’05’) or vice versa, specify the REFORMAT rule array
keyword, the operational key token as input_key_token, and either a NULL token or
skeleton token as output_key_token. Note that both the input_KEK_identifier and the
output_KEK_identifier will be ignored as the corresponding lengths must be zero.

Key Translate

Chapter 5. Managing Symmetric Cryptographic Keys 199

To convert the payload of a variable-length AES key token (version X’05’) from
variable-length to fixed-length, specify the V1PYLD rule array keyword. A
fixed-length payload token will obfuscate the encrypted key length. The V0PYLD
rule array keyword can be specified to convert a payload from fixed-length to
variable-length. Note that the Key Translate2 – Translate fixed to variable payload
access control point must be enabled to convert from fixed-length to
variable-length format.

Note: All key labels must be unique.

Format
CALL CSNBKTR2(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
input_key_length,
input_key_token,
input_KEK_length,
input_KEK_identifier,
output_KEK_length,
output_KEK_identifier,
output_key_length,
output_key_token)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFFFF' (2 gigabytes). The data is defined in the
exit_data parameter.

exit_data

Key Translate2

200 z/OS ICSF Application Programmer's Guide

|
|
|
|
|
|
|

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The count
must be between 0 and 4, inclusive.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. The
keywords must be 8 bytes of contiguous storage with the keyword left-justified
in its 8-byte location and padded on the right with blanks.

Keyword Meaning

Encipherment (optional)

REFORMAT Reformat the input_key_token.

v When input_key_token is a DES key token, reformat with
the Key Wrapping Method specified.

v When input_key_token is an operational AES key token,
either reformat an AES DATA key (version X‘04’) to an
AES CIPHER key (version X‘05’) or the reverse (version
X’05’ to version X’04’).

TRANSLAT Translate the input_key_token from encipherment under the
input_KEK_identifier to encipherment under the
output_KEK_identifier. This is the default.

V1PYLD Reencipher an input variable-length AES key token (version
X‘05’) to the fixed-length payload format.

V0PYLD Reencipher an input variable-length AES key token (version
X‘05’) to the variable-length payload format.

Key Wrapping Method (optional, valid only if input_key_token is an external DES key
token)

USECONFG Specifies that the system default configuration should be
used to determine the wrapping method. This is the default.

The system default key wrapping method can be specified
using the DEFAULTWRAP parameter in the installation
options data set. See the z/OS Cryptographic Services ICSF
System Programmer's Guide.

WRAP-ENH Use enhanced key wrapping method, which is compliant
with the ANSI X9.24 standard.

WRAP-ECB Use original key wrapping method, which uses ECB
wrapping for DES key tokens.

Translation Control (optional, valid only with WRAP-ENH)

Key Translate2

Chapter 5. Managing Symmetric Cryptographic Keys 201

||
|

||
|

Keyword Meaning

ENH-ONLY Restrict rewrapping of the output_key_token. Once the token
has been wrapped with the enhanced method, it cannot be
rewrapped using the original method.

Algorithm (One required, if the V0PYLD or V1PYLD keyword is specified)

AES Specifies that the input key is an AES key. Where used, the
key-encrypting keys will be AES transport keys.

DES Specifies that the input key is a DES key. Where used, the
key-encrypting keys will be DES transport keys. This is the
default.

HMAC Specifies that the input key is an HMAC key. Where used,
the key-encrypting keys will be AES transport keys.

input_key_length

Direction Type

Input Integer

The length of the input_key_token in bytes. The maximum value allowed is 900.

input_key_token

Direction Type

Input/Output String

A variable length string variable containing the key token to be translated or
reformatted.

If the REFORMAT keyword is specified and the input_key_token is an AES
CIPHER key (version X‘05’), the key must have the following characteristics:
v Key-usage field 1 allows the key to be used for encryption and decryption

and has no UDX bits set (UDX bits are not supported in version ‘04’X AES
tokens)

v Key-usage field 2 allows the key to be used for Cipher Block Chaining
(CBC) mode or Electronic Code Book (ECB) mode

v Key-management field 1 allows export using symmetric, unauthenticated
asymmetric, and authenticated asymmetric transport keys, and allows export
using DES, AES, and RSA transport keys

v Key-management field 2 indicates that the key is complete

If the REFORMAT and AES keywords are specified and input_key_token was
encrypted under the old master key, the token will be returned encrypted
under the current master key.

input_KEK_length

Direction Type

Input Integer

The length of the input_KEK_identifier in bytes. When the input_KEK_identifier is
a token, the value must be between the actual length of the token and 725.
When the input_KEK_identifier is a label, the value must be 64.

Key Translate2

202 z/OS ICSF Application Programmer's Guide

|

If the REFORMAT keyword is specified, and input_key_token is an AES key
token, this parameter must be zero.

input_KEK_identifier

Direction Type

Input/Output String

A variable length string variable containing the internal key token or the key
label of an internal key token record in the CKDS. The internal key token
contains the key-encrypting key used to decipher the key.

If input_KEK_length is zero, this parameter is ignored.

If the TRANSLAT keyword is specified and the input_key_token is an external
DES key, the input_KEK_identifier must be an internal DES token that contains a
control vector that specifies an IMPORTER or IKEYXLAT key type. The control
vector for an IMPORTER key must have the XLATE bit set to 1.

If the TRANSLAT, V0PYLD or V1PYLD keyword is specified and the
input_key_token is an external variable-length key token, the
input_KEK_identifier must be an internal variable-length key token containing
an IMPORTER key-encrypting key. The IMPORTER key must have the
TRANSLAT bit on in key-usage field 1 of the token.

If the REFORMAT keyword is specified and input_key_token is an external DES
key token, this parameter may be an IMPORTER, IKEYXLAT, EXPORTER, or
OKEYXLAT key type.

If an internal token was supplied and was encrypted under the old master key,
the token will be returned encrypted under the current master key.

output_KEK_length

Direction Type

Input Integer

The length of the output_KEK_identifier in bytes. When the output_KEK_identifier
is a token, the value must be between the actual length of the token and 725.
When the output_KEK_identifier is a label, the value must be 64.

If the REFORMAT, V0PYLD or V1PYLD keyword is specified, this value must
be zero.

output_KEK_identifier

Direction Type

Input/Output String

A variable length string variable containing the internal key token or the key
label of an internal key token record in the CKDS. The internal key token
contains the key-encrypting key used to encipher the key.

If output_KEK_length is zero, this parameter is ignored.

If the output_key_token is an external DES key, the output_KEK_identifier must be
an internal DES token that contains a control vector that specifies an
EXPORTER or OKEYXLAT key type. The control vector for an EXPORTER key
must have the XLATE bit set to 1.

Key Translate2

Chapter 5. Managing Symmetric Cryptographic Keys 203

|
|
|
|
|

|
|

If the input_key_token is an external variable-length key token, the
output_KEK_identifier must be an internal variable-length key token containing
an EXPORTER key-encrypting key. The EXPORTER key must have the
TRANSLAT bit on in key-usage field 1 of the token.

If an internal token was supplied and was encrypted under the old master key,
the token will be returned encrypted under the current master key.

output_key_length

Direction Type

Input/Output Integer

On input, the length of the output area provided for the output_key_token. This
must be between 64 and 900 bytes and provide sufficient space for the output
key. On output, the parameter is updated with the length of the token copied
to the output_key_token.

output_key_token

Direction Type

Input/Output String

If the REFORMAT keyword is specified and the input_key_token is an AES
DATA key (version X‘04’), output_key_token must contain an AES CIPHER key
(version X‘05’) on input. This token must have the following characteristics:
v Algorithm is AES
v Key type CIPHER
v Key-usage field 2 either allows the key to be used for Cipher Block Chaining

(CBC) mode or allows the key to be used for Electronic Code Book (ECB)
mode

Otherwise, this field is ignored on input.

On output, a variable length string variable containing the key token that was
translated or reformatted.

If the REFORMAT keyword is specified and the input_key_token is an AES
DATA key (version X‘04’), on output, output_key_token will be updated with the
following characteristics:
v Key-usage field 1 allows the key to be used for encryption and decryption
v Key-management field 1 allows export using symmetric, unauthenticated

asymmetric, and authenticated asymmetric transport keys, and allows export
using DES, AES, and RSA transport keys

v Key-management field 2 indicates that the key is complete

Restrictions
This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS.

Key Translate2

204 z/OS ICSF Application Programmer's Guide

Access Control Points
This table lists the access control points in the domain role that control the function
for this service.

Table 69. Key Translate2 Access Control Points

Access Control point Function control

Key Translate2 Allows the Key Translate2 service to be
functional.

Key Translate2 – Allow use of
REFORMAT

Allows a key token to be rewrapped using one
key-encrypting key.

Key Translate2 – Allow wrapping method
override keywords

Allows the wrapping method keywords
WRAP-ECB or WRAP-ENH to be used when
the default key-wrapping method setting does
not match the keyword.

Key Translate2 – Translate fixed to
variable payload

Allows a fixed-length payload token to be
translated to a variable-length payload token

When the Key Translate2 - Disallow AES ver 5 to ver 4 conversion access control
point is enabled, a version 5 AES key token (variable-length token) can not be
converted to a version 4 token.

If the output key-encrypting key identifier is a weaker key than the key being
translated, then:
v the service will fail if the Prohibit weak wrapping - Transport keys access

control point is enabled.
v the service will complete successfully with a warning return code if the Warn

when weak wrap - Transport keys access control point is enabled.

When the Disallow 24-byte DATA wrapped with 16-byte Key access control point
is enabled, this service will fail if the input key is a triple-length DATA key and the
output key-encrypting key identifier key is a 16-byte key.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 70. Key Translate2 required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None. This service is not supported.

IBM System z9 EC

IBM System z9 BC

None. This service is not supported.

IBM System z10 EC

IBM System z10 BC

This service is not supported.

Key Translate2

Chapter 5. Managing Symmetric Cryptographic Keys 205

|
|
|
|

|

|

||

Table 70. Key Translate2 required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor Enhanced key token wrapping and HMAC

key support requires the Nov. 2010 or later
licensed internal code (LIC).

AES key support requires the Sep. 2011 or
later licensed internal code (LIC).

V0PYLD and V1PYLD keywords are not
supported.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

V0PYLD and V1PYLD keywords require the
Sep. 2013 or later licensed internal code.

Multiple Clear Key Import (CSNBCKM and CSNECKM)
The multiple clear key import callable service imports a clear AES or DES key,
enciphers the key under the corresponding master key, and returns the enciphered
key in an internal key token. The enciphered key's type is DATA. The enciphered
key is in operational form.

The callable service name for AMODE(64) invocation is CSNECKM.

Format
CALL CSNBCKM(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
clear_key_length,
clear_key,
key_identifier_length,
key_identifier)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

Key Translate2

206 z/OS ICSF Application Programmer's Guide

|
|

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF
and TSS Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The
rule_array_count parameter must be 0, 1, 2, or 3. If the rule_array_count is 0, the
default keywords are used.

rule_array

Direction Type

Input String

Keywords that supply control information to the callable service. The
keywords must be 8 bytes of contiguous storage with the keyword left-justified
in its 8-byte location and padded on the right with blanks.Refer to Table 71 for
a list of keywords.

Table 71. Keywords for Multiple Clear Key Import Rule Array Control Information

Keyword Meaning

Algorithm (optional)

AES The output key identifier is to be an AES token.

DES The output key identifier is to be a DES token. This is the
default.

Key Wrapping Method (optional)

USECONFG Specifies that the system default configuration should be used to
determine the wrapping method. This is the default keyword.

The system default key wrapping method can be specified using
the DEFAULTWRAP parameter in the installation options data
set. See the z/OS Cryptographic Services ICSF System Programmer's
Guide.

Multiple Clear Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 207

Table 71. Keywords for Multiple Clear Key Import Rule Array Control
Information (continued)

Keyword Meaning

WRAP-ENH Use enhanced key wrapping method, which is compliant with
the ANSI X9.24 standard.

WRAP-ECB Use original key wrapping method, which uses ECB wrapping
for DES key tokens and CBC wrapping for AES key tokens.

Translation Control (optional)

ENH-ONLY Restrict rewrapping of the key_identifier token. Once the token
has been wrapped with the enhanced method, it cannot be
rewrapped using the original method.

clear_key_length

Direction Type

Input Integer

The clear_key_length specifies the length of the clear key value to import in
bytes. For DES keys, this length must be 8-, 16-, or 24-bytes. For AES keys, this
length must be 16-, 24-, or 32-bytes.

clear_key

Direction Type

Input String

The clear_key specifies the clear key value to import.

key_identifier_length

Direction Type

Input/Output Integer

The byte length of the key_identifier parameter. This must be exactly 64 bytes.

key_identifier

Direction Type

Input/Output String

A 64-byte string that is to receive an internal AES or DES key token.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output key_identifier will use the default
method unless a rule array keyword overriding the default is specified.

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Multiple Clear Key Import

208 z/OS ICSF Application Programmer's Guide

Table 72. Required access control points for Multiple Clear Key Import

Key algorithm Access control point

DES Clear Key Import/Multiple Clear Key Import – DES

AES Multiple Clear Key Import/Multiple Secure Key
Import – AES

When the WRAP-ECB or WRAP-ENH keywords are specified and default
key-wrapping method setting does not match the keyword, the Multiple Clear
Key Import - Allow wrapping override keywords access control point must be
enabled.

When the Disallow 24-byte DATA wrapped with 16-byte Key access control point
is enabled, this service will fail if the source key is a triple-length DATA key and
the DES master key is a 16-byte key.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 73. Multiple clear key import required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

Enhanced key token wrapping not
supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

Enhanced key token wrapping not
supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

Enhanced key token wrapping not
supported.

Crypto Express3
Coprocessor Enhanced key token wrapping not

supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Multiple Clear Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 209

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|

|
|
|

|

|

|
|

|
|

|

Multiple Secure Key Import (CSNBSKM and CSNESKM)
Use this service to encipher a single-length, double-length, or triple-length DES key
under the system master key or an importer key-encrypting key. The clear DES key
can then be imported as any of the possible key types.

In addition to DES keys, this service imports a clear AES key, enciphers the AES
key under the AES master key, and returns the enciphered key in an internal
token. The enciphered key's type is DATA. The enciphered key is in operational
form.

The callable service can execute only when ICSF is in special secure mode, which
is described in “Special Secure Mode” on page 10.

The callable service name for AMODE(64) invocation is CSNESKM.

Format
CALL CSNBSKM(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
clear_key_length,
clear_key,
key_type,
key_form,
key_encrypting_key_identifier,
imported_key_identifier_length,
imported_key_identifier)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Multiple Clear Key Import

210 z/OS ICSF Application Programmer's Guide

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The
rule_array_count parameter must be 0, 1, 2, 3, or 4. If the rule_array_count is 0,
the default keywords are used.

rule_array

Direction Type

Input String

Keywords that supply control information to the callable service. The
keywords must be 8 bytes of contiguous storage with the keyword left-justified
in its 8-byte location and padded on the right with blanks. The keywords are
shown in Table 74.

The first keyword is the algorithm. If no algorithm is specified, DES is used.
The algorithm keyword applies only when the desired output token is of key
form OP and key type IMPORTER, EXPORTER, or DATA. For key form IM or
any other key type, specifying DES causes an error.

The second keyword is optional and specifies that the output key token be
marked as an NOCV-KEK.

The third keyword is optional, and specifies whether the original key
wrapping method or the enhanced key wrapping method (which is compliant
with the ANSI X9.24 standard) should be used.

The fourth keyword enables an application to specify that the
imported_key_identifier output token can not be rewrapped using the original
wrapping method after it has been wrapped using the enhanced method.

Table 74. Keywords for Multiple Secure Key Import Rule Array Control Information

Keyword Meaning

Algorithm (optional)

AES The output key identifier is to be a AES token.

DES The output key identifier is to be a DES token. This is the
default.

Multiple Secure Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 211

|
|
|
|

Table 74. Keywords for Multiple Secure Key Import Rule Array Control
Information (continued)

Keyword Meaning

NOCV Choice (optional)

NOCV-KEK The output token is to be marked as an NOCV-KEK. This
keyword only applies if key form is OP and key type is
IMPORTER, EXPORTER or IMP-PKA. For key form IM or any
other key type, specifying NOCV-KEK causes an error.

Key Wrapping Method (optional)

USECONFG Specifies that the system default configuration should be used to
determine the wrapping method. This is the default keyword.

The system default key wrapping method can be specified using
the DEFAULTWRAP parameter in the installation options data
set. See the z/OS Cryptographic Services ICSF System Programmer's
Guide.

WRAP-ENH Use enhanced key wrapping method, which is compliant with
the ANSI X9.24 standard.

WRAP-ECB Use original key wrapping method, which uses ECB wrapping
for DES key tokens and CBC wrapping for AES key tokens.

Translation Control (optional)

ENH-ONLY Restrict rewrapping of the imported_key_identifier token. Once the
token has been wrapped with the enhanced method, it cannot be
rewrapped using the original method.

clear_key_length

Direction Type

Input Integer

The clear_key_length specifies the length of the clear key value to import in
bytes. For AES keys, this length must be 16-, 24-, or 32-bytes. For DES keys,
this length must be 8-, 16- or 24-bytes.

clear_key

Direction Type

Input String

The clear_key specifies the AES or DES clear key value to import.

key_type

Direction Type

Input 8 Character String

The type of key you want to encipher under the master key or an importer
key. Specify an 8-byte field that must contain a keyword from this list or the
keyword TOKEN. For types with fewer than 8 characters, the type should be
padded on the right with blanks. If the key type is TOKEN, ICSF determines
the key type from the control vector (CV) field in the internal key token
provided in the imported_key_identifier parameter. When key_type is TOKEN,

Multiple Secure Key Import

212 z/OS ICSF Application Programmer's Guide

ICSF does not check for the length of the key but uses the clear_key_length
parameter to determine the length of the key.

Key type values for the Multiple Secure Key Import callable service are:
CIPHER, CIPHERXI, CIPHERXL, CIPHERXO, CVARDEC, CVARENC,
CVARPINE, CVARXCVL, CVARXCVR, DATA, DATAM, DATAMV, DECIPHER,
ENCIPHER, EXPORTER, IKEYXLAT, IMPORTER, IMP-PKA, IPINENC, MAC,
MACVER, OKEYXLAT, OPINENC, PINGEN and PINVER. For information on
the meaning of the key types, see Table 3 on page 21.

key_form

Direction Type

Input 4 Character String

The key form you want to generate. Enter a 4-byte keyword specifying
whether the key should be enciphered under the master key (OP) or the
importer key-encrypting key (IM). The keyword must be left-justified and
padded with blanks. Valid DES keyword values are OP for encryption under
the master key or IM for encryption under the importer key-encrypting key. If
you specify IM, you must specify an importer key-encrypting key in the
key_encrypting_key_identifier parameter. For a key_type of IMP-PKA, this service
supports only the OP key_form.

The only valid AES keyword value is OP.

key_encrypting_key_identifier

Direction Type

Input/Output String

A 64-byte string internal key token or key label of a DES importer
key-encrypting key. This parameter is ignored for AES secure keys.

imported_key_identifier_length

Direction Type

Input/Output Integer

The byte length of the imported_key_identifier parameter. This must be at least
64.

imported_key_identifier

Direction Type

Input/Output String

A 64-byte string that is to receive the output key token. If OP is specified in the
key_form parameter, the service returns an internal key token. If IM is specified
in the key_form parameter, the service returns an external key token. On input,
this parameter is ignored except when the key_type is TOKEN. If you specify a
key_type of TOKEN, then this field contains a valid token of the key type you
want to encipher. See key_type for a list of valid key types. Appendix B, “Key
Token Formats,” on page 801 describes the key tokens.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method

Multiple Secure Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 213

|
|
|
|
|
|

which is ANSI X9.24 compliant. The output imported_key_identifier will use the
default method unless a rule array keyword overriding the default is specified.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Creation of a DES NOCV key-encrypting key is only available for standard
IMPORTERs and EXPORTERs.

For key types CIPHERXI, CIPHERXL, and CIPHERXO, the key-encrypting key in
the key_encrypting_key_identifier parameter must have a control vector with the
key halves guaranteed unique flag on in the key form bits. An existing
key-encrypting key can have its control vector updated using the restrict key
attribute callable service.

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Table 75. Required access control points for Multiple Secure Key Import

Key Algorithm and Key Form Access control point

DES OP Secure Key Import - DES, OP

DES IM Secure Key Import - DES, IM

AES OP Multiple Clear Key Import/Multiple Secure Key
Import – AES

To use a NOCV key-encrypting key with the Multiple Secure Key Import service,
the NOCV KEK usage for import-related functions access control point must be
enabled in addition to one or both of the access control points listed.

When the WRAP-ECB or WRAP-ENH keywords are specified and default
key-wrapping method setting does not match the keyword, the Multiple Secure
Key Import - Allow wrapping override keywords access control point must be
enabled.

If the key-encrypting key identifier is a weaker key than the key being imported,
then:
v the service will fail if the Prohibit weak wrapping - Transport keys access

control point is enabled.
v the service will complete successfully with a warning return code if the Warn

when weak wrap - Transport keys access control point is enabled.

When the Disallow 24-byte DATA wrapped with 16-byte Key access control point
is enabled, this service will fail if the source key is a triple-length DATA key and
the DES master key is a 16-byte key or the key-encrypting key is a double-length
key.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Multiple Secure Key Import

214 z/OS ICSF Application Programmer's Guide

|
|

Table 76. Multiple secure key import required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Key types CIPHERXI, CIPHERXL, and
CIPHERXO are not supported.

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

Enhanced key token wrapping not
supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor Key types CIPHERXI, CIPHERXL, and

CIPHERXO are not supported.

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

Enhanced key token wrapping not
supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor Key types CIPHERXI, CIPHERXL, and

CIPHERXO are not supported.

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

Enhanced key token wrapping not
supported.

Crypto Express3
Coprocessor Key types CIPHERXI, CIPHERXL, and

CIPHERXO are not supported.

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

Enhanced key token wrapping not
supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor Key types CIPHERXI, CIPHERXL, and

CIPHERXO are not supported.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Multiple Secure Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 215

|
|

|
|

|
|

|
|

|
|

|

|

|
|

|
|

|

PKA Decrypt (CSNDPKD and CSNFPKD)
Use this service to decrypt (unwrap) a formatted key value. The service unwraps
the key, deformats it, and returns the deformatted value to the application in the
clear. PKCS 1.2 and ZERO-PAD formatting is supported. For PKCS 1.2, the
decrypted data is examined to ensure it meets RSA DSI PKCS #1 block type 2
format specifications.

For PKA private keys, this service allows the use of clear or encrypted RSA private
keys. If an external clear key token is used, the master keys are not required to be
installed in any cryptographic coprocessor and PKA callable services does not have
to be enabled. Requests are routed to a Cryptographic Accelerator if available
when a clear key token is used. ZERO-PAD is only supported for external RSA
clear private keys.

This service also supports the use of secure PKCS #11 private keys, which requires
an active Enterprise PKCS #11 coprocessor. PKCS 1.2 formatting is supported.

The callable service name for AMODE(64) invocation is CSNFPKD.

Format
CALL CSNDPKD(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PKA_enciphered_keyvalue_length,
PKA_enciphered_keyvalue,
data_structure_length,
data_structure,
key_identifier_length,
key_identifier,
target_keyvalue_length,
target_keyvalue)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF
and TSS Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

PKA Decrypt

216 z/OS ICSF Application Programmer's Guide

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1.

rule_array

Direction Type

Input String

The keyword that provides control information to the callable service. The
keyword is left-justified in an 8-byte field and padded on the right with
blanks.

Table 77. Keywords for PKA Decrypt

Keyword Meaning

Recovery Method (required) specifies the method to use to recover the key value.

PKCS-1.2 RSA DSI PKCS #1 block type 02 will be used to recover the key
value.

ZERO-PAD The input PKA_enciphered_keyvalue is decrypted using the RSA
private key. The entire result (including leading zeros) will be
returned in the target_keyvalue field. For PKA keys, the
key_identifier must be an external RSA token or the labelname
of a external token.

This keyword is not valid when using a secure PKCS #11 private
key.

PKA_enciphered_keyvalue_length

Direction Type

Input Integer

The length of the PKA_enciphered_keyvalue parameter in bytes. The maximum
size that you can specify is 512 bytes. The length should be the same as the
modulus length of the key_identifier.

PKA Decrypt

Chapter 5. Managing Symmetric Cryptographic Keys 217

|
|
|
|
|

|
|

PKA_enciphered_keyvalue

Direction Type

Input String

This field contains the key value protected under an RSA public key. This
byte-length string is left-justified within the PKA_enciphered_keyvalue parameter.

data_structure_length

Direction Type

Input Integer

The value must be 0.

data_structure

Direction Type

Input String

This field is currently ignored.

key_identifier_length

Direction Type

Input Integer

The length of the key_identifier parameter. When the key_identifier is a key label,
this field specifies the length of the label. The maximum size that you can
specify is 3500 bytes.

key_identifier

Direction Type

Input String

For PKA keys, an internal RSA private key token, the label of an internal RSA
private key token, or an external RSA private key token containing a clear RSA
private key in modulus-exponent or Chinese Remainder Theorem format.

For secure PKCS #11 keys, this is the 44-byte handle of the private key,
prefixed with an EBCDIC equal sign character (‘=’ or x’7E’), and padded on
the right with spaces for a total length of 64 bytes.

The corresponding public key was used to wrap the key value.

target_keyvalue_length

Direction Type

Input/Output Integer

The length of the target_keyvalue parameter. The maximum size that you can
specify is 512 bytes. On return, this field is updated with the actual length of
target_keyvalue.

If ZERO-PAD is specified, this length will be the same as the RSA modulus
byte length.

PKA Decrypt

218 z/OS ICSF Application Programmer's Guide

|
|
|

target_keyvalue

Direction Type

Output String

This field will contain the decrypted, deformatted key value. If ZERO-PAD is
specified, the decrypted key value, including leading zeros, will be returned.

Restrictions
The exponent of the RSA public key must be odd.

Authorization
To use this service with a secure PKCS #11 private key that is a public object, the
caller must have SO (READ) authority or USER (READ) authority (any access) to
the containing PKCS #11 token.

To use this service with a secure PKCS #11 private key that is a private object, the
caller must have USER (READ) authority (user access) to the containing PKCS #11
token.

See z/OS Cryptographic Services ICSF Writing PKCS #11 Applications for more
information on the SO and User PKCS #11 roles.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS, PKDS, or
TKDS.

PKA RSA private key must be enabled for key management functions. Secure
PKCS #11 private keys must be enabled for decryption.

For PKA keys, the hardware configuration sets the limit on the modulus size of
keys for key management; thus, this service will fail if the RSA key modulus bit
length exceeds this limit.

Access Control Points
For PKA keys, the PKA Decrypt access control point controls the function of this
service.

For secure PKCS #11 private keys, see PKCS #11 Access Control Points in z/OS
Cryptographic Services ICSF Writing PKCS #11 Applications for more information on
the access control points of the Enterprise PKCS #11 coprocessor.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

PKA Decrypt

Chapter 5. Managing Symmetric Cryptographic Keys 219

|

|

Table 78. PKA decrypt required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

RSA keys with moduli greater than 2048-bit
length are not supported.

PCI Cryptographic
Accelerator

Only clear RSA private keys are supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Crypto Express2
Accelerator Only clear RSA private keys are supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Crypto Express2
Accelerator

Crypto Express3
Accelerator

Only clear RSA private keys are supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

Crypto Express3
Accelerator

Only clear RSA private keys are supported.

RSA clear key support with moduli within
the range 2048-bit to 4096-bit requires the
Sep. 2011 or later licensed internal code
(LIC).

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4 CCA
Coprocessor (CEX4C)

Crypto Express3
Accelerator

Crypto Express4
Accelerator (CEX4A)

Only clear RSA private keys are supported.
RSA clear key support with moduli within
the range 2048-bit to 4096-bit requires the
Sep. 2011 or later licensed internal code
(LIC).

Crypto Express4
Enterprise PKCS #11
coprocessor (CEX4P)

Required to use a secure PKCS #11 private
key.

PKA Decrypt

220 z/OS ICSF Application Programmer's Guide

|
|

|
|
|

|
|
|

|

|

|
|
|

|

|

|
|

|
|

|

PKA Encrypt (CSNDPKE and CSNFPKE)
This callable service encrypts a supplied clear key value under an RSA public key.
The rule array keyword specifies the format of the key prior to encryption.

The callable service name for AMODE(64) invocation is CSNFPKE.

Format
CALL CSNDPKE(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
keyvalue_length,
keyvalue,
data_structure_length,
data_structure,
PKA_key_identifier_length,
PKA_key_identifier,
PKA_enciphered_keyvalue_length,
PKA_enciphered_keyvalue)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF
and TSS Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

PKA Encrypt

Chapter 5. Managing Symmetric Cryptographic Keys 221

|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|||

||
|

|
|

|

|||

||
|

|
|
|
|

|

|||

||
|

|
|
|

|

|||

||
|

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. This value
can be 1 or 2.

rule_array

Direction Type

Input String

A keyword that provides control information to the callable service. The
keyword is left-justified in an 8-byte field and padded on the right with
blanks.

Table 79. Keywords for PKA Encrypt

Keyword Meaning

Formatting Method (required) specifies the method to use to format the key value prior to
encryption.

PKCS-1.2 RSA DSI PKCS #1 block type 02 format will be used to format
the supplied key value.

ZERO-PAD The key value will be padded on the left with binary zeros to
the length of the PKA key modulus. The exponent of the public
key must be odd.

MRP The key value will be padded on the left with binary zeros to
the length of the PKA key modulus. The RSA public key may
have an even or odd exponent.

Key Rule (Optional)

KEYIDENT This indicates that the value in the keyvalue field is the label of
clear tokens in the CKDS. The keyvalue_length must be 64.

keyvalue_length

Direction Type

Input Integer

The length of the keyvalue parameter. The maximum field size is 512 bytes. The
actual maximum size depends on the modulus length of PKA_key_identifier and
the formatting method you specify in the rule_array parameter. When key rule
KEYIDENT is specified, then the keyvalue_length parameter is required to be 64
bytes.

keyvalue

Direction Type

Input String

This field contains the supplied clear key value to be encrypted under the
PKA_key_identifier. When key rule KEYIDENT is specified, the keyvalue
parameter is assumed to contain a label for a valid CKDS clear key token.

PKA Encrypt

222 z/OS ICSF Application Programmer's Guide

|

|

|||

||
|

|
|

|

|||

||
|

|
|
|

||

||

|
|

||
|

||
|
|

||
|
|

|

||
|
|

|

|||

||
|

|
|
|
|
|

|

|||

||
|

|
|
|

data_structure_length

Direction Type

Input Integer

This value must be 0.

data_structure

Direction Type

Input String

This field is currently ignored.

PKA_key_identifier_length

Direction Type

Input Integer

The length of the PKA_key_identifier parameter. When the PKA_key_identifier is
a key label, this field specifies the length of the label. The maximum size that
you can specify is 3500 bytes.

PKA_key_identifier

Direction Type

Input String

The RSA public or private key token or the label of the RSA public or private
key to be used to encrypt the supplied key value.

PKA_enciphered_keyvalue_length

Direction Type

Input/Output Integer

The length of the PKA_enciphered_keyvalue parameter in bytes. The maximum
size that you can specify is 512 bytes. On return, this field is updated with the
actual length of PKA_enciphered_keyvalue.

This length should be the same as the modulus length of the
PKA_key_identifier.

PKA_enciphered_keyvalue

Direction Type

Output String

This field contains the key value protected under an RSA public key. This
byte-length string is left-justified within the PKA_enciphered_keyvalue parameter.

Restrictions
The exponent for RSA public keys must be odd. When the modulus is greater than
2048, the public key exponent must be 3 or 65537.

PKA Encrypt

Chapter 5. Managing Symmetric Cryptographic Keys 223

|

|||

||
|

|

|

|||

||
|

|

|

|||

||
|

|
|
|

|

|||

||
|

|
|

|

|||

||
|

|
|
|

|
|

|

|||

||
|

|
|

|

|
|

Usage Notes
v SAF may be invoked to verify the caller is authorized to use this callable service,

the key label, or internal secure key tokens that are stored in the CKDS or PKDS.
v For RSA DSI PKCS #1 formatting, the key value length must be at least 11 bytes

less than the modulus length of the RSA key.
v The hardware configuration sets the limit on the modulus size of keys for key

management; thus, this service will fail if the RSA key modulus bit length
exceeds this limit.

v The key value to be encrypted must be smaller than the modulus in the
PKA_key_identifier.

Access Control Point
The PKA Encrypt access control point controls the function of this service.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 80. PKA encrypt required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Routed to a PCICA if one is available
(ZERO-PAD and MRP only).

RSA keys with moduli greater than 2048-bit
length are not supported.

PCI Cryptographic
Accelerator

PKCS-1.2 keyword not supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Routed to a CEX2A if one is available
(ZERO-PAD and MRP only).

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Crypto Express2
Accelerator PKCS-1.2 keyword not supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Routed to a CEX2A or CEX3A if one is
available (ZERO-PAD and MRP only).

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Crypto Express2
Accelerator

Crypto Express3
Accelerator

PKCS-1.2 keyword not supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

PKA Encrypt

224 z/OS ICSF Application Programmer's Guide

|

|
|

|
|

|
|
|

|
|

|

|

|

|
|

||

||
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|

|

|
|
|
|

|
|
|

|
||

|
|

|

|

|
|

|
|

|
|

|
|
|

|
|

|
|

|

|
|

Table 80. PKA encrypt required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

Routed to a CEX2A or CEX3A if one is
available (ZERO-PAD and MRP only).

Crypto Express3
Accelerator

PKCS-1.2 keyword not supported.

RSA clear key support with moduli within
the range 2048-bit to 4096-bit requires the
Sep. 2011 or later licensed internal code
(LIC).

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Routed to a CEX3A or CEX4A if one is
available (ZERO-PAD and MRP only).

Crypto Express3
Accelerator

Crypto Express4
Accelerator

PKCS-1.2 keyword not supported.

Prohibit Export (CSNBPEX and CSNEPEX)
Use this service to modify an exportable internal DES key token so that it cannot
be exported.

The callable service name for AMODE(64) invocation is CSNEPEX.

Format
CALL CSNBPEX(

return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that

PKA Encrypt

Chapter 5. Managing Symmetric Cryptographic Keys 225

|

||
|
|

|

|

|

|
|
|
|

|
|
|

|
|
|
|

|

|

|
|

|
|

|
|

|
|

|
|

|

|

|

indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

key_identifier

Direction Type

Input/Output String

A 64-byte string variable containing the internal key token to be modified. The
returned key_identifier will be encrypted under the current master key.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output key_identifier will be wrapped in
the same manner as the input key_identifier.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Access Control Point
The Prohibit Export access control point controls the function of this service.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 81. Prohibit export required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

DATA keys are not supported. Old, internal
DATAM and DATAMV keys are not
supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

DATA keys are not supported. Old, internal
DATAM and DATAMV keys are not
supported.

Prohibit Export

226 z/OS ICSF Application Programmer's Guide

Table 81. Prohibit export required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

DATA keys are not supported. Old, internal
DATAM and DATAMV keys are not
supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

DATA keys are not supported. Old, internal
DATAM and DATAMV keys are not
supported.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

DATA keys are not supported. Old, internal
DATAM and DATAMV keys are not
supported.

Prohibit Export Extended (CSNBPEXX and CSNEPEXX)
Use the prohibit export extended callable service to change the external token of a
cryptographic key in exportable DES key token form so that it can be imported at
the receiver node and is non-exportable from that node. You cannot prohibit export
of DATA keys.

The inputs are an external token of the key to change in the source_key_token
parameter and the label or internal token of the exporter key-encrypting key in the
KEK_key_identifier parameter.

This service is a variation of the Prohibit Export service (CSNBPEX and
CSNEPEX), which supports changing an internal token.

The callable service name for AMODE(64) invocation is CSNEPEXX.

Format
CALL CSNBPEXX(

return_code,
reason_code,
exit_data_length,
exit_data,
source_key_token,
KEK_key_identifier)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Prohibit Export

Chapter 5. Managing Symmetric Cryptographic Keys 227

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

source_key_token

Direction Type

Input/Output String

A 64-byte string of an external token of a key to change. It is in exportable
form.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output source_key_token will be wrapped
in the same manner as the input source_key_token.

KEK_key_identifier

Direction Type

Input/Output String

A 64-byte string of an internal token or label of the exporter KEK used to
encrypt the key contained in the external token specified in the previous
parameter.

Restrictions
This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Prohibit Export Extended

228 z/OS ICSF Application Programmer's Guide

Access Control Point
The Prohibit Export Extended access control point controls the function of this
service.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 82. Prohibit export extended required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

External MACD keys are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

External MACD keys are not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

External MACD keys are not supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

External MACD keys are not supported.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

External MACD keys are not supported.

Random Number Generate (CSNBRNG, CSNERNG, CSNBRNGL and
CSNERNGL)

The callable service uses a cryptographic feature to generate a random number.
The foundation for the random number generator is a time variant input with a
very low probability of recycling.

There are two forms of the Random Number Generate callable service. One version
returns an 8-byte random number. The second version allows the caller to specify
the length of the random number.

The callable service names for AMODE(64) invocation are CSNERNG and
CSNERNGL.

Format
CALL CSNBRNG(

return_code,
reason_code,

Prohibit Export Extended

Chapter 5. Managing Symmetric Cryptographic Keys 229

exit_data_length,
exit_data,
form,
random_number)

CALL CSNBRNGL(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
reserved_length,
reserved,
random_number_length,
random_number)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

form

Direction Type

Input Character String

Random Number Generate

230 z/OS ICSF Application Programmer's Guide

The 8-byte keyword for the CSNBRNG service that defines the characteristics
of the random number should be left-justify and pad on the right with blanks.
The keywords are listed in Table 83.

Table 83. Keywords for the Form Parameter

Keyword Meaning

EVEN Generate a 64-bit random number with even parity in each
byte.

ODD Generate a 64-bit random number with odd parity in each
byte.

RANDOM Generate a 64-bit random number.

Parity is calculated on the 7 high-order bits in each byte and is presented in
the low-order bit in the byte.

rule_array_count

Direction Type

Input Integer

The number of keywords for the CSNBRNGL service you are supplying in the
rule_array parameter. The value must be one.

rule_array

Direction Type

Input String

The keyword for the CSNBRNGL service that provides control information to
the callable service. The recovery method is the method to use to recover the
symmetric key. The keyword is left-justified in an 8-byte field and padded on
the right with blanks. All keywords must be in contiguous storage.

Table 84. Keywords for Random Number Generate Control Information

Keyword Meaning

Parity of the random number bytes (required)

EVEN Generate a random number with even parity in each byte.
Its length is the random_number_length.

ODD Generate a random number with odd parity in each byte.
Its length is the random_number_length.

RANDOM Generate a random number. Its length is the
random_number_length.

reserved_length

Direction Type

Input Integer

This parameter must be zero.

reserved

Random Number Generate

Chapter 5. Managing Symmetric Cryptographic Keys 231

|
|
|

|
|

|
|
|
|

Direction Type

Input Integer

This parameter is ignored.

random_number_length

Direction Type

Input Integer

This parameter contains the desired length of the random_number that is
returned by the CSNBRNGL callable service. The minimum value is 1 byte; the
maximum value is 8192 bytes.

random_number

Direction Type

Output String

The generated number returned by the CSNBRNG callable service is stored in
an 8-byte variable.

The generated number returned by the CSNBRNGL callable service is stored in
a variable that is at least random_number_length bytes long.

Usage Notes
If the CSF.CSFSERV.AUTH.CSFRNG.DISABLE SAF resource profile is defined in
the XFACILIT SAF resource class, no SAF authorization checks will be performed
against the CSFSERV class when using this service. If
CSF.CSFSERV.AUTH.CSFRNG.DISABLE is not defined, the SAF authorization
check will be performed. Disabling the SAF check may improve the performance
of your application.

The CSNBRNGL callable service returns a value under the following conditions:
v The server has the cryptographic coprocessor that supports CSNBRNGL and the

coprocessor creates the random number with the desired length. This requires a
CCA Crypto Express coprocessor with a version of the licensed internal code
(LIC) that supports the RNGL verb.

v The server has the cryptographic coprocessor that processes CSNBRNG requests.
In this case, the CSNBRNGL callable service calls the processor to create the
random number with the desired length, 8 bytes at a time.

v The server has the CP Assist for Cryptographic Functions with a feature level
that supports pseudo-random number generation.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Random Number Generate

232 z/OS ICSF Application Programmer's Guide

||

|
|
|
|
|
|

Table 85. Random number generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

CP Assist for
Cryptographic
Functions

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC
CP Assist for
Cryptographic
Functions

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC
CP Assist for
Cryptographic
Functions

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

IBM zEnterprise 196

IBM zEnterprise 114
CP Assist for
Cryptographic
Functions

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12
CP Assist for
Cryptographic
Functions

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Remote Key Export (CSNDRKX and CSNFRKX)
This callable service uses the trusted block to generate or export DES keys for local
use and for distribution to an ATM or other remote device. RKX uses a special
structure to hold encrypted symmetric keys in a way that binds them to the
trusted block and allows sequences of RKX calls to be bound together as if they
were an atomic operation.

Random Number Generate

Chapter 5. Managing Symmetric Cryptographic Keys 233

Rule array keywords may be specified to indicate whether to wrap an output DES
CCA key token using the default wrapping mode, enhanced wrapping mode
(WRAP-ENH) or original ECB wrapping mode (WRAP-ECB).

The callable service name for AMODE(64) invocation is CSNFRKX.

Format
CALL CSNDRKX(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
trusted_block_length,
trusted_block_identifier,
certificate_length,
certificate,
certificate_parms_length,
certificate_parms,
transport_key_length,
transport_key_identifier,
rule_id_length,
rule_id,
importer_key_length,
importer_key_identifier,
source_key_length,
source_key_identifier,
asym_encrypted_key_length,
asym_encrypted_key,
sym_encrypted_key_length,
sym_encrypted_key,
extra_data_length,
extra_data,
key_check_parameters_length,
key_check_parameters,
key_check_length,
key_check_value)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the specific results of processing. Each return code
has different reason codes that indicate specific processing problems.
Appendix A, “ICSF and TSS Return and Reason Codes,” on page 755 lists the
reason codes.

exit_data_length

Remote Key Export

234 z/OS ICSF Application Programmer's Guide

|
|
|

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. This
number must be 0, 1 or 2.

rule_array

Direction Type

Input Character string

The rule_array parameter is an array of keywords. The keywords must be 8
bytes of contiguous storage with the keyword left-justified in its 8-byte location
and padded on the right with blanks. The rule_array keywords are:

Table 86. rule_array keywords

Keyword Meaning

Key Wrapping Method (Optional)

USECONFG Specifies that the configuration setting for the default wrapping
method is to be used to wrap the key. This is the default.

WRAP-ENH Specifies that the new enhanced wrapping method is to be used
to wrap the key.

WRAP-ECB Specifies that the original wrapping method is to be used.

Translation Control (Optional, valid only for enhanced wrapping)

ENH-ONLY Specify this keyword to indicate that the key once wrapped
with the enhanced method cannot be wrapped with the original
method. This restricts translation to the original method.

trusted_block_length

Direction Type

Input Integer

Specifies the number of bytes in the trusted_block_identifier parameter. The
maximum length is 3500 bytes.

trusted_block_identifier

Remote Key Export

Chapter 5. Managing Symmetric Cryptographic Keys 235

|
|

|

|||

||
|
|
|
|

||

||

|

||
|

||
|

||

|

||
|
|
|

|

Direction Type

Input String

Specifies a trusted block label or trusted block token of an internal/complete
trusted block constructed by the service, which is used to validate the public
key certificate (certificate) and to define the rules for key generation and
export.

certificate_length

Direction Type

Input Integer

Specifies the number of bytes in the certificate parameter. The maximum is
5000 bytes.

If the certificate_length is zero and the trusted block's Asymmetric Encrypted
Output Key Format indicates no asymmetric key output, this service will not
attempt to use or validate the certificate in any way. Consequently, the output
parameter asym_encrypted_key_length will contain zero and output parameter
asym_encrypted_key will not be changed from its input content.

If the certificate length is zero and the trusted block's Asymmetric Encrypted
Output Key Format indicates PKCS1.2 output format or RSAOAEP output
format, this service will exit with an error.

If the certificate_length is non-zero and the trusted block's Asymmetric
Encrypted Output Key Format indicates no asymmetric key output, this service
will fail.

certificate

Direction Type

Input String

Contains a public-key certificate. The certificate must contain the public key
modulus and exponent in binary_form, as well as a digital signature. The
signature in the certificate will be verified using the root public key that is in
the trusted block supplied in trusted_block_identifier parameter.

certificate_parms_length

Direction Type

Input Integer

Contains the number of bytes in the certificate_parms parameter. The length
must be 36 bytes.

certificate_parms

Direction Type

Input String

Contains a structure provided by the caller used for identifying the location
and length of values within the certificate in parameter certificate. For each of
the values used by RKX, the structure contains offsets from the start of the

Remote Key Export

236 z/OS ICSF Application Programmer's Guide

certificate and length in bytes. It is the responsibility of the calling application
program to provide these values. This method gives the greatest flexibility to
support different certificate formats. The structure has this layout:

Table 87. Structure of values used by RKX

Offset
(bytes)

Length
(bytes) Description

0 4 Offset of modulus

4 4 Length of modulus

8 4 Offset of public exponent

12 4 Length of public exponent

16 4 Offset of digital signature

20 4 Length of digital signature

24 1 Identifier for the hash algorithm used

25 1 Identifier for the digital hash formatting method

v 01 - PKCS-1.0

v 02 - PKCS-1.1

v 03 - X9.31

v 04 - ISO-9796

v 05 - ZERO-PAD

26 2 Reserved - must be filled with 0x00 bytes

28 4 Offset of first byte of certificate data hashed to compute the
digital signature

32 4 Length of the certificate data hashed to compute the digital
signature

The modulus, exponent, and signature values are right-justified and padded on
the left with binary zeros if necessary.

These values are defined for the hash algorithm identifier at offset 24 in the
structure.

Table 88. Values defined for hash algorithm identifier at offset 24 in the structure for remote
key export

Identifier Algorithm

0X01 SHA-1

0X02 MD5

0X03 RIPEMD-160

transport_key_length

Direction Type

Input Integer

Contains the number of bytes in the transport_key_identifier parameter.

transport_key_identifier

Direction Type

Input String

Remote Key Export

Chapter 5. Managing Symmetric Cryptographic Keys 237

Contains a label of an internal key token, or an RKX token for a Key
Encrypting Key (KEK) that is used to encrypt a key exported by the RKX
service. A transport key will not be used to encrypt a generated key.

For flag bit0=1 (export existing key) within Rule section and parameter rule_id
= Rule section ruleID, the transport_key_identifier encrypts the exported
version of the key received in parameter source_key_identifier. The service can
distinguish between the internal key token or RKX key token by virtue of the
version number at offset 0x04 contained in the key token and the flag value at
offset 0x00 as follows:

Table 89. Transport_key_identifer used by RKX

Flag Byte
Offset 00

Version
Number
Offset 04 Description

0X01 0X00 Internal DES key token version 0

0X02 0X10 RKX Key token (Flag byte 0x02 indicates external key token)

rule_id_length

Direction Type

Input Integer

Contains the number of bytes in the rule_id parameter. The value must be 8.

rule_id

Direction Type

Input String

Specifies the rule in the trusted block that will be used to control key
generation or export. The trusted block can contain multiple rules, each of
which is identified by a rule ID value.

importer_key_length

Direction Type

Input Integer

Contains the number of bytes in the importer_key_identifier parameter. It must
be zero if the Generate/Export flag in the rule section (section 0x12) of the
Trusted Block is a zero, indicating a new key is to be generated.

importer_key_identifier

Direction Type

Input String

Contains a key token or key label for the IMPORTER key-encrypting key that
is used to decipher the key passed in parameter source_key_identifier. It is
unused if either RKX is being used to generate a key, or if the
source_key_identifier is an RKX key token or internal DES key token.

source_key_length

Remote Key Export

238 z/OS ICSF Application Programmer's Guide

|
|
|
|

Direction Type

Input Integer

Contains the number of bytes in the source_key_identifier parameter. The
parameter must be 0 if the trusted block Rule section ruleID = rule_id
parameter and the flag bit0 = 0 (Generate new key).

The parameter must be 64 if the trusted block Rule section has a flag bit0 = 1
(Export existing key).

source_key_identifier

Direction Type

Input String

Contains a label of a single or double length external or internal key token or
an RKX key token for a key to be exported. It must be empty
(source_key_length=0) if RKX is used to generate a new key. The service
examines the key token to determine which form has been provided. This
parameter is known as the source_key_identifier in other callable services.

Table 90. Examination of key token for source_key_identifier

Flag Byte
Offset 00

Version
Number
Offset 04 Description

0X01 0X00 Internal DES key token version 0

0X02 0X00 External DES key token version 0

0X02 0X01 External DES key token version 1

0X02 0X10 RKX Key token (Flag byte 0x02 indicates external key token)

asym_encrypted_key_length

Direction Type

Input/Output Integer

The length of the asym_encrypted_key parameter. On input, it is the length of
the storage to receive the output. On output, it is the length of the data
returned in the asym_encrypted_key parameter. The maximum length is 512
bytes.

asym_encrypted_key

Direction Type

Output String

The contents of this field is ignored on input. A string buffer RKX will use to
return a generated or exported key that is encrypted under the public
(asymmetric) key passed in parameter certificate. An error will be returned if
the caller's buffer is too small to hold the value that would be returned.

sym_encrypted_key_length

Remote Key Export

Chapter 5. Managing Symmetric Cryptographic Keys 239

Direction Type

Input/Output Integer

On input, the sym_encrypted_key_length parameter is an integer variable
containing the number of bytes in the sym_encrypted_key field. On output,
that value in sym_encrypted_key_length is replaced with the length of the key
returned in sym_encrypted_key field.

sym_encrypted_key

Direction Type

Output String

Sym_encrypted_key is the string buffer RKX uses to return a generated or
exported key that is encrypted under the key-encrypting key passed in the
transport_key_identifier parameter. The value returned will be 64 bytes. An
error will be returned if the caller's buffer is smaller than 64 bytes, and so too
small to hold the value that would be returned. The sym_encrypted_key may
be an RKX key token or a key token depending upon the value of the
Symmetric Encrypted Output Key Format value of the Rule section within the
trusted_block_identifier parameter.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The sym_encrypted_key will be wrapped in the
same manner as the source_key_identifier.

extra_data_length

Direction Type

Input Integer

Contains the number of bytes of data in the extra_data parameter. It must be
zero if the output format for the RSA-encrypted key in asym_encrypted_key is
anything but RSAOEAP. The maximum size is 1024 bytes.

extra_data

Direction Type

Input String

Can be used in the OAEP key wrapping process. Extra_data is optional and is
only applicable when the output format for the RSA-encrypted key returned in
asym_encrypted_key is RSAOAEP.

Note: RSAOAEP format is specified in the rule in the trusted block.

key_check_parameters_length

Direction Type

Input Integer

Contains the number of bytes in the key_check_parameters parameter.
Currently, none of the defined key check algorithms require any key check
parameters, so this field must specify 0.

Remote Key Export

240 z/OS ICSF Application Programmer's Guide

key_check_parameters

Direction Type

Input String

Contains parameters that are required to calculate a key check value parameter,
which will be returned in key_check_value. Currently, none of the defined key
check algorithms require any key check parameters, but you must still specify
this parameter.

key_check_length

Direction Type

Input/Output Integer

On input this parameter contains the number of bytes in the key_check_value
parameter. On output, the value is replaced with the length of the key check
value returned in the key_check_value parameter. The length depends on the
key-check algorithm identifier. See Table 383 on page 853.

key_check_value

Direction Type

Output String

Used by RKX to return a key check value that calculates on the generated or
exported key. Values in the rule specified with rule_id can specify a key check
algorithm that should be used to calculate this output value.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Access Control Points
The Remote Key Export - Gen or export a non-CCA node Key access control
point controls the function of this service.

To use a NOCV IMPORTER key-encrypting key with the remote key export
service, the NOCV KEK usage for import-related functions access control point
must be enabled in addition to one or both of the access control points listed.

To use a NOCV EXPORTER key-encrypting key with the remote key export
service, the NOCV KEK usage for export-related functions access control point
must be enabled in addition to one or both of the access control points listed.

When the RKX/TBC – Disallow triple-length MAC key access control point is
enable, this service will not import a triple-length MAC wrapped with a
double-length KEK.

If the key-encrypting key identifier is a weaker key than the key being exported,
then
v the service will fail if the Prohibit weak wrapping - Transport keys access

control point is enabled.

Remote Key Export

Chapter 5. Managing Symmetric Cryptographic Keys 241

v the service will complete successfully with a warning return code if the Warn
when weak wrap - Transport keys access control point is enabled.

To use the default key-wrapping configuration and rule array keywords, the
Remote Key Export - Include RKX in Default Key-Wrapping Configuration
access control point must be enabled.
v If enabled and no keywords are specified, the wrapping of an output DES CCA

key token is based on the default configuration setting.
v If disabled, the key-wrapping method of the source key token determines the

wrapping of the output DES CCA key token.

When the WRAP-ECB or WRAP-ENH keywords are specified, the Remote Key
Export - Allow wrapping override keywords access control point must be enabled.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 91. Remote key export required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

This callable service is not supported.

IBM eServer z9 EC

IBM System z9 BC

Crypto Express 2
Coprocessor RSA key support with moduli within the

range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor RSA key support with moduli within the

range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

Crypto Express3
Coprocessor RSA key support with moduli within the

range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB require the September 2013 or
later licensed internal code (LIC).

Remote Key Export

242 z/OS ICSF Application Programmer's Guide

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

Restrict Key Attribute (CSNBRKA and CSNERKA)
Use the Restrict Key Attribute callable service to modify an attribute of an internal
or external CCA symmetric key-token.

The callable service name for AMODE(64) is CSNERKA.

Format
CALL CSNBRKA(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
key_encrypting_key_identifier_length,
key_encrypting_key_identifier,
opt_parameter1_length,
opt_parameter1,
opt_parameter2_length,
opt_parameter2)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

Restrict Key Attribute

Chapter 5. Managing Symmetric Cryptographic Keys 243

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value
must be between 1 and 10, inclusive.

rule_array

Direction Type

Input String

The rule_array contains keywords that provide control information to the
callable service. The keywords must be in contiguous storage with each of the
keywords left-justified in its own 8-byte location and padded on the right with
blanks.

Table 92. Keywords for Restrict Key Attribute Control Information

Keyword Meaning

Token Type (Required)

AES Specifies the key token is an AES key token.

DES Specifies the key token is a DES key token.

HMAC Specifies the key token is an HMAC key token.

Attribute to Restrict (Optional)

NOEXPORT Prohibits the key from being exported by any verb. The use
of this keyword always causes each available export control
attribute to be lowered. If no attribute to restrict keywords
are used, this is the default.

Variable-length symmetric key-token: This keyword is
equivalent to providing all of the keywords listed under
Export Control for AES or HMAC (NOEX-AES, NOEX-DES,
NOEX-RAW, NOEX-RSA, NOEX-SYM, NOEXAASY, and
NOEXUASY). This is the default if no AES or HMAC
attribute restriction keywords are used.

Internal DES key token: Use this keyword to set CV bit 17 =
B'0' (NO-XPORT) and CV bit 27 = B'1' (NOT31XPT). This is
the default if no DES attribute restriction keywords are used.

For AES or HMAC keys (Optional, one or more keywords may be specified)

Export control for AES and HMAC (one or more, optional)

NOEX-AES Specifies to prohibit export using an AES key.

NOEX-DES Specifies to prohibit export using a DES key.

NOEX-RAW Specifies to prohibit export in RAW format.

NOEX-RSA Specifies to prohibit export using an RSA key.

NOEX-SYM Prohibits the key from being exported using a symmetric
key.

NOEXAASY Prohibits the key from being exported using an
authenticated asymmetric key (for example, an RSA key in a
trusted block token).

Restrict Key Attribute

244 z/OS ICSF Application Programmer's Guide

|
|
|

Table 92. Keywords for Restrict Key Attribute Control Information (continued)

Keyword Meaning

NOEXUASY Prohibits the key from being exported using an
unauthenticated asymmetric key.

Key usage restriction for AES and HMAC (optional)

C-XLATE Specifies that the CIPHER key can only be used for cipher
text translate operations. This is only valid with AES
CIPHER keys.

For DES keys (Optional, one or two keywords)

Export control for DES (one, optional)

CCAXPORT For DES internal tokens, set bit 17 of the CV to 0 to prohibit
any export of the key.

NOT31XPT For DES internal tokens, set bit 57 of the CV to 1 to prohibit
TR-31 export of the key.

Key restriction for DES (optional)

DOUBLE-O For DES key tokens, change the control vector of a
double-length key that has unique key halves (ignoring
parity) to indicate that the key does not have replicated key
halves.
Note: A double-length key with replicated key halves has
the effective strength of a single-length key. If the key token
supplied in the key_identifier parameter has replicated key
halves, this keyword will cause the service to fail.

Input Transport Key (Optional)

IKEK-AES Specifies the KEK is an AES transport key. This is the
default for Token Types AES and HMAC, and is not allowed
with Token Type DES.

IKEK-DES Specifies the KEK is a DES transport key. This is the default
for Token Type DES.

IKEK-PKA Specifies the KEK is a PKA transport key. This is not
allowed with Token Type DES.

key_identifier_length

Direction Type

Input/Output Integer

The length of the key_identifier parameter in bytes. The maximum value is 900.

key_identifier

Direction Type

Input/Output String

The key for which the export control is to be updated. The parameter contains
an internal or external token or the 64-byte CKDS label of an internal token. If
a label is specified, the key token will be updated in the CKDS and not
returned by this service.

If the key identifier supplied was an AES or DES token encrypted under the
old master key, the token will be returned encrypted under the current master
key.

Restrict Key Attribute

Chapter 5. Managing Symmetric Cryptographic Keys 245

key_encrypting_key_identifier_length

Direction Type

Input Integer

The length of the key_encrypting_key_identifier parameter. When key_identifier is
an internal token, the value must be zero.
v If key_encrypting_key_identifier is a label for either the CKDS (IKEK-AES or

IKEK-DES rules) or PKDS (IKEK-PKA rule), the value must be 64.
v If key_encrypting_key_identifier is an AES KEK, the value must be between the

actual length of the token and 725.
v If key_encrypting_key_identifier is a DES KEK, the value must be 64.
v If key_encrypting_key_identifier is an RSA KEK, the maximum length is 3500.

key_encrypting_key_identifier

Direction Type

Input/Output String

When key_encrypting_key_identifier_length is non-zero,
key_encrypting_key_identifier contains an internal key token containing a
key-encrypting key, or a key label.

If the key identifier supplied was an AES or DES token encrypted under the
old master key, the token will be returned encrypted under the current master
key.

opt_parameter1_length

Direction Type

Input Integer

The byte length of the opt_parameter1 parameter. The value must be zero.

opt_parameter1

Direction Type

Input String

This parameter is ignored.

opt_parameter2_length

Direction Type

Input Integer

The byte length of the opt_parameter2 parameter. The value must be zero.

opt_parameter2

Direction Type

Input String

This parameter is ignored.

Restrict Key Attribute

246 z/OS ICSF Application Programmer's Guide

Access Control Points
The access control points in the domain role that control the function of this
service are:
v Restrict Key Attribute - Export Control
v Restrict Key Attribute - Permit setting the TR-31 export bit

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 93. Restrict Key Attribute required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

IBM System z10 EC

IBM System z10 BC

This service is not supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor HMAC key support requires the Nov. 2010

or later licensed internal code (LIC).

DES/AES key support requires the Sep.
2011 or later licensed internal code (LIC).

The C-XLATE and DOUBLE-O keywords
are not supported.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Secure Key Import (CSNBSKI and CSNESKI)
Use the secure key import callable service to encipher a single-length or
double-length clear key under the DES master key or under an importer
key-encrypting key. The clear key can then be imported as any of the possible key
types. This service does not adjust key parity.

The callable service can execute only when ICSF is in special secure mode, which
is described in “Special Secure Mode” on page 10.

To import double-length and triple-length DATA keys, or double-length MAC,
MACVER, CIPHER, DECIPHER and ENCIPHER keys, use the Multiple Secure Key
Import callable service. See “Multiple Secure Key Import (CSNBSKM and
CSNESKM)” on page 210.

Restrict Key Attribute

Chapter 5. Managing Symmetric Cryptographic Keys 247

|

|

||

|

To import AES DATA keys, use the multiple secure key import service (“Multiple
Secure Key Import (CSNBSKM and CSNESKM)” on page 210).

The callable service name for AMODE(64) invocation is CSNESKI.

Format
CALL CSNBSKI(

return_code,
reason_code,
exit_data_length,
exit_data,
clear_key,
key_type,
key_form,
importer_key_identifier,
key_identifier)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

clear_key

Direction Type

Input String

Secure Key Import

248 z/OS ICSF Application Programmer's Guide

The clear key to be enciphered. Specify a 16-byte string (clear key value). For
single-length keys, the value must be left-justified and padded with zeros. For
effective single-length keys, the value of the right half must equal the value of
the left half. For double-length keys, specify the left and right key values.

Note: For key types that can be single or double-length, a single length
encrypted key will be generated if a clear_key value of zeros is supplied.

key_type

Direction Type

Input Character String

The type of key you want to encipher under the master key or an importer
key. Specify an 8-byte field that must contain a keyword from this list or the
keyword TOKEN. If the key type is TOKEN, ICSF determines the key type
from the CV in the key_identifier parameter.

Key type values for the Secure Key Import callable service are: CIPHER,
CIPHERXI, CIPHERXL, CIPHERXO, CVARDEC, CVARENC, CVARPINE,
CVARXCVL, CVARXCVR, DATA, DECIPHER, ENCIPHER, EXPORTER,
IKEYXLAT, IMPORTER, IMP-PKA, IPINENC, MAC, MACVER, OKEYXLAT,
OPINENC, PINGEN and PINVER. For information on the meaning of the key
types, see Table 3 on page 21.

key_form

Direction Type

Input Character String

The key form you want to generate. Enter a 4-byte keyword specifying
whether the key should be enciphered under the master key (OP) or the
importer key-encrypting key (IM). The keyword must be left-justified and
padded with blanks. Valid keyword values are OP for encryption under the
master key or IM for encryption under the importer key-encrypting key. If you
specify IM, you must specify an importer key-encrypting key in the
importer_key_identifier parameter. For a key_type of IMP-PKA, this service
supports only the OP key_form.

importer_key_identifier

Direction Type

Input/Output Character String

The importer key-encrypting key under which you want to encrypt the clear
key. Specify either a 64-byte string of the internal key format or a key label. If
you specify IM for the key_form parameter, the importer_key_identifier parameter
is required.

key_identifier

Direction Type

Input/Output Character String

Secure Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 249

|
|
|
|
|
|

The generated encrypted key. The parameter is a 64-byte string. The callable
service returns either an internal key token if you encrypted the clear key
under the master key (key_form was OP); or an external key token if you
encrypted the clear key under the importer key-encrypting key (key_form was
IM).

If the key_type parameter is not TOKEN, this parameter must be a 64-byte
string of hex zero

If the imported key_type is IMPORTER or EXPORTER and the key_form is OP,
the key_identifier parameter changes direction to both input and output. If the
application passes a valid internal key token for an IMPORTER or EXPORTER
key in this parameter, the NOCV bit is propagated to the imported key token.

The secure key import service does not adjust key parity.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output key_identifier will use the default
wrapping method unless a skeleton token is supplied as input. If a skeleton
token is supplied as input, the wrapping method in the skeleton token will be
used.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS.

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Table 94. Required access control points for Secure Key Import

Key Form Access control point

OP Secure Key Import - DES, OP

IM Secure Key Import - DES, IM

To use a NOCV key-encrypting key with the secure key import service, the NOCV
KEK usage for import-related functions access control point must be enabled in
addition to one or both of the access control points listed.

If the key-encrypting key identifier is a weaker key than the key being imported,
then:
v the service will fail if the Prohibit weak wrapping - Transport keys access

control point is enabled.
v the service will complete successfully with a warning return code if the Warn

when weak wrap - Transport keys access control point is enabled.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Secure Key Import

250 z/OS ICSF Application Programmer's Guide

|
|

|

Table 95. Secure key import required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Secure Key Import2 (CSNBSKI2 and CSNESKI2)
Use this service to encipher a variable-length symmetric key under the AES master
key or an AES IMPORTER KEK, depending on the Key Form rule provided. This
service supports variable-length symmetric keys.

This service returns variable-length CCA key tokens and uses the AESKW
wrapping method.

The callable service can execute only when ICSF is in special secure mode, which
is described in “Special Secure Mode” on page 10.

The callable service name for AMODE(64) is CSNESKI2.

Format
CALL CSNBSKI2(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
clear_key_bit_length,
clear_key,
key_name_length,
key_name,
user_associated_data_length,
user_associated_data,

Secure Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 251

||

||
|
|

|

|
|

|
|

|
|

|
|

|

|

|

|
|
|

|

|

|
|

|
|

|

|

|

|
|
|

|

|

|
|

|
|

|

|

|
|

key_encrypting_key_identifier_length,
key_encrypting_key_identifier,
target_key_identifier_length,
target_key_identifier)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value
must be 3 or 4.

rule_array

Direction Type

Input String

Secure Key Import2

252 z/OS ICSF Application Programmer's Guide

|
|

The rule_array contains keywords that provide control information to the
callable service. The keywords must be in contiguous storage with each of the
keywords left-justified in its own 8-byte location and padded on the right with
blanks.

Table 96. Keywords for Secure Key Import2 Control Information

Keyword Meaning

Token algorithm (One Required)

HMAC The target key identifier is to be an HMAC key.

AES The target key identifier is to be an AES key.

Key Form (One Required)

OP Specifies the key should be enciphered under the master
key.

IM Specifies the key should be enciphered under the
key-encrypting key.

Key Type (One Required)

CIPHER The key type of the output token will be CIPHER. Only
valid for AES algorithm.

EXPORTER The key type of the output token will be EXPORTER. Only
valid for AES algorithm.

IMPORTER The key type of the output token will be IMPORTER. Only
valid for AES algorithm.

MAC MAC generation key. Only valid for HMAC algorithm.

MACVER MAC verify key. Only valid for HMAC algorithm.

TOKEN The key type will be determined from the key token
supplied in the target_key_identifier parameter. ICSF does not
check for the length of the key but uses the
clear_key_bit_length parameter to determine the length of the
key.

Payload version (One, optional) Only valid with CIPHER, IMPORTER and EXPORTER
key types.

V0PYLD The generated token will have the variable-length payload
format. This is the default.

V1PYLD The generated token will have the fixed-length payload
format.

clear_key_bit_length

Direction Type

Input Integer

The length of the value supplied in the clear_key parameter in bits. Valid
lengths are 80 to 2048 for HMAC keys, and 128, 192, or 256 for AES keys.

clear_key

Direction Type

Input String

Secure Key Import2

Chapter 5. Managing Symmetric Cryptographic Keys 253

|
|

|

|

The value of the key to be imported. The value should be left justified and
padded on the right with zeros to a byte boundary if the clear_key_bit_length is
not a multiple of 8.

key_name_length

Direction Type

Input Integer

The length of the key_name parameter. Valid values are 0 and 64.

key_name

Direction Type

Input String

A 64-byte key store label to be stored in the associated data structure of the
token.

user_associated_data_length

Direction Type

Input Integer

The length of the user-associated data. The valid values are 0 to 255 bytes.

user_associated_data

Direction Type

Input String

User-associated data to be stored in the associated data structure.

key_encrypting_key_identifier_length

Direction Type

Input Integer

The byte length of the key_encrypting_key_identifier parameter. When Key Form
is OP, the value must be zero. When Key Form is IM, the value must be
between the actual length of the token and 725 when
key_encrypting_key_identifier is a token. The value must be 64 when
key_encrypting_key_identifier is a label.

key_encrypting_key_identifier

Direction Type

Input/Output String

When the Key Form rule is OP, key_encrypting_key_identifier is ignored. When
the Key Form rule is IM, key_encrypting_key_identifier contains an internal key
token containing the AES importer key-encrypting key or a key label.

If the token supplied was encrypted under the old master key, the token will
be returned encrypted under the current master key.

target_key_identifier_length

Secure Key Import2

254 z/OS ICSF Application Programmer's Guide

Direction Type

Input/Output Integer

On input, the byte length of the buffer for the target_key_identifier parameter.
The buffer must be large enough to receive the target key token. The maximum
value is 900 bytes.

On output, the parameter will hold the actual length of the target key token.

target_key_identifier

Direction Type

Input/Output String

The output key token. On input, this parameter is ignored except when the
Key Type keyword is TOKEN. If you specify the TOKEN keyword, then this
field contains a valid token of the key type you want to import. On output,
when Key Form is OP, this will be an internal variable-length symmetric token.
When Key Form is IM, this will be an external variable-length symmetric
token. See rule_array for a list of valid key types.

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Table 97. Required access control points for Secure Key Import2

Key Form Access control point

OP Secure Key Import2 – OP

IM Secure Key Import2 – IM

When the Symmetric Key Import2 - disallow weak import access control point is
enabled, a key token wrapped with a weaker key will not be imported. When the
Warn when weak wrap - Transport keys access control point is enabled, the
reason code will indicate when the wrapping key is weaker than the key being
imported.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 98. Secure Key Import2 required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

Secure Key Import2

Chapter 5. Managing Symmetric Cryptographic Keys 255

Table 98. Secure Key Import2 required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z10 EC

IBM System z10 BC

This service is not supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

HMAC key support requires the Nov. 2010
or later licensed internal code (LIC).

AES key support requires the Sep. 2011 or
later licensed internal code (LIC).

Keywords V0PYLD and V1PYLD are not
supported.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

V0PYLD and V1PYLD keywords require the
Sep. 2013 or later licensed internal code
(LIC).

Symmetric Key Export (CSNDSYX and CSNFSYX)
Use the symmetric key export callable service to transfer an application-supplied
AES, DES or variable-length symmetric key token key from encryption under a
master key to encryption under an application-supplied RSA public key or AES
EXPORTER key. The application-supplied key must be an ICSF AES, DES, or
HMAC internal key token or the label of such a token in the CKDS. The
Symmetric Key Import or Symmetric Key Import2 callable services can import the
key encrypted under the RSA public key or AES EXPORTER at the receiving node.

The callable service name for AMODE(64) is CSNFSYX.

Format
CALL CSNDSYX(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
source_key_identifier_length,
source_key_identifier,
transporter_key_identifier_length,
transporter_key_identifier,
enciphered_key_length,
enciphered_key)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

Secure Key Import2

256 z/OS ICSF Application Programmer's Guide

|

|

||

|
|
|

|
|
|
|
|
|
|

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. Value
may be 1, 2, or 3.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. Table 99 lists
the keywords. Each keyword is left-justified in 8-byte fields and padded on the
right with blanks. All keywords must be in contiguous storage.

Table 99. Keywords for Symmetric Key Export Control Information

Keyword Meaning

Token Algorithm (One keyword, optional)

AES The key being exported is an AES key. If source_key_identifier
is a variable-length symmetric key token or label, only the
PKOAEP2 and AESKW key formatting methods are
supported.

DES The key being exported is a DES key. This is the default.

HMAC The key being exported is an HMAC key. Only the
PKOAEP2 and AESKW key formatting methods are
supported.

Symmetric Key Export

Chapter 5. Managing Symmetric Cryptographic Keys 257

|

Table 99. Keywords for Symmetric Key Export Control Information (continued)

Keyword Meaning

Key Formatting method (One required)

AESKW Specifies that the key is to be formatted using AESKW and
placed in an external variable length CCA token. The
transport_key_identifier must be an AES EXPORTER. This rule
is not valid with the DES Algorithm keyword or with AES
DATA (version X'04') keys.

AESKWCV Specifies that the key is to be formatted using AESKW and
placed in a symmetric variable length CCA token of type
DESUSECV. The transport_key_identifier must be an AES
EXPORTER key. The DES control vector and other
significant token information will be in the associated data
section of the variable length key token. Only valid with the
DES token algorithm.

PKCSOAEP Specifies to format the key according to the method in RSA
DSI PKCS #1V2 OAEP. The default hash method is SHA-1.
Use the SHA-256 keyword for the SHA-256 hash method.

PKCS–1.2 Specifies to format the key according the method found in
RSA DSI PKCS #1 block type 02 to recover the symmetric
key.

PKOAEP2 Specifies to format the key according to the method found
in RSA DSI PKCS #1 v2.1 RSAES-OAEP documentation. Not
valid with DES algorithm or with AES DATA (version X’04’)
keys. A hash method is required.

ZERO-PAD The clear key is right-justified in the field provided, and the
field is padded to the left with zeros up to the size of the
RSA encryption block (which is the modulus length).

Hash Method (One, optional for PKCSOAEP, required for PKOAEP2. Not valid with any
other Key Formatting method)

SHA-1 Specifies to use the SHA-1 hash method to calculate the
OAEP message hash. This is the default for PKCSOAEP.

SHA-256 Specifies to use the SHA-256 hash method to calculate the
OAEP message hash.

SHA-384 Specifies to use the SHA-384 hash method to calculate the
OAEP message hash. Not valid with PKCSOAEP.

SHA-512 Specifies to use the SHA-512 hash method to calculate the
OAEP message hash. Not valid with PKCSOAEP.

source_key_identifier_length

Direction Type

Input Integer

The length of the source_key_identifier parameter. The minimum size is 64 bytes.
The maximum size is 725 bytes.

source_key_identifier

Direction Type

Input/Output String

Symmetric Key Export

258 z/OS ICSF Application Programmer's Guide

||
|
|
|
|
|
|

The label or internal token of a secure AES DATA (version X‘04’), DES DATA,
or variable-length symmetric key token to encrypt under the supplied RSA
public key or a secure AES or DES key token to encrypt under the supplied
AES EXPORTER key. The key in the key identifier must match the algorithm in
the rule_array. DES is the default algorithm.

transporter_key_identifier_length

Direction Type

Input Integer

The length of the transporter_key_identifier parameter. The maximum size is
3500 bytes for an RSA key token or 725 for an AES EXPORTER key token. The
length must be 64 if transporter_key_identifier is a label.

transporter_key_identifier

Direction Type

Input String

An RSA public key token, AES EXPORTER token, or label of the key to protect
the exported symmetric key.

When the AESKW or AESKWCV Key Formatting method is specified, this
parameter must be an AES EXPORTER key token or label with the EXPORT bit
on in the key-usage field. Otherwise, this parameter must be an RSA public
key token or label.

enciphered_key_length

Direction Type

Input/Output Integer

The length of the enciphered_key parameter. This is updated with the actual
length of the enciphered_key generated. The maximum size you can specify in
this parameter is 900 bytes, although the actual key length may be further
restricted by your hardware configuration (as shown in Table 102 on page 261).

enciphered_key

Direction Type

Output String

This field contains the exported key, protected by the RSA public or AES
EXPORTER key specified in the transporter_key_identifier field.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

If an RSA public key is specified as the transporter_key_identifier, the hardware
configuration sets the limit on the modulus size of keys for key management; thus,
this service will fail if the RSA key modulus bit length exceeds this limit.

Symmetric Key Export

Chapter 5. Managing Symmetric Cryptographic Keys 259

|
|
|
|
|

|
|
|
|

When wrapping an AES key with an RSA public key, the RSA key used must have
a modulus size greater than or equal to the total PKOAEP2 message bit length (key
size + total overhead).

Table 100. Minimum RSA modulus strength required to contain a PKOAEP2 block when
exporting an AES key

AES key
size

Total message sizes (and therefore minimum RSA key size) when the Hash
Method is:

SHA-1 SHA-256 SHA-384 SHA-512

128 bits 736 bits 928 bits 1184 bits 1440 bits

192 bits 800 bits 992 bits 1248 bits 1504 bits

256 bits 800 bits 1056 bits 1312 bits 1568 bits

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Table 101. Required access control points for Symmetric Key Export

Key formatting
method Token Algorithm Access control point

PKCSOAEP AES Symmetric Key Export - AES,
PKCSOAEP, PKCS-1.2

DES Symmetric Key Export - DES,
PKCS-1.2

PKCS-1.2 AES Symmetric Key Export - AES,
PKCSOAEP, PKCS-1.2

DES Symmetric Key Export - DES,
PKCS-1.2

ZERO-PAD AES Symmetric Key Export - AES,
ZERO-PAD

DES Symmetric Key Export - DES,
ZERO-PAD

PKOAEP2 HMAC Symmetric Key Export - HMAC,
PKOAEP2

AES Symmetric Key Export - AES,
PKOAEP2

AESKW AES or HMAC Symmetric Key Export - AESKW

AESKWCV DES Symmetric Key Export –
AESKWCV

If the transport key identifier is a weaker key than the key being exported, then:
v the service will fail if the Prohibit weak wrapping - Transport keys access

control point is enabled.
v the service will complete successfully with a warning return code if the Warn

when weak wrap - Transport keys access control point is enabled.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Symmetric Key Export

260 z/OS ICSF Application Programmer's Guide

|||
|

Table 102. Symmetric key export required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

RSA keys with moduli greater than 2048-bit
length are not supported.

Encrypted AES keys are not supported.

The AESKW, AESKWCV, HMAC, and
PKOAEP2 keywords are not supported.

The SHA-256 keyword is not supported for
PKCSOAEP.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor RSA key support with moduli within the

range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Encrypted AES key support requires the
Nov. 2008 or later licensed internal code
(LIC).

The AESKW, AESKWCV, HMAC, and
PKOAEP2 keywords are not supported.

The SHA-256 keyword is not supported for
PKCSOAEP.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor RSA key support with moduli within the

range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Encrypted AES key support requires the
Nov. 2008 or later licensed internal code
(LIC).

The AESKW, AESKWCV, HMAC, and
PKOAEP2 keywords are not supported.

The SHA-256 keyword is not supported for
PKCSOAEP.

Crypto Express3
Coprocessor The AESKW, AESKWCV, HMAC, and

PKOAEP2 keywords are not supported.

The SHA-256 keyword is not supported for
PKCSOAEP.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor HMAC key support requires the Nov. 2010

licensed internal code (LIC).

Variable-length AES Keys, the AESKW
method, and PKCSOAEP with the SHA-256
hash method require the Sep. 2011 or later
licensed internal code (LIC).

The AESKWCV keyword is not supported.

Symmetric Key Export

Chapter 5. Managing Symmetric Cryptographic Keys 261

|
|

|
|

|
|

|
|

|

Table 102. Symmetric key export required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

AESKWCV requires the Sep. 2013 or later
licensed internal code (LIC).

Symmetric Key Export with Data (CSNDSXD and CSNFSXD)
Export a symmetric key, along with some application supplied data, encrypted
using an RSA key. The clear key data will be copied into the provided data field at
offset data_offset then encrypted using the PKCS-1.5 block type 2 formatting
algorithm.

The callable service name for AMODE(64) is CSNDSXD.

Format
CALL CSNDSXD(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
source_key_identifier_length,
source_key_identifier,
data_length,
data_offset,
data,
RSA_public_key_identifier_length,
RSA_public_key_identifier,
RSA_enciphered_key_length,
RSA_enciphered_key)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

Symmetric Key Export

262 z/OS ICSF Application Programmer's Guide

|
|

|

|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|||

||
|

|
|

|

|||

||
|

|
|
|
|

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value
must be 2.

rule_array

Direction Type

Input String

The keywords that provide control information to the callable service. The
following table provides a list. The keywords must be 8 bytes of contiguous
storage with the keyword left-justified in its 8-byte location and padded on the
right with blanks.

Table 103. Keywords for Symmetric Key Export with Data (CSNDSXD)

Keyword Meaning

Algorithm (one required)

AES The key specified in source_key_identifier is an AES key.

DES The key specified in source_key_identifier is a DES key.

Key Formatting method (one required)

PKCS–EXT Copy the clear key data (length determined by the key
length in the source key token) into the provided data field
at offset data_offset then encrypt using the PKCS-1.5 block
type 2 formatting algorithm.

source_key_identifier_length

Direction Type

Input Integer

Symmetric Key Export with Data

Chapter 5. Managing Symmetric Cryptographic Keys 263

|

|||

||
|

|
|
|

|

|||

||
|

|

|

|||

||
|

|
|

|

|||

||
|

|
|
|
|

||

||

|

||

||

|

||
|
|
|
|

|

|||

||
|

The length of the source_key_identifier parameter. This value is 64 when a label
is supplied. When the key identifier is a key token, the value is the length of
the token. For DES keys, the value must be 64. For AES keys, the maximum
value is 725.

source_key_identifier

Direction Type

Input String

An internal key token or the label of the CKDS record containing an
operational AES or DES key token that is to be exported. If the key is a DES
key, bit 17 of the control vector must be equal to '1'b (XPORT-OK). The key
must have a control vector of DATAC or DKYGENKY with subtype DKYL0,
unless the “Allow Symmetric Key Export with Data Special” access control
point is enabled. If the AES key is in a fixed length key token, no control
vector checking is needed. If the AES key is in a variable length token, the key
type must be CIPHER. If the key type is not CIPHER, an access control point
“Allow Symmetric Key Export with Data Special” must be enabled. If they key
is an AES key, the key management field in the key must allow export by RSA
keys and by unauthenticated asymmetric keys.

If the token supplied was encrypted under the old master key, the token will
be returned encrypted under the current master key.

data_length

Direction Type

Input Integer

The length of data in bytes. The maximum value is the length of the modulus
(in bytes) of the RSA_public_key_identifier minus 11. The overall maximum
value is 501.

data_offset

Direction Type

Input Integer

The offset from the start of data at which the clear DES or AES key is to be
copied. The maximum value is data_length - key length of clear source key.

data

Direction Type

Input String

The clear data. The deciphered key from source_key_identifier is copied into this
data at the specified offset, and then encrypted with the key from the
RSA_public_key_identifier.

RSA_public_key_identifier_length

Direction Type

Input Integer

The length of the RSA_public_key_identifier field in bytes. This value is 64 when
a label is supplied. When the key identifier is a key token, the value is the
length of the token. The maximum value is 3500.

Symmetric Key Export with Data

264 z/OS ICSF Application Programmer's Guide

|
|
|
|

|

|||

||
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|

|||

||
|
|
|
|

|

|||

||
|
|
|

|

|||

||
|
|
|
|

|

|||

||
|

|
|
|

RSA_public_key_identifier

Direction Type

Input String

A PKA96 RSA internal or external key-token with the RSA public key of the
remote node that is to import the exported key.

RSA_enciphered_key_length

Direction Type

Output Integer

The length of the RSA_enciphered_key field in bytes. On output, the variable is
updated with the actual length of the RSA_enciphered_key parameter. The
maximum length is 512.

RSA_enciphered_key

Direction Type

Output String

The exported RSA-enciphered key.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Table 104. Required access control points for Symmetric Key Export with Data

Access control point Restrictions

Symmetric Key Export with Data None

Symmetric Key Export with Data - Special Allow source keys that are not DATAC or
DKYGENKY with subtype DKYL0

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 105. Symmetric key export with data required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

This service is not supported.

Symmetric Key Export with Data

Chapter 5. Managing Symmetric Cryptographic Keys 265

|

|||

||
|

|
|

|

|||

||
|

|
|
|

|

|||

||
|

|

|

|
|

|

|
|

||

||

||

||
|
|

|

|
|

||

||
|
|

|

|
|

|
|

||

Table 105. Symmetric key export with data required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z9 EC

IBM System z9 BC

This service is not supported.

IBM System z10 EC

IBM System z10 BC

This service is not supported.

IBM zEnterprise 196

IBM zEnterprise 114

This service is not supported.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Recover PIN From Offset requires the Sep.
2013 or later LIC.

Symmetric Key Generate (CSNDSYG and CSNFSYG)
Use the symmetric key generate callable service to generate an AES or DES DATA
key and return the key in two forms: enciphered under the master key and
encrypted under an RSA public key.

You can import the RSA public key encrypted form by using the symmetric key
import service at the receiving node.

Also use the symmetric key generate callable service to generate any DES importer
or exporter key-encrypting key encrypted under a RSA public key according to the
PKA92 formatting structure. See “PKA92 Key Format and Encryption Process” on
page 911 for more details about PKA92 formatting.

The callable service name for AMODE(64) invocation is CSNFSYG.

Format
CALL CSNDSYG(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_encrypting_key_identifier,
RSA_public_key_identifier_length,
RSA_public_key_identifier,
local_enciphered_key_token_length,
local_enciphered_key_token,
RSA_enciphered_key_length,
RSA_enciphered_key)

Symmetric Key Export with Data

266 z/OS ICSF Application Programmer's Guide

|

||
|
|

|

|

|

||

|

|

||

|

|

||

|

|

|
|

|
|

|
|

|

|

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value
must be 1, 2, 3, 4, 5, 6, or 7.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. Table 106 on
page 268 lists the keywords. The keywords must be 8 bytes of contiguous
storage with the keyword left-justified in its 8-byte location and padded on the
right with blanks.

Symmetric Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 267

Table 106. Keywords for Symmetric Key Generate Control Information

Keyword Description Algorithm

Algorithm (one keyword, optional)

AES The key being generated is a secure
AES key.

AES

DES The key being generated is a DES key.
This is the default.

DES

Key formatting method (one keyword required)

PKA92 Specifies the key-encrypting key is to
be encrypted under a PKA96 RSA
public key according to the PKA92
formatting structure.

DES

PKCSOAEP Specifies using the method found in
RSA DSI PKCS #1V2 OAEP. The
default hash method is SHA-1. Use
the SHA-256 keyword for the
SHA-256 hash method.

AES or DES

PKCS-1.2 Specifies the method found in RSA
DSI PKCS #1 block type 02.

AES or DES

ZERO-PAD The clear key is right-justified in the
field provided, and the field is
padded to the left with zeros up to
the size of the RSA encryption block
(which is the modulus length).

AES or DES

Key Length (optional - for use with PKA92)

SINGLE-R For key-encrypting keys, this specifies
that the left half and right half of the
generated key will have identical
values. This makes the key operate
identically to a single-length key with
the same value. Without this
keyword, the left and right halves of
the key-encrypting key will each be
generated randomly and
independently.

DES

Key Length (optional - for use with PKCSOAEP, PKCS-1.2, or ZERO-PAD)

SINGLE,
KEYLN8

Specifies that the generated key
should be 8 bytes in length.

DES

DOUBLE Specifies that the generated key
should be 16 bytes in length.

DES

KEYLN16 Specifies that the generated key
should be 16 bytes in length.

AES or DES

KEYLN24 Specifies that the generated key
should be 24 bytes in length.

AES or DES

KEYLN32 Specifies that the generated key
should be 32 bytes in length.

AES

Encipherment method for the local enciphered copy of the key (optional - for use with
PKCSOAEP, PKCS-1.2, or ZERO-PAD

OP Enciphers the key with the master
key. The DES master key is used with
DES keys and the AES master key is
used with AES keys.

AES or DES

Symmetric Key Generate

268 z/OS ICSF Application Programmer's Guide

Table 106. Keywords for Symmetric Key Generate Control Information (continued)

Keyword Description Algorithm

EX Enciphers the key with the
EXPORTER key that is provided
through the
key_encrypting_key_identifier parameter.

DES

IM Enciphers the key with the
IMPORTER key-encrypting key
specified with the
key_encrypting_key_identifier parameter.

DES

Key Wrapping Method (optional)

USECONFG Specifies that the system default
configuration should be used to
determine the wrapping method. This
is the default keyword.

The system default key wrapping
method can be specified using the
DEFAULTWRAP parameter in the
installation options data set. See the
z/OS Cryptographic Services ICSF
System Programmer's Guide.

AES and DES

WRAP-ENH Use enhanced key wrapping method,
which is compliant with the ANSI
X9.24 standard.

DES

WRAP-ECB Use original key wrapping method,
which uses ECB wrapping for DES
key tokens and CBC wrapping for
AES key tokens.

AES or DES

Translation Control (optional)

ENH-ONLY Restrict rewrapping of the
target_key_identifier token. Once the
token has been wrapped with the
enhanced method, it cannot be
rewrapped using the original method.

DES

Hash Method (optional - only valid with PKCSOAEP)

SHA-1 Specifies to use the SHA-1 hash
method to calculate the OAEP
message hash. This is the default.

AES or DES

SHA-256 Specifies to use the SHA-256 hash
method to calculate the OAEP
message hash.

AES or DES

key_encrypting_key_identifier

Direction Type

Input/Output String

The label or internal token of a key-encrypting key. If the rule_array specifies
IM, this DES key must be an IMPORTER. If the rule_array specifies EX, this
DES key must be an EXPORTER. Otherwise, the parameter is ignored.

RSA_public_key_identifier_length

Symmetric Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 269

Direction Type

Input Integer

The length of the RSA_public_key_identifier parameter. If the
RSA_public_key_identifier parameter is a label, this parameter specifies the
length of the label. The maximum size is 3500 bytes.

RSA_public_key_identifier

Direction Type

Input String

The token, or label, of the RSA public key to be used for protecting the
generated symmetric key.

local_enciphered_key_token_length (was DES_enciphered_key_token_length)

Direction Type

Input/Output Integer

The length in bytes of the local_enciphered_key_token. This field is updated
with the actual length of the token that is generated. The minimum length is
64-bytes and the maximum length is 128 bytes.

local_enciphered_key_token (was DES_enciphered_key_token)

Direction Type

Input/Output String

This parameter contains the generated DATA key in the form of an internal or
external token, depending on rule_array specification. If you specify PKA92, on
input specify an internal (operational) key token of an Importer or Exporter
Key.

RSA_enciphered_key_length

Direction Type

Input/Output Integer

The length of the RSA_enciphered_key parameter. This service updates this field
with the actual length of the RSA_enciphered_key it generates. The maximum
size is 512 bytes.

RSA_enciphered_key

Direction Type

Input/Output String

This field contains the RSA enciphered key, which is protected by the public
key specified in the RSA_public_key_identifier field.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Symmetric Key Generate

270 z/OS ICSF Application Programmer's Guide

The hardware configuration sets the limit on the modulus size of keys for key
management; thus, this service will fail if the RSA key modulus bit length exceeds
this limit.

Specification of PKA92 with an input NOCV key-encrypting key token is not
supported.

Use the PKA92 key-formatting method to generate a key-encrypting key. The
service enciphers one key copy using the key encipherment technique employed in
the IBM Transaction Security System (TSS) 4753, 4755, and AS/400 cryptographic
product PKA92 implementations (see “PKA92 Key Format and Encryption
Process” on page 911). The control vector for the RSA-enciphered copy of the key
is taken from an internal (operational) DES key token that must be present on
input in the RSA_enciphered_key variable. Only key-encrypting keys that conform to
the rules for an OPEX case under the key generate service are permitted. The
control vector for the local key is taken from a DES key token that must be present
on input in the local_enciphered_key_token variable. The control vector for one key
copy must be from the EXPORTER class while the control vector for the other key
copy must be from the IMPORTER class.

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Table 107. Required access control points for Symmetric Key Generate

Key algorithm Key formatting rule Access control point

DES PKCS-1.2 Symmetric Key Generate - DES,
PKCS-1.2

DES ZERO-PAD Symmetric Key Generate - DES,
ZERO-PAD

DES PKA92 Symmetric Key Generate - DES,
PKA92

AES PKCSOAEP, PKCS-1.2 Symmetric Key Generate - AES,
PKCSOAEP, PKCS-1.2

AES ZERO-PAD Symmetric Key Generate - AES,
ZERO-PAD

When the WRAP-ECB or WRAP-ENH keywords are specified and the default
key-wrapping method setting does not match the keyword, the Symmetric Key
Generate - Allow wrapping override keywords access control point must be
enabled.

If the RSA key identifier is a weaker key than the key being generated, then:
v the service will fail if the Prohibit weak wrapping - Transport keys access

control point is enabled.
v the service will complete successfully with a warning return code if the Warn

when weak wrap - Transport keys access control point is enabled.

When the Disallow 24-byte DATA wrapped with 16-byte Key access control point
is enabled, this service will fail if the source key is a triple-length DATA key and
the DES master key is a 16-byte key.

Symmetric Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 271

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 108. Symmetric key generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

RSA keys with moduli greater than 2048-bit
length are not supported.

Secure AES keys are not supported.

ENH-ONLY, USECONFG, WRAP-ENH,
WRAP-ECB, and SHA-256 keywords not
supported.

PKCSOAEP with the SHA-256 hash method
is not supported.

IBM Systems z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

ENH-ONLY, USECONFG, WRAP-ENH,
WRAP-ECB, and SHA-256 not supported.

PKCSOAEP with the SHA-256 hash method
is not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

ENH-ONLY, USECONFG, WRAP-ENH,
WRAP-ECB, and SHA-256 not supported.

PKCSOAEP with the SHA-256 hash method
is not supported.

Crypto Express3
Coprocessor

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

The SHA-256 keyword is not supported.

PKCSOAEP with the SHA-256 hash method
is not supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

PKCSOAEP with the SHA-256 hash method
requires the Sep. 2011 or later licensed
internal code (LIC).

Symmetric Key Generate

272 z/OS ICSF Application Programmer's Guide

|
|

|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|

|
|

|
|
|

Table 108. Symmetric key generate required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Symmetric Key Import (CSNDSYI and CSNFSYI)
Use the symmetric key import callable service to import a symmetric AES DATA or
DES DATA key enciphered under an RSA public key. It returns the key in
operational form, enciphered under the master key.

This service also supports import of a PKA92-formatted DES key-encrypting key
under a PKA96 RSA public key.

The callable service name for AMODE(64) is CSNFSYI.

Format
CALL CSNDSYI(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
RSA_enciphered_key_length,
RSA_enciphered_key,
RSA_private_key_identifier_length,
RSA_private_key_identifier,
target_key_identifier_length,
target_key_identifier)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Symmetric Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 273

|

|

|
|

|
|

|

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value
may be 1, 2, 3, 4, or 5.

rule_array

Direction Type

Input String

The keywords that provide control information to the callable service. Table 109
provides a list. The recovery method is the method to use to recover the
symmetric key. The keywords must be 8 bytes of contiguous storage with the
keyword left-justified in its 8-byte location and padded on the right with
blanks.

Table 109. Keywords for Symmetric Key Import Control Information

Keyword Meaning

Algorithm (one keyword, optional)

AES The key being imported is an AES key.

DES The key being imported is a DES key. This is the default.

Recovery Method (required)

PKA92 Supported by the DES algorithm. Specifies the
key-encrypting key is encrypted under a PKA96 RSA
public key according to the PKA92 formatting structure.

PKCSOAEP Specifies to use the method found in RSA DSI PKCS #1V2
OAEP. Supported by the DES and AES algorithms. The
default hash method is SHA-1. Use the SHA-256 keyword
for the SHA-256 hash method.

PKCS-1.2 Specifies to use the method found in RSA DSI PKCS #1
block type 02. Supported by the DES and AES algorithms.

ZERO-PAD The clear key is right-justified in the field provided, and
the field is padded to the left with zeros up to the size of
the RSA encryption block (which is the modulus length).
Supported by the DES and AES algorithms.

Symmetric Key Import

274 z/OS ICSF Application Programmer's Guide

Table 109. Keywords for Symmetric Key Import Control Information (continued)

Keyword Meaning

Key Wrapping Method (optional)

USECONFG Specifies that the system default configuration should be
used to determine the wrapping method. This is the
default keyword.

The system default key wrapping method can be specified
using the DEFAULTWRAP parameter in the installation
options data set. See the z/OS Cryptographic Services ICSF
System Programmer's Guide.

WRAP-ENH Use enhanced key wrapping method, which is compliant
with the ANSI X9.24 standard.

WRAP-ECB Use original key wrapping method, which uses ECB
wrapping for DES key tokens and CBC wrapping for AES
key tokens.

Translation Control (optional)

ENH-ONLY Restrict rewrapping of the target_key_identifier token. Once
the token has been wrapped with the enhanced method, it
cannot be rewrapped using the original method.

Hash Method (optional - only valid with PKCSOAEP)

SHA-1 Specifies to use the SHA-1 hash method to calculate the
OAEP message hash. This is the default.

SHA-256 Specifies to use the SHA-256 hash method to calculate the
OAEP message hash.

RSA_enciphered_key_length

Direction Type

Input Integer

The length of the RSA_enciphered_key parameter. The maximum size is 512
bytes.

RSA_enciphered_key

Direction Type

Input String

The key to import, protected under an RSA public key. The encrypted key is in
the low-order bits (right-justified) of a string whose length is the minimum
number of bytes that can contain the encrypted key. This string is left-justified
within the RSA_enciphered_key parameter.

RSA_private_key_identifier_length

Direction Type

Input Integer

The length of the RSA_private_key_identifier parameter. When the
RSA_private_key_identifier parameter is a key label, this field specifies the length
of the label. The maximum size is 3500 bytes.

Symmetric Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 275

RSA_private_key_identifier

Direction Type

Input String

An internal RSA private key token or label whose corresponding public key
protects the symmetric key.

target_key_identifier_length

Direction Type

Input/Output Integer

The length of the target_key_identifier parameter. This field is updated with the
actual length of the target_key_identifier that is generated. The size must be 64
bytes.

target_key_identifier

Direction Type

Output String

This field contains the internal token of the imported symmetric key. Except for
PKA92 processing, this service produces a DATA key token with a key of the
same length as that contained in the imported token.

Restrictions
The exponent of the RSA public key must be odd.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

The hardware configuration sets the limit on the modulus size of keys for key
management; thus, this service will fail if the RSA key modulus bit length exceeds
this limit. The service will fail with return code 12 and reason code 11020.

Specification of PKA92 with an input NOCV key-encrypting key token is not
supported.

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Table 110. Required access control points for Symmetric Key Import

Key algorithm Key formatting rule Access control point

DES PKCS-1.2 Symmetric Key Import - DES,
PKCS-1.2

DES PKA92 KEK Symmetric Key Import - DES,
PKA92 KEK

DES ZERO-PAD Symmetric Key Import - DES,
ZERO-PAD

Symmetric Key Import

276 z/OS ICSF Application Programmer's Guide

|

|
|

|
|
|

|
|

Table 110. Required access control points for Symmetric Key Import (continued)

Key algorithm Key formatting rule Access control point

AES PKCSOAEP, PKCS-1.2 Symmetric Key Import - AES,
PKCSOAEP, PKCS-1.2

AES ZERO-PAD Symmetric Key Import - AES,
ZERO-PAD

When the WRAP-ECB or WRAP-ENH keywords are specified and the default
key-wrapping method setting does not match the keyword, the Symmetric Key
Import - Allow wrapping override keywords access control point must be
enabled.

When the Disallow 24-byte DATA wrapped with 16-byte Key access control point
is enabled, this service will fail if the source key is a triple-length DATA key and
the DES master key is a 16-byte key.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 111. Symmetric key import required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

RSA keys with moduli greater than 2048-bit
length are not supported.

Encrypted AES keys are not supported.

ENH-ONLY, USECONFG, WRAP-ENH,
WRAP-ECB, and SHA-256 keywords not
supported.

PKCSOAEP with the SHA-256 hash method
is not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Encrypted AES keys are not supported.

ENH-ONLY, USECONFG, WRAP-ENH,
WRAP-ECB, and SHA-256 keywords not
supported.

PKCSOAEP with the SHA-256 hash method
is not supported.

Symmetric Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 277

|
|

|

|
|
|

|
|

|
|
|

|

|
|
|

|
|

Table 111. Symmetric key import required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Encrypted AES key support requires the
Nov. 2008 or later licensed internal code
(LIC).

ENH-ONLY, USECONFG, WRAP-ENH,
WRAP-ECB, and SHA-256 keywords not
supported.

PKCSOAEP with the SHA-256 hash method
is not supported.

Crypto Express3
Coprocessor

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Encrypted AES key support requires the
Nov. 2008 or later licensed internal code
(LIC).

The SHA-256 keyword is not supported.

PKCSOAEP with the SHA-256 hash method
is not supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

PKCSOAEP with the SHA-256 hash method
requires the Sep. 2011 or later licensed
internal code (LIC).

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Symmetric Key Import2 (CSNDSYI2 and CSNFSYI2)
Use the Symmetric Key Import2 callable service to import an HMAC, AES or DES
key enciphered under an RSA public key or AES EXPORTER key. It returns the key
in operational form, enciphered under the master key.

This service returns a variable-length CCA key token wrapped using the mode
configured as the default wrapping mode, either enhanced wrapping mode
(WRAP-ENH) or original ECB wrapping mode (WRAP-ECB).

The callable service name for AMODE(64) is CSNFSYI2.

Format
CALL CSNDSYI2(

return_code,
reason_code,
exit_data_length,
exit_data,

Symmetric Key Import

278 z/OS ICSF Application Programmer's Guide

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

|

|
|

|
|
|

|

|

|
|

|
|

|

|
|
|

|
|
|

rule_array_count,
rule_array,
enciphered_key_length,
enciphered_key,
transport_key_identifier_length,
transport_key_identifier,
key_name_length,
key_name,
target_key_identifier_length,
target_key_identifier)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value
may be 2, 3 or 4.

rule_array

Symmetric Key Import2

Chapter 5. Managing Symmetric Cryptographic Keys 279

|

Direction Type

Input String

The keywords that provide control information to the callable service. The
following table provides a list. The recovery method is the method to use to
recover the symmetric key. The keywords must be 8 bytes of contiguous
storage with the keyword left-justified in its 8-byte location and padded on the
right with blanks.

Table 112. Keywords for Symmetric Key Import2 Control Information

Keyword Meaning

Token Algorithm (One required)

AES The key being imported is an AES key.

DES The key being imported is a DES key.

HMAC The key being imported is an HMAC key.

Recovery Method (Required)

AESKW Specifies the enciphered key has been wrapped with the
AESKW formatting method.

AESKWCV Specifies the enciphered key has been wrapped with the
AESKWCV formatting method with a key type of
DESUSECV.

PKOAEP2 Specifies to use the method found in RSA DSI PKCS #1
v2.1 RSAES-OAEP documentation.

Key Wrapping Method (Optional, valid only for DES algorithm. The Access Control Point
Symmetric Key Import2 – Allow wrapping override keywords must be enabled to specify these
keywords)

USECONFG Specifies that the configuration setting for the default
wrapping method is to be used to wrap the key. This is the
default.

WRAP-ENH Specifies that the new enhanced wrapping method is to be
used to wrap the key.

WRAP-ECB Specifies that the original wrapping method is to be used.

Translation Control (Optional, valid only for enhanced wrapping)

ENH-ONLY Specify this keyword to indicate that the key once wrapped
with the enhanced method cannot be wrapped with the
original method. This restricts translation to the original
method.

enciphered_key_length

Direction Type

Input Integer

The length of the enciphered_key parameter. The maximum size is 900 bytes.

enciphered_key

Direction Type

Input String

Symmetric Key Import2

280 z/OS ICSF Application Programmer's Guide

||

||

||
|
|

|
|

|
|
|

||
|
|

||
|

||

|

||
|
|
|

The key to import, protected under either an RSA public key or an AES KEK.
If the Recovery Method is PKOAEP2, the encrypted key is in the low-order
bits (right-justified) of a string whose length is the minimum number of bytes
that can contain the encrypted key. If the Recovery Method is AESKW, the
encrypted key is an AES key or HMAC key in the external variable length key
token. If the Recovery Method is AESKWCV, the encrypted key is a DES key in
an external variable length DESUSECV key token.

transport_key_identifier_length

Direction Type

Input Integer

The length of the transport_key_identifier parameter. When the
transport_key_identifier parameter is a key label, this field must be 64. The
maximum size is 3500 bytes for an RSA private key or 725 bytes for an AES
IMPORTER KEK.

transport_key_identifier

Direction Type

Input String

An internal RSA private key token, internal AES IMPORTER KEK, or the
64-byte label of a key token whose corresponding key protects the symmetric
key.

When the AESKW or AESKWCV Key Formatting method is specified, this
parameter must be an AES IMPORTER with the IMPORT bit on in the
key-usage field. Otherwise, this parameter must be an RSA private key.

key_name_length

Direction Type

Input Integer

The length of the key_name parameter for target_key_identifier. Valid values are
0 and 64. For the DES token algorithm, key_name_length must be 0.

key_name

Direction Type

Input String

A 64-byte key store label to be stored in the associated data structure of
target_key_identifier.

target_key_identifier_length

Direction Type

Input/Output Integer

On input, the byte length of the buffer for the target_key_identifier parameter.
The buffer must be large enough to receive the target key token. The maximum
value is 725 bytes.

On output, the parameter will hold the actual length of the target key token.

Symmetric Key Import2

Chapter 5. Managing Symmetric Cryptographic Keys 281

|
|
|
|
|
|
|

|
|
|

|

target_key_identifier

Direction Type

Output String

This parameter contains the internal token of the imported symmetric key.

Restrictions
The exponent of the RSA public key must be odd.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

This is the message layout used to encode the key material exported with the new
PKOAEP2 formatting method.

Table 113. PKCS#1 OAEP encoded message layout (PKOAEP2)

Field Size Value

Hash field 32 Bytes SHA-256 hash of associated data section in
the source key identifier

Key Bit Length 2 Bytes variable

Key Material Byte length of the
key material
(rounded up to the
nearest byte)

variable

Hash field
The associated data for the HMAC variable length token is hashed using
SHA-256. Specifically referring to vartoken.h, this is the "VarAssocData_t
AD" section of the VarKeyTkn_t structure, for the full length indicated in
the 'SectLn' field of the VarAssocData_t.

Key Bit Length
A 2 Byte key bit length field.

Key Material
The key material is padded to the nearest byte with '0' bits.

Access Control Points
This table lists the access control points in the domain role that control the function
for this service.

Table 114. Symmetric Key Import2 Access Control Points

Key formatting method Token Algorithm Access control point

PKOAEP2 HMAC, AES Symmetric Key Import2 -
HMAC/AES, PKOAEP2

AESKW HMAC, AES Symmetric Key Import2 -
HMAC/AES, AESKW

AESKWCV DES Symmetric Key Import2 –
AESKWCV

Symmetric Key Import2

282 z/OS ICSF Application Programmer's Guide

|

|||
|

When the Symmetric Key Import2 - disallow weak import access control point is
enabled, a key token wrapped with a weaker key will not be imported. When the
Warn when weak wrap - Transport keys access control point is enabled, the
reason code will indicate when the wrapping key is weaker than the key being
imported.

If the token algorithm is DES and the wrapping method specified is not the default
method, then the Symmetric Key Import2 – Allow wrapping override keywords
access control point must be enabled.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 115. Symmetric key import2 required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

IBM System z10 EC

IBM System z10 BC

This service is not supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor HMAC key support requires the Nov. 2010

or later licensed internal code (LIC).

AES key support and the AESKW
wrapping method require the Sep. 2011 or
later licensed internal code (LIC).

DES, AESKWCV, USECONFG, WRAP-ECB,
WRAP-ENH and ENH-ONLY keywords are
not supported.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

DES, AESKWCV, USECONFG, WRAP-ECB,
WRAP-ENH and ENH-ONLY keywords
require the Sep. 2013 or later licensed
internal code (LIC).

Trusted Block Create (CSNDTBC and CSNFTBC)
This callable service is used to create a trusted block in a two step process. The
block will be in external form, encrypted under an IMP-PKA transport key. This
means that the MAC key contained within the trusted block will be encrypted
under the IMP-PKA key.

The callable service name for AMODE(64) invocation is CSNFTBC.

Symmetric Key Import2

Chapter 5. Managing Symmetric Cryptographic Keys 283

|
|
|

|

|

||

|
|
|

|
|
|
|

Format
CALL CSNDTBC(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
input_block_length,
input_block_identifier,
transport_key_identifier,
trusted_block_length,
trusted_block_identifier)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
ICSF and TSS Return and Reason Codes lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the specific results of processing. Each return code
has different reason codes that indicate specific processing problems.
Appendix A, “ICSF and TSS Return and Reason Codes,” on page 755 lists the
reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. This
number must be 1.

Trusted Block Create

284 z/OS ICSF Application Programmer's Guide

rule_array

Direction Type

Input String

Specifies a string variable containing an array of keywords. The keywords are
8 bytes long and must be left-justified and right padded with blanks

This table lists the rule_array keywords for this callable service.

Table 116. Rule_array keywords for Trusted Block Create (CSNDTBC)

Keyword Meaning

Operational Keywords - One Required

INACTIVE Create the trusted block, but in inactive form. The MAC key
is randomly generated, encrypted with the transport key,
and inserted into the block. The ACTIVE flag is set to False
(0), and the MAC is calculated over the block and inserted
in the appropriate field. The resulting block is fully formed
and protected, but it is not usable in any other CCA
services. Use of the INACTIVE keyword is authorized by
the 0x030F access control point.

ACTIVATE This makes the trusted block usable in CCA services. Use of
the ACTIVATE keyword is authorized by the 0x0310 access
control point.

input_block_length

Direction Type

Input/Output String

Specifies the number of bytes of data in the input_block_identifier parameter.
The maximum length is 3500 bytes.

input_block_identifier

Direction Type

Input String

Specifies a trusted block label or complete trusted block token, which will be
updated by the service and returned in trusted_block_identifier. The length is
indicated by input_block_length. Its content depends on the rule array
keywords supplied to the service.

When rule_array is INACTIVE the block is complete but typically does not
have MAC protection. If MAC protection is present due to recycling an
existing trusted block, then the MAC key and MAC value will be overlaid by
the new MAC key and MAC value. The input_block_identifier includes all
fields of the trusted block token, but the MAC key and MAC will be filled in
by the service. The Active flag will be set to False (0) in the block returned in
trusted_block_identifier.

When the rule_array is ACTIVATE the block is complete, including the MAC
protection which is validated during execution of the service. The Active flag
must be False (0) on input. On output, the block will be returned in
trusted_block_identifier provided the identifier is a token, with the Active flag

Trusted Block Create

Chapter 5. Managing Symmetric Cryptographic Keys 285

changed to True (1), and the MAC value recalculated using the same MAC key.
If the trusted_block_identifier is a label, the block will be written to the PKDS.

transport_key_identifier

Direction Type

Input String

Specifies a key label or key token for an IMP-PKA key that is used to protect
the trusted block.

trusted_block_length

Direction Type

Input/Output Integer

Specifies the number of bytes of data in trusted_block_identifier parameter.
The maximum length is 3500 bytes.

trusted_block_identifier

Direction Type

Output String

Specifies a trusted block label or trusted block token for the trusted block
constructed by the service. On input, the trusted_block_length contains the size
of this buffer. On output, the trusted_block_length is updated with the actual
byte length of the trusted block written to the buffer if the
trusted_block_identifier is a token. The trusted block consists of the data
supplied in input_block_identifier, but with the MAC protection and Active
flag updated according to the rule array keyword that is provided. See
Table 116 on page 285 for details on the actions. If the trusted_block_identifier
is a label identifying a key record in key storage, the returned trusted block
token will be written to the PKDS.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Table 117. Required access control points for Trusted Block Create

Rule array keyword Access control point

INACTIVE Trusted Block Create - Create Block in Inactive form

ACTIVATE Trusted Block Create - Activate an Inactive Block

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Trusted Block Create

286 z/OS ICSF Application Programmer's Guide

Table 118. Trusted Block Create required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

This callable service is not supported.

IBM eServer zSeries
900

This callable service is not supported.

IBM System z9 EC

IBM System z9 BC

Cryptographic
Express2 Coprocessor RSA key support with moduli within the

range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

TR-31 Export (CSNBT31X and CSNET31X)
Use the TR-31 Export callable service to convert a CCA token to TR-31 format for
export to another party. Since there is not always a one-to-one mapping between
the key attributes defined by TR-31 and those defined by CCA, the caller may
need to specify the attributes to attach to the exported key through the rule array.

The callable service name for AMODE(64) is CSNET31X.

Format
CALL CSNBT31X(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_version_number,
key_field_length,
source_key_identifier_length,
source_key_identifier,
unwrap_kek_identifier_length,
unwrap_kek_identifier,
wrap_kek_identifier_length,
wrap_kek_identifier,
opt_blks_length,
opt_blocks,
tr31_key_block_length,
tr31_key_block)

Trusted Block Create

Chapter 5. Managing Symmetric Cryptographic Keys 287

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Input/Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The
rule_array_count parameter must be 3, 4, or 5.

rule_array

Direction Type

Input String

The rule_array contains keywords that provide control information to the
callable service. The keywords are 8 bytes in length and must be left-aligned
and padded on the right with space characters. The rule_array keywords for
this callable service are shown in the following table. See Table 120 on page 294
for valid combinations of Usage and Mode

TR-31 Export

288 z/OS ICSF Application Programmer's Guide

Table 119. Keywords for TR-31 Export Rule Array Control Information

Keyword Meaning

TR-31 key block protection method – one required

VARXOR-A Use the variant method corresponding to a TR-31 Key Block
Version ID of “A” (0x41)

VARDRV-B Use the key derivation method corresponding to a TR-31 Key
Block Version ID of “B” (0x42)

VARXOR-C Use the variant method corresponding to a TR-31 Key Block
Version ID of “C” (0x43)

TR-31 key usage values for output key – one required
Note: If ATTR-CV is specified from the Control Vector Transport group, then usage
keyword must not be specified. The proprietary usage ‘10’ will be used.

BDK Base Derivation Key (BDK) – (B0)

CVK Card Verification Key (CVK) – (C0)

ENC Data encryption key – (D0)

EMVACMK EMV application cryptogram master key – (E0)

EMVSCMK EMV secure messaging for confidentiality master key – (E1)

EMVSIMK EMV secure messaging for integrity master key – (E2)

EMVDAMK EMV data authentication code key – (E3)

EMVDNMK EMV dynamic numbers master key – (E4)

EMVCPMK EMV card personalization master key – (E5)

KEK Key-encrypting key – (K0)

KEK-WRAP Key-encrypting key for wrapping TR-31 blocks (for ‘B’ and ‘C’
TR-31 Key Block Version IDs only) – (K1)

ISOMAC0 Key for ISO 16609 MAC algorithm 1 using TDES – (M0)

ISOMAC1 Key for ISO 9797-1 MAC algorithm 1– (M1)

ISOMAC3 Key for ISO 9797-1 MAC algorithm 3– (M3)

PINENC PIN encryption key – (P0)

PINVO PIN verification key, “other” algorithm – (V0)

PINV3624 PIN verification key for IBM 3624 algorithm – (V1)

VISAPVV PIN verification key, VISA PVV algorithm – (V2)

TR-31 modes of key use – one required
Note: If ATTR-CV is specified from the Control Vector Transport group, then mode
keyword must not be specified. The proprietary mode ‘1’ will be used.

ENCDEC Encrypt and decrypt – (B)

DEC-ONLY Decrypt only – (D)

ENC-ONLY Encrypt only – (E)

GENVER MAC or PIN generate and verify – (C)

v MAC key must have Gen and Ver bits on

v PIN key must have any PINGEN bit and EPINVER bit on

GEN-ONLY MAC or PIN generate only – (G)

v MAC key must have only Gen bit on

v PIN key must have any PINGEN bit on and EPINVER bit off

TR-31 Export

Chapter 5. Managing Symmetric Cryptographic Keys 289

Table 119. Keywords for TR-31 Export Rule Array Control Information (continued)

Keyword Meaning

VER-ONLY MAC or PIN verify only– (V)

v MAC key must have only Ver bit on

v PIN key must have all PINGEN bits off and EPINVER bit on

DERIVE Key Derivation(for ‘B’ and ‘C’ TR-31 Key Block Version IDs
only) – (X)

ANY Any mode allowed – (N)

Export control to set export field in TR-31 key block – optional

EXP-ANY Export allowed using any key-encrypting key. This is the default.

EXP-TRST Export allowed using a trusted key-encrypting key, as defined in
TR-31.
Note: A CCA key wrapped in the X9.24 compliant CCA key
block is considered a trusted key.

EXP-NONE Export prohibited

Control vector transport control – optional
Note: If no keyword from this group is supplied, the CV in the source_key_identifier is still
verified to agree with the ‘key usage’ and ‘mode of use’ keywords specified from the
groups above.

INCL-CV Include the CCA Control Vector as an optional field in the TR-31
key block header. The TR-31 usage and mode of use fields will
indicate the key attributes, and those attributes (derived from the
keywords passed from the above groups) will be verified by the
callable service to be compatible with the ones in the included
control vector.

ATTR-CV Include the CCA Control Vector as an optional field in the TR-31
key block header. The TR-31 usage will be set to the proprietary
ASCII value “10” (‘3130’x) to indicate usage information is
specified in the included CV, and the mode of use will be set to
the proprietary ASCII value “1” (‘31’x) to indicate that mode is
likewise specified in the CV.
Note: If this keyword is specified, then usage and mode
keywords from the preceding groups must not be specified. The
proprietary values will be used.

key_version_number

Direction Type

Input String

The two bytes from this parameter are copied into the Key Version Number
field of the output TR-31 key block. If no key version number is needed, the
value must be 0x3030 (“00”). If the CCA key in parameter source_key_identifier
is a key part (CV bit 44 is 1) then the key version number in the TR-31 key
block is set to “c0” (0x6330) according to the TR-31 standard, which indicates
that the TR-31 block contains a key part. In this case, the value passed to the
callable service in the key_version_number parameter is ignored.

key_field_length

Direction Type

Input Integer

This parameter specifies the length of the key field which is encrypted in the

TR-31 Export

290 z/OS ICSF Application Programmer's Guide

TR-31 block. The length must be a multiple of 8, the DES cipher block size,
and it must be greater than or equal to the length of the cleartext key passed
with parameter source_key_identifier plus the length of the 2-byte key length
that precedes this key in the TR-31 block. For example, if the source key is a
double-length TDES key of length 16 bytes, then the key field length must be
greater than or equal to (16+2) bytes, and must also be a multiple of 8. This
means that the minimum key_field_length in this case would be 24. TR-31
allows a variable number of padding bytes to follow the cleartext key, and the
caller may choose to pad with more than the minimum number of bytes
needed to form a block that is a multiple of 8. This is generally done to hide
the length of the cleartext key from those who cannot decipher that key. Most
often, all keys – single, double, or triple length – are padded to the same
length so that it is not possible to determine which length is carried in the
TR-31 block by examining the encrypted block.

Note that this parameter is not expected to allow for ASCII encoding of the
encrypted data stored in the key field according to the TR-31 specification. For
example when the user passes a value of 24 here, following the minimum
example above, the length of the final ASCII-encoded encrypted data in the
key field in the output TR-31 key block will be 48 Bytes.

source_key_identifier_length

Direction Type

Input Integer

This parameter specifies the length of the source_key_identifier parameter, in
bytes. The value in this parameter must currently be 64, since only CCA key
tokens are supported for the source key parameter.

source_key_identifier

Direction Type

Input/Output String

This parameter contains either the label or the key token for the key that is to
be exported. The key must be a CCA internal or external token. If the source
key is an external token, an identifier for the KEK that wraps the source key
must be passed in the unwrap_kek_identifier parameter. Only DES/TDES keys
are supported. If a key token is passed which is wrapped under the old master
key, it will be updated on output so that it is wrapped under the current
master key.

unwrap_kek_identifier_length

Direction Type

Input Integer

This parameter specifies the length of the unwrap_kek_identifier parameter, in
bytes. If the source_key_identifier is an external CCA token, then this parameter
must be 64. Otherwise, this parameter must be 0.

unwrap_kek_identifier

Direction Type

Input/Output String

When the source_key_identifier is an external CCA token, this parameter
contains either the label or the key token for the KEK which the
source_key_identifier is currently wrapped under. It must be a CCA internal DES
KEK token of type EXPORTER or OKEYXLAT. If the source_key_identifier is not

TR-31 Export

Chapter 5. Managing Symmetric Cryptographic Keys 291

an external CCA token, this parameter is ignored. If a key token is passed
which is wrapped under the old master key, it will be updated on output so
that it is wrapped under the current master key.

wrap_kek_identifier_length

Direction Type

Input Integer

This parameter specifies the length of the wrap_kek_identifier parameter, in
bytes. If the unwrap_kek_identifier is also to be used to wrap the output TR-31
key block, specify 0 for this parameter. Otherwise, this parameter must be 64.

wrap_kek_identifier

Direction Type

Input/Output String

When wrap_kek_identifier_length is 0, this parameter is ignored and the
unwrap_kek_identifier is also to be used to wrap the output TR-31 key block.
Otherwise, this parameter contains either the label or the key token for the
KEK to use for wrapping the output TR-31 key block. It must be a CCA
internal token for a KEK EXPORTER or OKEYXLAT type and must have the
same clear key as the unwrap_kek_identifier. If a key token is passed which is
wrapped under the old master key, it will be updated on output so that it is
wrapped under the current master key.

Note: ECB-mode wrapped DES keys (CCA legacy wrap mode) cannot be used
to wrap/unwrap TR-31 version ‘B’/’C’ key blocks that have/will have ‘E’
exportability, because ECB-mode does not comply with ANSI X9.24 Part 1.
This parameter exists to allow for KEK separation, it is possible that KEKs will
be restricted as to what they can wrap, such that a KEK for wrapping CCA
external keys may not be usable for wrapping TR-31 external keys, or vice
versa.

opt_blks_length

Direction Type

Input Integer

This parameter specifies the length of parameter opt_blocks in bytes. If no
optional data is to be included in the TR-31 key block, this parameter must be
set to zero.

opt_blocks

Direction Type

Input String

This parameter contains optional block data which is to be included in the
output TR-31 key block. The optional block data is prepared using the TR-31
Optional Data Build callable service, and must be in ASCII. This parameter is
ignored if opt_blks_length is zero.

TR31_key_block_length

Direction Type

Input/Output Integer

This parameter specifies the length of the TR31_key_block parameter, in bytes.

TR-31 Export

292 z/OS ICSF Application Programmer's Guide

On input, it must specify the size of the buffer available for the output TR-31
key block, and on return it is updated to contain the actual length of that
returned key block. If the provided buffer is not large enough for the output
TR-31 key block an error is returned. The maximum size of the output TR-31
key block is 9992 bytes.

TR31_key_block

Direction Type

Output String

This parameter specifies the location of the exported TR-31 key block wrapped
with the export key provided in the wrap_kek_identifier parameter.

Restrictions
This callable service only exports DES and TDES keys.

Proprietary values for the TR-31 header fields are not supported by this callable
service with the exception of the proprietary values used by IBM CCA when
carrying a control vector in an optional block in the header.

Usage Notes
Unless otherwise noted, all String parameters that are either written to, or read
from, a TR-31 key block will be in EBCDIC format. Input parameters are converted
to ASCII before being written to the TR-31 key block and output parameters are
converted to EBCDIC before being returned (see Appendix F, “EBCDIC and ASCII
Default Conversion Tables,” on page 919). TR-31 key blocks themselves are always
in printable ASCII format as required by the ANSI TR-31 specification.

If keyword INCL-CV or ATTR-CV is specified, the service inserts the CCA control
vector from the source key into an optional data field in the TR-31 header. The
TR-31 Import callable service can extract this CV and use it as the CV for the CCA
key it creates when importing the TR-31 block. This provides a way to use TR-31
for transport of CCA keys and to make the CCA key have identical control vectors
on the sending and receiving nodes. The difference between INCL-CV and
ATTR-CV is that INCL-CV is a normal TR-31 export in which the TR-31 key
attributes are set based on the supplied rule array keywords but the CV is also
included in the TR-31 block to provide additional detail. In contrast, the ATTR-CV
causes the service to include the CV but to set both the TR-31 usage and mode of
use fields to proprietary values which indicate that the usage and mode
information are specified in the CV and not in the TR-31 header. For option
INCL-CV, the export operation is still subject to the restrictions imposed by the
settings of the relevant access control points. For option ATTR CV, those access
control points are not checked and any CCA key can be exported as long as the
export control fields in the CV permit it.

SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS.

Note that the optional data, if present, must not already contain a padding Block,
ID “PB”. A Padding Block of the appropriate size, if needed, will be added when
building the TR-31 key block. If this callable service encounters a padding block in
the optional block data, an error will occur.

TR-31 Export

Chapter 5. Managing Symmetric Cryptographic Keys 293

Access Control Points
The access control points in the domain role that control the general function of
this service are:
v TR31 Export – Permit version A TR-31 key blocks
v TR31 Export – Permit version B TR-31 key blocks
v TR31 Export – Permit version C TR-31 key blocks

If the wrap KEK identifier is a weaker key than the key being exported, then:
v the service will fail if the Prohibit weak wrapping - Transport keys access

control point is enabled.
v the service will complete successfully with a warning return code if the Warn

when weak wrap - Transport keys access control point is enabled.

The following table lists the valid attribute translations for export of CCA keys to
TR-31 key blocks along with the access control points which govern those
translations. Any translation not listed here will result in an error. If an individual
cell is blank, it represents the value of the cell immediately above it.

Note: In order to export a CCA key to a TR-31 key block, the appropriate key
block version ACP needs to be enabled in addition to any required translation
specific ACPs from below.

Table 120. Valid CCA to TR-31 Export Translations and Required Access Control Points (ACPs)

Export CCA
Type
(CSNBCVG
keywords)

CCA Usage
in
CSNBCVG
keywords

CSNBT31X
Keywords all
‘usage’ +
‘mode’ here,
else error T31Usage

T31 Key
Blk
Vers.

T31
Mode

T31
Alg’m Required “TR31 Export” ACP

Any Exportable Key

Permit export of any CCA key (for allowable export scenarios as defined by this table) as long as the TR-31 key block will have
the CCA Control Vector (CV) included as an optional block (the INCL-CV keyword was supplied on the callable service).

Normally export of CCA keys to TR-31 key blocks is controlled by ACPs specific to the translation or a small set of translations, to
give fine control. This ACP allows any allowable export to occur as long as the CV is included, thus overriding the specific ACPs.
Note:

1. Some target systems, produced by other vendors may not accept TR-31 key blocks with the proprietary optional CV block.

2. The ATTR-CV keyword does not require any ACPs.

DUKPT Base Derivation Keys

KEYGENKY UKPT BDK + ANY B0 A N T Permit KEYGENKY:UKPT to B0

KEYGENKY UKPT BDK +
DERIVE

B0 B,C X T

Note: These are the base keys from which DUKPT initial keys are derived for individual devices such as PIN pads

Card Verification Keys

MAC AMEX-CSC,
gen bit(20)=1

CVK +
GEN-ONLY

C0 A,B,C G D,T Permit MAC/MACVER:AMEX-CSC to
C0:G/C/V

AMEX-CSC,
gen bit(20)=0,
ver bit(21)=1

CVK +
VER-ONLY

A,B,C V D,T

AMEX-CSC,
gen bit(20)=1,
ver bit(21)=1

CVK +
GENVER

A,B,C C D,T

TR-31 Export

294 z/OS ICSF Application Programmer's Guide

Table 120. Valid CCA to TR-31 Export Translations and Required Access Control Points (ACPs) (continued)

Export CCA
Type
(CSNBCVG
keywords)

CCA Usage
in
CSNBCVG
keywords

CSNBT31X
Keywords all
‘usage’ +
‘mode’ here,
else error T31Usage

T31 Key
Blk
Vers.

T31
Mode

T31
Alg’m Required “TR31 Export” ACP

CVVKEY-A,
gen bit(20)=1

CVK +
GEN-ONLY

A,B,C G T Permit MAC/MACVER:CVV-KEYA to
C0:G/C/V

CVVKEY-A,
gen bit(20)=0,
ver bit(21)=1

CVK +
VER-ONLY

A,B,C V T

CVVKEY-A,
gen bit(20)=1,
ver bit(21)=1

CVK +
GENVER

A,B,C C T

ANY-MAC,
gen bit(20)=1

CVK +
GEN-ONLY

A,B,C G T Permit MAC/MACVER:ANY-MAC to
C0:G/C/V

ANY-MAC,
gen bit(20)=0,
ver bit(21)=1

CVK +
VER-ONLY

A,B,C V T

ANY-MAC,
gen bit(20)=1,
ver bit(21)=1

CVK +
GENVER

A,B,C C T

DATA gen bit(20)=1
or zeroCV

CVK +
GEN-ONLY

A,B,C G T Permit DATA to C0:G/C

gen bit(20)=1,
ver bit(21)=1
or zeroCV

CVK +
GENVER

A,B,C C T

Note:

1. Keys for computing or verifying (against supplied value) a card verification code with the CVV, CVC, CVC2 and CVV2
algorithms. In CCA, this corresponds to keys used with two different APIs.

v Visa CVV and MasterCard CVC codes are computed with CVV_Generate and verified with CVV_Verify. Keys must be DATA
or MAC with sub-type (in bits 0-3) “ANY-MAC” , “CVVKEY-A” or “CVVKEY-B”. The GEN bit (20) or VER bit (21) must be
set appropriately.

v American Express CSC codes are generated and verified with the Transaction_Validate verb. The key must be a MAC or
MACVER key with sub-type “ANY-MAC” or “AMEX-CSC”. The GEN bit (20) or VER bit (21) must be set appropriately.

2. CCA and TR-31 represent CVV keys incompatibly. CCA represents the “A” and “B” keys as two 8 B keys, while TR-31
represents these as one 16 B key. The CVV generate and verify verbs now accept a 16 B CVV key, using left and right parts as
A and B. Current Visa standards require this.

3. Import and export of the 8 B CVVKEY-A and CVVKEY-B types will only be allowed using the proprietary TR-31 usage+mode
values to indicate encapsulation of the IBM CV in an optional block, since the 8 B CVVKEY-A is meaningless / useless as a
TR-31 C0 usage key of any mode.

4. It is possible to convert a CCA CVV key into a CSC key or vice-versa, since the translation from TR 31 usage “C0” is controlled
by rule array keywords on the import verb. This can be restricted by using ACPs, but if both of translation types are required
they cannot be disabled and control is up to the development, deployment, and execution of the applications themselves

Data Encryption Keys

ENCIPHER (none) ENC +
ENC-ONLY

D0 A,B,C E D, T Permit ENCIPHER/DECIPHER/
CIPHER to D0:E/D/B

DECIPHER (none) ENC +
DEC-ONLY

A,B,C D D, T

CIPHER (none) ENC +
ENCDEC

A,B,C B D, T

DATA enc bit(18)=1,
dec bit(19)=1
or zeroCV

ENC +
ENCDEC

A,B,C B D, T Permit DATA to D0:B

Note: There is asymmetry in the TR-31 to CCA and CCA to TR-31 translation. CCA keys can be exported to TR-31 ‘D0’ keys from
CCA type ENCIPHER, DECIPHER, or CIPHER, or type DATA with proper Encipher and Decipher CV bits on. A TR-31 ‘D0’ key
can only be imported to CCA types ENCIPHER, DECIPHER, or CIPHER, not the lower security DATA key type. This eliminates
conversion to the lower security DATA type by export / re-import.

TR-31 Export

Chapter 5. Managing Symmetric Cryptographic Keys 295

Table 120. Valid CCA to TR-31 Export Translations and Required Access Control Points (ACPs) (continued)

Export CCA
Type
(CSNBCVG
keywords)

CCA Usage
in
CSNBCVG
keywords

CSNBT31X
Keywords all
‘usage’ +
‘mode’ here,
else error T31Usage

T31 Key
Blk
Vers.

T31
Mode

T31
Alg’m Required “TR31 Export” ACP

Key Encrypting Keys

EXPORTER
or
OKEYXLAT

KEK +
ENC-ONLY

K0 A,B,C E T Permit EXPORTER/OKEYXLAT to
K0:E

IMPORTER
or IKEYXLAT

KEK +
DEC-ONLY

K0 A,B,C D T Permit IMPORTER/IKEYXLAT to K0:D

EXPORTER
or
OKEYXLAT

KEK-WRAP +
ENC-ONLY

K1 B,C E T Permit EXPORTER/OKEYXLAT to
K1:E

IMPORTER
or IKEYXLAT

KEK-WRAP +
DEC-ONLY

K1 B,C D T Permit IMPORTER/IKEYXLAT to K1:D

Note:

1. To be exported a KEK must have either the EXPORTER/IMPORTER bit or the XLAT bit on in the CV. A KEK with only the
Key Generate bits on will not be exportable.

2. ‘K1’ keys are not distinguished from ‘K0’ keys within CCA. The ‘K1’ key is a particular KEK for deriving keys used in the ‘B’
or ‘C’ version wrapping of TR-31 key blocks. CCA does not distinguish between targeted protocols currently and so there is no
good way to represent the difference; also note that most wrapping mechanisms now involve derivation or key variation steps

3. The CCA KEK to TR-31 K0-B transition for export will not be allowed for security reasons, even with ACP control this gives an
immediate path to turn a CCA EXPORTER to an IMPORTER and vice versa.

Export of NO-CV KEKs will be allowed, exporter keys become ‘E’ mode normal K0 keys, importer keys become ‘D’ mode K0
keys. A user can turn any KEK to a NO-CV KEK by setting the flag bit and recalculating the TVV, the flag is not bound to the
key like the CV is.

MAC Keys

MAC gen bit(20)=1 ISOMAC0 +
GEN-ONLY

M0 A,B,C G T Permit MAC/DATA/DATAM to
M0:G/C

DATA gen bit(20)=1
or zeroCV

ISOMAC0 +
GEN-ONLY

A,B,C G T

MAC gen bit(20)=1,
ver bit(21)=1

ISOMAC0 +
GENVER

A,B,C C T

DATAM gen bit(20)=1,
ver bit(21)=1

ISOMAC0 +
GENVER

A,B,C C T

DATA gen bit(20)=1,
ver bit(21)=1
or zeroCV

ISOMAC0 +
GENVER

A,B,C C T

MACVER gen bit(20)=0,
ver bit(21)=1

ISOMAC0 +
VER-ONLY

A,B,C V T Permit MACVER/DATAMV to M0:V

DATAMV gen bit(20)=0,
ver bit(21)=1

ISOMAC0 +
VER-ONLY

A,B,C V T

MAC gen bit(20)=1 ISOMAC1 +
GEN-ONLY

M1 A,B,C G D,T Permit MAC/DATA/DATAM to
M1:G/C

DATA gen bit(20)=1
or zeroCV

ISOMAC1 +
GEN-ONLY

A,B,C G D,T

MAC gen bit(20)=1,
ver bit(21)=1

ISOMAC1 +
GENVER

A,B,C C D,T

DATAM gen bit(20)=1,
ver bit(21)=1

ISOMAC1 +
GENVER

A,B,C C D,T

DATA gen bit(20)=1,
ver bit(21)=1
or zeroCV

ISOMAC1 +
GENVER

A,B,C C D,T

TR-31 Export

296 z/OS ICSF Application Programmer's Guide

Table 120. Valid CCA to TR-31 Export Translations and Required Access Control Points (ACPs) (continued)

Export CCA
Type
(CSNBCVG
keywords)

CCA Usage
in
CSNBCVG
keywords

CSNBT31X
Keywords all
‘usage’ +
‘mode’ here,
else error T31Usage

T31 Key
Blk
Vers.

T31
Mode

T31
Alg’m Required “TR31 Export” ACP

MACVER gen bit(20)=0,
ver bit(21)=1

ISOMAC1 +
VER-ONLY

A,B,C V D,T Permit MACVER/DATAMV to M1:V

DATAMV gen bit(20)=0,
ver bit(21)=1

ISOMAC1 +
VER-ONLY

A,B,C V D,T

MAC gen bit(20)=1 ISOMAC3 +
GEN-ONLY

M3 A,B,C G D,T Permit MAC/DATA/DATAM to
M3:G/C

DATA gen bit(20)=1
or zeroCV

ISOMAC3 +
GEN-ONLY

A,B,C G D,T

MAC gen bit(20)=1,
ver bit(21)=1

ISOMAC3 +
GENVER

A,B,C C D,T

DATAM gen bit(20)=1,
ver bit(21)=1

ISOMAC3 +
GENVER

A,B,C C D,T

DATA gen bit(20)=1,
ver bit(21)=1
or zeroCV

ISOMAC3 +
GENVER

A,B,C C D,T

MACVER gen bit(20)=0,
ver bit(21)=1

ISOMAC3 +
VER-ONLY

A,B,C V D,T Permit MACVER/DATAMV to M3:V

DATAMV gen bit(20)=0,
ver bit(21)=1

ISOMAC3 +
VER-ONLY

A,B,C V D,T

Note:

1. M0 and M1 are identical (ISO 16609 based on ISO 9797) normal DES/TDES (CBC) MAC computation, except M1 allows 8 byte
and 16 byte keys while M0 allows only 16 byte keys. Mode M3 is the X9.19 style triple-DES MAC.

2. CCA does not support M2, M4, or M5.

3. Although export of DATAM/DATAMV keys to TR-31 M0/M1/M3 key types is allowed, import to DATAM/DATAMV CCA
types is not allowed since they are obsolete types.

PIN Keys

OPINENC (none) PINENC +
ENC-ONLY

P0 A,B,C E T Permit OPINENC to P0:E

IPINENC (none) PINENC +
DEC-ONLY

A,B,C D T Permit IPINENC to P0:D

(none) (none) (none) (none) A,B,C B T (none)

PINVER NO-SPEC PINVO + ANY V0 A N T Permit PINVER:NO-SPEC to V0,
Permit PINGEN/PINVER to
V0/V1/V2:N

[no GEN bits
on in CV]

PINVO +
VER-ONLY

A,B,C V Permit PINVER:NO-SPEC to V0

PINGEN NO-SPEC PINVO + ANY A N T Permit PINGEN:NO-SPEC to V0,
Permit PINGEN/PINVER to
V0/V1/V2:N

[EPINVER
bit off in CV]

PINVO +
GEN-ONLY

A,B,C G Permit PINGEN:NO-SPEC to V0

[EPINVER
bit on in CV]

PINVO +
GENVER

A,B,C C Permit PINGEN:NO-SPEC to V0

PINVER IBM or
NO-SPEC

PINV3624 +
ANY

V1 A N T Permit PINVER:NO-SPEC/IBM-PIN/
IBM-PINO to V1, Permit
PINGEN/PINVER to V0/V1/V2:N

[no GEN bits
on in CV]

PINV3624 +
VER-ONLY

A,B,C V Permit PINVER:NO-SPEC/IBM-PIN/
IBM-PINO to V1

TR-31 Export

Chapter 5. Managing Symmetric Cryptographic Keys 297

Table 120. Valid CCA to TR-31 Export Translations and Required Access Control Points (ACPs) (continued)

Export CCA
Type
(CSNBCVG
keywords)

CCA Usage
in
CSNBCVG
keywords

CSNBT31X
Keywords all
‘usage’ +
‘mode’ here,
else error T31Usage

T31 Key
Blk
Vers.

T31
Mode

T31
Alg’m Required “TR31 Export” ACP

PINGEN IBM or
NO-SPEC

PINV3624 +
ANY

A N T Permit PINGEN:NO-SPEC/IBM-PIN/
IBM-PINO to V1, Permit
PINGEN/PINVER to V0/V1/V2:N

[EPINVER
bit off in CV]

PINV3624 +
GEN-ONLY

A,B,C G Permit PINGEN:NO-SPEC/IBM-PIN/
IBM-PINO to V1

[EPINVER
bit on in CV]

PINV3624 +
GENVER

A,B,C C Permit PINGEN:NO-SPEC/IBM-PIN/
IBM-PINO to V1

PINVER VISAPVV or
NO-SPEC

VISAPVV +
ANY

V2 A N T Permit PINVER:NO-SPEC/VISA-PVV
to V2, Permit PINGEN/PINVER to
V0/V1/V2:N

[no GEN bits
on in CV]

VISAPVV +
VER-ONLY

A,B,C V Permit PINVER:NO-SPEC/VISA-PVV
to V2

PINGEN VISAPVV or
NO-SPEC

VISAPVV +
ANY

A N T Permit PINGEN:NO-SPEC/VISA-PVV
to V2, Permit PINGEN/PINVER to
V0/V1/V2:N

[EPINVER
bit off in CV]

VISAPVV +
PINGEN

A,B,C G Permit PINGEN:NO-SPEC/VISA-PVV
to V2

[EPINVER
bit on in CV]

VISAPVV +
PINGEN

A,B,C C Permit PINGEN:NO-SPEC/VISA-PVV
to V2

Note: There is a subtle difference between TR-31 V0 mode and CCA ‘NO-SPEC’ subtype. V0 mode restricts keys from 3224 or
PVV methods, while CCA ‘NO-SPEC’ allows any method.

Turning on the ACP(s) controlling export of PINVER to usage:mode V*:N and import of V*:N to PINGEN at the same time will
allow changing PINVER keys to PINGEN keys. This is not recommended. This is possible because legacy (TR-31 2005-based)
implementations used the same mode ‘N’ for PINGEN as well as PINVER keys.

EMV Chip / Issuer Master Keys

DKYGENKY DKYL0 +
DMAC

EMVACMK +
ANY

E0 A N T Permit DKYGENKY:DKYL0+DMAC to
E0

EMVACMK +
DERIVE

B,C X T

DKYL0 +
DMV

EMVACMK +
ANY

A N T Permit DKYGENKY:DKYL0+DMV to
E0 0x019A

EMVACMK +
DERIVE

B,C X T

DKYL0 +
DALL

EMVACMK +
ANY

A N T Permit DKYGENKY:DKYL0+DALL to
E0 0x019B

EMVACMK +
DERIVE

B,C X T

DKYL1 +
DMAC

EMVACMK +
ANY

A N T Permit DKYGENKY:DKYL1+DMAC to
E0

EMVACMK +
DERIVE

B,C X T

DKYL1 +
DMV

EMVACMK +
ANY

A N T Permit DKYGENKY:DKYL1+DMV to
E0

EMVACMK +
DERIVE

B,C X T

DKYL1 +
DALL

EMVACMK +
ANY

A N T Permit DKYGENKY:DKYL1+DALL to
E0

EMVACMK +
DERIVE

B,C X T

TR-31 Export

298 z/OS ICSF Application Programmer's Guide

Table 120. Valid CCA to TR-31 Export Translations and Required Access Control Points (ACPs) (continued)

Export CCA
Type
(CSNBCVG
keywords)

CCA Usage
in
CSNBCVG
keywords

CSNBT31X
Keywords all
‘usage’ +
‘mode’ here,
else error T31Usage

T31 Key
Blk
Vers.

T31
Mode

T31
Alg’m Required “TR31 Export” ACP

DKYGENKY (DKYL0 +
DDATA)

EMVSCMK +
ANY

E1 A N T Permit DKYGENKY:DKYL0+DDATA to
E1

EMVSCMK +
DERIVE

B,C X T

(DKYL0 +
DMPIN)

EMVSCMK +
ANY

A N T Permit DKYGENKY:DKYL0+DMPIN to
E1

EMVSCMK +
DERIVE

B,C X T

DKYL0 +
DALL

EMVACMK +
ANY

A N T Permit DKYGENKY:DKYL0+DALL to
E1

EMVACMK +
DERIVE

B,C X T

(DKYL1 +
DDATA)

EMVSCMK +
ANY

A N Permit DKYGENKY:DKYL1+DDATA to
E1

EMVSCMK +
DERIVE

B,C X

(DKYL1 +
DMPIN)

EMVSCMK +
ANY

A N Permit DKYGENKY:DKYL1+DMPIN to
E1

EMVSCMK +
DERIVE

B,C X

DKYL1 +
DALL

EMVACMK +
ANY

A N T Permit DKYGENKY:DKYL1+DALL to
E1

EMVACMK +
DERIVE

B,C X T

DKYGENKY DKYL0 +
DMAC

EMVSIMK +
ANY

E2 A N T Permit DKYGENKY:DKYL0+DMAC to
E2

EMVSIMK +
DERIVE

B,C X T

DKYL0 +
DALL

EMVACMK +
ANY

A N T Permit DKYGENKY:DKYL0+DALL to
E2

EMVACMK +
DERIVE

B,C X T

DKYL1 +
DMAC

EMVSIMK +
ANY

A N T Permit DKYGENKY:DKYL1+DMAC to
E2

EMVSIMK +
DERIVE

B,C X T

DKYL1 +
DALL

EMVACMK +
ANY

A N T Permit DKYGENKY:DKYL1+DALL to
E2

EMVACMK +
DERIVE

B,C X T

TR-31 Export

Chapter 5. Managing Symmetric Cryptographic Keys 299

Table 120. Valid CCA to TR-31 Export Translations and Required Access Control Points (ACPs) (continued)

Export CCA
Type
(CSNBCVG
keywords)

CCA Usage
in
CSNBCVG
keywords

CSNBT31X
Keywords all
‘usage’ +
‘mode’ here,
else error T31Usage

T31 Key
Blk
Vers.

T31
Mode

T31
Alg’m Required “TR31 Export” ACP

DATA (none) EMVDAMK +
ANY

E3 A N T Permit DATA/MAC/CIPHER/
ENCIPHER to E3

EMVDAMK +
DERIVE

B,C X

MAC (not
MACVER)

(none) EMVDAMK +
ANY

A N

EMVDAMK +
MACGEN

A G

EMVDAMK +
DERIVE

B,C X

CIPHER (none) EMVDAMK +
ANY

A N

EMVDAMK +
DERIVE

B,C X

ENCIPHER EMVDAMK +
ENC-ONLY

A E

EMVDAMK +
DERIVE

B,C X

DKYGENKY DKYL0
+DDATA

EMVDNMK +
ANY

E4 A N T Permit DKYGENKY:DKYL0+DDATA to
E4

EMVDNMK +
DERIVE

B,C X

DKYL0
+DALL

EMVDNMK +
ANY

A N T Permit DKYGENKY:DKYL0+DALL to
E4

EMVDNMK +
DERIVE

B,C X

DKYGENKY DKYL0 +
DEXP

EMVCPMK +
ANY

E5 A N T Permit DKYGENKY:DKYL0+DEXP to
E5

EMVCPMK +
DERIVE

B,C X

DKYL0 +
DMAC

EMVCPMK +
ANY

A N Permit DKYGENKY:DKYL0+DMAC to
E5

EMVCPMK +
DERIVE

B,C X

DKYL0
+DDATA

EMVCPMK +
ANY

A N Permit DKYGENKY:DKYL0+DDATA to
E5

EMVCPMK +
DERIVE

B,C X

DKYL0
+DALL

EMVDNMK +
ANY

A N T Permit DKYGENKY:DKYL0+DALL to
E5

EMVDNMK +
DERIVE

B,C X

Note: EMV Chip Card Master Keys are used by the chip cards to perform cryptographic operations, or in some cases to deriver
keys used to perform operations. In CCA, these are:

v Key Gen Keys of level DKYL0 or DYKL1 allowing derivation of operational keys, or

v operational keys.

EMV support in CCA is significantly different from TR-31. CCA key types do not match TR-31 types.

TR-31 Export

300 z/OS ICSF Application Programmer's Guide

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 121. TR-31 export required hardware

Server

Required
cryptographic
hardware Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

IBM System z10 EC

IBM System z10 BC

This service is not supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

TR-31 key support requires the Sep. 2011 or
later LIC.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

TR-31 Import (CSNBT31I and CSNET31I)
Use the TR-31 Import callable service to convert a TR-31 key block to a CCA token.
Since there is not always a one-to-one mapping between the key attributes defined
by TR-31 and those defined by CCA, the caller may need to specify the attributes
to attach to the imported key through the rule array.

The callable service name for AMODE(64) is CSNET31I.

Format
CALL CSNBT31I(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
TR31_key_block_length,
TR31_key_block,
unwrap_kek_identifier_length,
unwrap_kek_identifier,
wrap_kek_identifier_length,
wrap_kek_identifier,
output_key_identifier_length,
output_key_identifier,
num_opt_blks,
cv_source,
protection_method)

TR-31 Export

Chapter 5. Managing Symmetric Cryptographic Keys 301

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The
rule_array_count parameter must be 1, 2, 3, 4, or 5.

rule_array

Direction Type

Input String

The rule_array contains keywords that provide control information to the
callable service. The keywords are 8 bytes in length and must be left-aligned
and padded on the right with space characters. The rule_array keywords for
this callable service are shown in the following table. One keyword from one
CCA output key usage subgroup shown in the following table is required
based on TR-31 input key usage, unless the CV is included in the TR-31 key
block as an optional block. If the CV is included in the TR-31 key block as an

TR-31 Import

302 z/OS ICSF Application Programmer's Guide

optional block, the included CV will be used in the output key block as long as
it does not conflict with the TR-31 header data.

See Table 124 on page 309 for valid combinations of Usage and Mode

Table 122. Keywords for TR-31 Import Rule Array Control Information

Keyword Meaning

Key Wrapping Method (One Required)

INTERNAL Desired output_key_identifier is a CCA internal key token,
wrapped using the card master key.

EXTERNAL Desired output_key_identifier is a CCA external key token,
wrapped using the key represented by the unwrap_kek_identifier.

CCA Output Key Usage Subgroups (One keyword from one CCA output key usage
subgroup shown in the following table is required based on TR-31 input key usage, unless
the CV is included in the TR-31 key block as an optional block. If the CV is included in
the TR-31 key block as an optional block, the included CV will be used in the output key
block as long as it does not conflict with the TR-31 header data.)

C0 Subgroup (One Required for this TR-31 key usage)

CVK-CVV Convert TR-31 CVK to a CCA key for use with CVV/CVC. The
CCA key will be a MAC key with subtype CVVKEY-A.

CVK-CSC Convert TR-31 CVK to a CCA key for use with CSC. The CCA
key will be a MAC key with subtype AMEX CSC.

K0 Subgroup (One Required for this TR-31 key usage)

EXPORTER For TR-31 K0-E or K0-B usage+mode keys. Convert TR-31 KEK
to a CCA wrapping key. The key will convert to a CCA
EXPORTER key. Note that the K0-B key import has a unique
ACP.

OKEYXLAT For TR-31 K0-E or K0-B usage+mode keys. Convert TR-31 KEK
to a CCA wrapping key. The key will convert to a CCA
OKEYXLAT key. Note that the K0-B key import has a unique
ACP.

IMPORTER For TR-31 K0-D or K0-B usage+mode keys. Convert TR-31 KEK
to a CCA unwrapping key. The key will convert to a CCA
IMPORTER key. Note that the K0-B key import has a unique
ACP.

IKEYXLAT For TR-31 K0-D or K0-B usage+mode keys. Convert TR-31 KEK
to a CCA unwrapping key. The key will convert to a CCA
IKEYXLAT key. Note that the K0-B key import has a unique
ACP.

V0/V1/V2 Subgroup (One Required for these TR-31 key usages)

PINGEN Convert a TR-31 PIN verification key to a CCA PINGEN key.

PINVER Convert a TR-31 PIN verification key to a CCA PINVER key.

E0/E2,F0/F2 Subgroup (One Required for these TR-31 key usages)

DMAC Convert TR-31 EMV master key (chip card or issuer) for
Application Cryptograms or Secure Messaging for Integrity to
CCA DKYGENKY type DMAC

DMV Convert TR-31 EMV master key (chip card or issuer) for
Application Cryptograms or Secure Messaging for Integrity to
CCA DKYGENKY type DMV

E1,F1 Subgroup (One Required for these TR-31 key usages)

DMPIN Convert TR-31 EMV master key (chip card or issuer) for Secure
Messaging for Confidentiality to CCA DKYGENKY type DMPIN

TR-31 Import

Chapter 5. Managing Symmetric Cryptographic Keys 303

Table 122. Keywords for TR-31 Import Rule Array Control Information (continued)

Keyword Meaning

DDATA Convert TR-31 EMV master key (chip card or issuer) for Secure
Messaging for Confidentiality to CCA DKYGENKY type DDATA

E5 Subgroup (One Required for this TR-31 key usage)

DMAC Convert TR-31 EMV master key (issuer) for Card Personalization
to CCA DKYGENKY type DMAC.

DMV Convert TR-31 EMV master key (issuer) for Card Personalization
to CCA DKYGENKY type DMV.

DEXP Convert TR-31 EMV master key (issuer) for Card Personalization
to CCA DKYGENKY type DEXP.

Key Derivation Level (One Required with E0, E1, E2 TR-31 key usages unless the CV is
included in the TR-31 key block as an optional block. If the CV is included in the TR-31
key block, the included CV will be used in the output key block as long as it does not
conflict with the TR-31 header data.)

DKYL0 Convert TR-31 EMV master key (chip card or issuer) to CCA
DKYGENKY at derivation level DKYL0.

DKYL1 Convert TR-31 EMV master key (chip card or issuer) to CCA
DKYGENKY at derivation level DKYL1.

Key Type Modifier (Optional)

NOOFFSET Valid only for V0/V1 TR-31 key usage values. Import the
PINGEN or PINVER key into a key token that cannot participate
in the generation or verification of a PIN when an offset or the
Visa PVV process is requested.

Key Wrapping Method (Optional)
Note: Conflicts between wrapping keywords used and a CV passed in an optional data
block of the TR-31 token will result in errors being returned. The main example of this is a
CV that indicates ‘enhanced-only’ in bit 56 when the user or configured default specifies
ECB for key wrapping.

USECONFG Specifies that the configuration setting for the default wrapping
method is to be used to wrap the key. This is the default.

WRAP-ENH Specifies that the new enhanced wrapping method is to be used
to wrap the key.

WRAP-ECB Specifies that the original wrapping method is to be used.

Translation Control (One Optional)

TR-31 Import

304 z/OS ICSF Application Programmer's Guide

Table 122. Keywords for TR-31 Import Rule Array Control Information (continued)

Keyword Meaning

ENH-ONLY Specify this keyword to indicate that the key once wrapped with
the enhanced method cannot be wrapped with the original
method. This restricts translation to the original method. If the
keyword is not specified translation to the original method will
be allowed. This turns on bit 56 in the control vector. This
keyword is not valid if processing a zero CV data key.
Note:

1. If the TR-31 block contains a CV in the optional data block
that does not have bit 56 turned on, bit 56 will be turned on
in the output token, since with this keyword the user is
asking for this behavior. The exception to this is for CVs of
all 0x00 bytes, for this case no error will be generated but the
CV will remain all 0x00 bytes.

2. Conflicts between wrapping keywords used and a CV passed
in an optional data block of the TR-31 token will result in
errors being returned. The main example of this is a CV that
indicates ‘enhanced-only’ in bit 56 when the user or
configured default specifies ECB for key wrapping. If the
default wrapping method is ECB mode, but the enhanced
mode and the ENH-ONLY restriction are desired for a
particular key token, combine the ENH-ONLY keyword with
the WRAP-ENH keyword.

TR31_key_block_length

Direction Type

Input Integer

This parameter specifies the length of the TR31_key_block parameter, in bytes.
The length field in the TR-31 block is a 4-digit decimal number, so the
maximum acceptable length is 9992 bytes.

TR31_key_block

Direction Type

Input String

This parameter contains the TR-31 key block that is to be imported. The key
block is protected with the key passed in parameter unwrap_kek_identifier.

unwrap_kek_identifier_length

Direction Type

Input Integer

This parameter specifies the length of the unwrap_kek_identifier parameter, in
bytes. The value in this parameter must currently be 64, since only CCA
internal key tokens are supported for the unwrap_kek_identifier parameter.

unwrap_kek_identifier

Direction Type

Input/Output String

This parameter contains either the label or the key token for the key that is
used to unwrap and check integrity of the imported key passed in the

TR-31 Import

Chapter 5. Managing Symmetric Cryptographic Keys 305

TR31_key_block parameter. The key must be a CCA internal token for a KEK
IMPORTER or IKEYXLAT type. If a key token is passed which is wrapped
under the old master key, it will be updated on output so that it is wrapped
under the current master key.

Note: ECB-mode wrapped DES keys (CCA legacy wrap mode) cannot be used
to wrap/unwrap TR-31 version ‘B’/’C’ key blocks that have, or will have ,‘E’
exportability. This is because ECB-mode does not comply with ANSI X9.24 Part
1.

wrap_kek_identifier_length

Direction Type

Input Integer

This parameter specifies the length of the wrap_kek_identifier parameter, in
bytes. If the unwrap_kek_identifier is also to be used to wrap the output CCA
token, specify 0 for this parameter. Otherwise, this parameter must be 64.

wrap_kek_identifier

Direction Type

Input/Output String

When wrap_kek_identifier_length is 0, this parameter is ignored and the
unwrap_kek_identifier is also to be used to wrap the output CCA token.
Otherwise, this parameter contains either the label or the key token for the
KEK to use for wrapping the output CCA token. It must be a CCA internal
token for a KEK EXPORTER or OKEYXLAT type and must have the same clear
key as the unwrap_kek_identifier. If a key token is passed which is wrapped
under the old master key, it will be updated on output so that it is wrapped
under the current master key.

Note: ECB-mode wrapped DES keys (CCA legacy wrap mode) cannot be used
to wrap/unwrap TR-31 version ‘B’/’C’ key blocks that have/will have ‘E’
exportability. This is because ECB-mode does not comply with ANSI X9.24 Part
1.

output_key_identifier_length

Direction Type

Input/Output Integer

This parameter specifies the length of the output_key_identifier parameter, in
bytes. On input, it specifies the length of the buffer represented by the
output_key_identifier parameter and must be at least 64 bytes long. On output, it
contains the length of the token returned in the output_key_identifier parameter.

output_key_identifier

Direction Type

Output String

This parameter contains the key token that is to receive the imported key. The
output token will be a CCA internal or external key token containing the key
received in the TR-31 key block.

num_opt_blocks

TR-31 Import

306 z/OS ICSF Application Programmer's Guide

Direction Type

Output Integer

This parameter contains the number of optional blocks that are present in the
TR-31 key block.

cv_source

Direction Type

Output Integer

This parameter contains information about how the control vector in the
output key token was created. It can be one of the following three values:

X'00000000'
No CV was present in an optional block, and the output CV was
created by the callable service based on input parameters and on the
attributes in the TR-31 key block header.

X'00000001'
A CV was obtained from an optional block in the TR-31 key block, and
the key usage and mode of use were also specified in the TR-31
header. The callable service verified compatibility of the header values
with the CV and then used that CV in the output key token.

X'00000002'
A CV was obtained from an optional block in the TR-31 key block, and
the key usage and mode of use in the TR-31 header held the
proprietary values indicating that key use and mode should be
obtained from the included CV. The CV from the TR-31 token was
used as the CV for the output key token.

Any value other than these are reserved for future use and are currently
invalid.

protection_method

Direction Type

Output Integer

This parameter contains information about what method was used to protect
the input TR-31 key block. It can have one of the following values:

X'00000000'
The TR-31 key block was protected using the variant method as
identified by a Key Block Version ID value of “A” (0x41).

X'00000001'
The TR-31 key block was protected using the derived key method as
identified by a Key Block Version ID value of “B” (0x42).

X'00000002'
The TR-31 key block was protected using the variant method as
identified by a Key Block Version ID value of “C” (0x43). Functionally
this method is the same as ‘A’, but to maintain consistency a different
value will be returned here for ‘C’.

Any value other than these are reserved for future use and are currently
invalid.

TR-31 Import

Chapter 5. Managing Symmetric Cryptographic Keys 307

Restrictions
This callable service only imports DES and TDES keys.

Proprietary values for the TR-31 header fields are not supported by this callable
service with the exception of the proprietary values used by IBM CCA when
carrying a control vector in an optional block in the header.

Usage Notes
Unless otherwise noted, all String parameters that are either written to, or read
from, a TR-31 key block will be in EBCDIC format. Input parameters are converted
to ASCII before being written to the TR-31 key block and output parameters are
converted to EBCDIC before being returned (see Appendix F, “EBCDIC and ASCII
Default Conversion Tables,” on page 919). TR-31 key blocks themselves are always
in printable ASCII format as required by the ANSI TR-31 specification.

If the TR-31 key block is marked as a key component, the resulting CCA key will
have the Key Part bit (bit 44) in the control vector set to 1.

The exportability attributes of the imported CCA token are set based on attributes
in the TR-31 key block as described in the following table.

Table 123. Export attributes of an imported CCA token

TR-31 export attribute
value CCA action on import

Non-exportable ("N") CCA imports the key to an internal CCA key token. CV bit 17
(export) is set to zero to indicate that the key is not exportable.
CV bit 57 (TR-31 export) is set to one to indicate that the key is
not exportable to TR-31.

Exportable under trusted
key ("E")

If the TR-31 token is wrapped with a CCA KEK in the old ECB
format, the request is rejected because that KEK is not a trusted
key. If the CCA KEK is in a newer X9.24 compliant CCA key
block, then the TR-31 key is imported to CCA in exactly the
same way as described below for keys that are exportable
under any key.

Exportable under any
key ("S")

CCA imports the key to an internal CCA key token. CV bit 17
(export) is set to one to indicate that the key is exportable. CV
bit 57 (TR-31 export) is set to zero to indicate that the key is
also exportable to TR-31.

If necessary, use the Prohibit Export, Prohibit Exported Extended, or Restrict Key
Attribute callable service to alter the export attributes of the CCA token after
import.

If the TR-31 key block contains an optional block with a CCA CV of
‘00007D00030000000000000000000000’ for a single length key or
‘00007D0003410000000000000000000000007D00032100000000000000000000’ for a
double length key, the resulting CCA token will be a zero CV DATA token.

The TR-31 key block can contain a CCA control vector in an optional data field in
the header. If the CV is present, the service will check that CV for compatibility
with the TR-31 key attributes to ensure the CV is valid for the key and if there are
no problems it will use that CV in the CCA key token that is output by the service.
If a CV is received, the import operation is not subject to any ACP controlling the

TR-31 Import

308 z/OS ICSF Application Programmer's Guide

importation of specific key types. The CV may be present in the TR-31 key block in
two different ways, depending on options used when creating that block.
v If the TR-31 Export callable service was called with option INCL-CV, the control

vector is included in the TR-31 key block and the TR-31 key usage and mode of
use fields contain attributes from the set defined in the TR-31 standard. The
TR-31 Import callable service checks that those TR-31 attributes are compatible
with the CV included in the block. It also verifies that no rule array keywords
conflict with the CV contained in the TR-31 block.

v If the TR-31 Export callable service was called with option ATTR-CV, the control
vector is included in the TR-31 key block and the TR-31 key usage and mode of
use fields contain proprietary values (ASCII “10” and “1”, respectively) to
indicate that the usage and mode information is contained in the included
control vector. In this case, the TR-31 Import service uses the included CV as the
control vector for the CCA key token it produces. It also verifies that the CV
does not conflict with rule array keywords passed

SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS.

Access Control Points
The access control points in the domain role that control the general function of
this service are:
v TR31 Import – Permit version A TR-31 key blocks
v TR31 Import – Permit version B TR-31 key blocks
v TR31 Import – Permit version C TR-31 key blocks

When the WRAP-ECB or WRAP-ENH keywords are specified and the default
key-wrapping method setting does not match the keyword, the TR31 Import -
Permit override of default wrapping method access control point must be
enabled.

When the Disallow 24-byte DATA wrapped with 16-byte Key access control point
is enabled, this service will fail if the source key is a triple-length DATA key and
the DES master key is a 16-byte key.

The following table lists the valid attribute translations for import of TR-31 key
blocks to CCA keys along with the access control points which govern those
translations. Any translation not listed here will result in an error. If an individual
cell is blank, it represents the value of the cell immediately above it.

Note: In order to import a TR-31 key block to a CCA key, the appropriate key
block version ACP needs to be enabled in addition to any required translation
specific ACPs from below.

Table 124. Valid TR-31 to CCA Import Translations and Required Access Control Points (ACPs)

Import
T31
Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Keywords

Output
CCA Type
(CSNBCVG
keywords)

Output CCA
Usage
(CSNBCVG
keywords) Required TR31 Import ACP

DUKPT Base Derivation Keys

B0 A N T (none) KEYGENKY UKPT (none)

B0 B,C X T (none) KEYGENKY UKPT

B1 B,C (none) (none) (none) (none) (none)

TR-31 Import

Chapter 5. Managing Symmetric Cryptographic Keys 309

Table 124. Valid TR-31 to CCA Import Translations and Required Access Control Points (ACPs) (continued)

Import
T31
Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Keywords

Output
CCA Type
(CSNBCVG
keywords)

Output CCA
Usage
(CSNBCVG
keywords) Required TR31 Import ACP

Note: These are the base keys from which DUKPT initial keys are derived for individual devices such as PIN pads.

Card Verification Keys

C0 A,B,C G, C D CVK-CSC MAC AMEX-CSC Permit C0 to
MAC/MACVER:AMEX-CSCA,B,C T CVK-CSC MAC AMEX-CSC

A,B,C V D CVK-CSC MACVER AMEX-CSC

A,B,C T CVK-CSC MACVER AMEX-CSC

A,B,C G, C T CVK-CVV MAC CVVKEY-A Permit C0 to
MAC/MACVER:CVVKEY-AA,B,C V T CVK-CVV MACVER CVVKEY-A

The card verification keys are keys for computing or verifying (against supplied value) a card verification code with
the CVV, CVC, CVC2 and CVV2 algorithms.
Note:

1. In CCA, this corresponds to keys used with two different APIs.

v Visa CVV and MasterCard CVC codes are computed with CVV_Generate and verified with CVV_Verify. Keys
must be DATA or MAC with sub-type (in bits 0-3) “ANY-MAC” , “CVVKEY-A” or “CVVKEY-B”. The GEN bit
(20) or VER bit (21) must be set appropriately.

v American Express CSC codes are generated and verified with the Transaction_Validate verb. The key must be
a MAC or MACVER key with sub-type “ANY-MAC” or “AMEX-CSC”. The GEN bit (20) or VER bit (21) must
be set appropriately.

2. CCA and TR-31 represent CVV keys incompatibly. CCA represents the “A” and “B” keys as two 8 B keys, while
TR-31 represents these as one 16 B key. The CVV generate and verify verbs now accept a 16 B CVV key, using
left and right parts as A and B. Current Visa standards require this.

3. Import and export of the 8 B CVVKEY-A and CVVKEY-B types will only be allowed using the proprietary TR-31
usage+mode values to indicate encapsulation of the IBM CV in an optional block, since the 8 B CVVKEY-A is
meaningless / useless as a TR-31 C0 usage key of any mode.

4. Import of a TR-31 key of usage C0 to CCA key type ‘ANY-MAC’ will not be allowed, although the ANY-MAC
key is also usable for card verification purposes.

5. It is possible to convert a CCA CVV key into a CSC key or vice-versa, since the translation from TR-31 usage
“C0” is controlled by rule array keywords on the import verb. This can be restricted by using ACPs, but if both
of translation types are required they cannot be disabled and control is up to the development, deployment, and
execution of the applications themselves.

CCA does not have a ‘MAC GEN ONLY’ key type, so TR-31 usage of G will translate to a full MAC key.

Data Encryption Keys

D0 A,B,C E D, T (none) ENCIPHER (none) (none)

A,B,C D D, T (none) DECIPHER (none)

A,B,C B D, T (none) CIPHER (none)

Note:

1. There is asymmetry in the TR-31 to CCA and CCA to TR-31 translation. CCA keys can be exported to TR-31 ‘D0’
keys from CCA type ENCIPHER, DECIPHER, or CIPHER, or type DATA with proper Encipher and Decipher
CV bits on. A TR-31 ‘D0’ key can only be imported to CCA types ENCIPHER, DECIPHER, or CIPHER, not the
lower security DATA key type. This eliminates conversion to the lower security DATA type by export /
re-import.

2. There are no ACPs controlling import since the intent of the TR-31 key’s control is not interpreted, just directly
translated to CCA control.

Key Encrypting Keys

TR-31 Import

310 z/OS ICSF Application Programmer's Guide

Table 124. Valid TR-31 to CCA Import Translations and Required Access Control Points (ACPs) (continued)

Import
T31
Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Keywords

Output
CCA Type
(CSNBCVG
keywords)

Output CCA
Usage
(CSNBCVG
keywords) Required TR31 Import ACP

K0 A,B,C E T OKEYXLAT OKEYXLAT (none) Permit K0:E to
EXPORTER/OKEYXLATA,B,C EXPORTER EXPORTER (none)

A,B,C D T IKEYXLAT IKEYXLAT (none) Permit K0:D to
IMPORTER/IKEYXLATA,B,C IMPORTER IMPORTER (none)

A,B,C B T OKEYXLAT OKEYXLAT (none) Permit K0:B to
EXPORTER/OKEYXLATA,B,C EXPORTER EXPORTER (none)

A,B,C IKEYXLAT IKEYXLAT (none) Permit K0:B to
IMPORTER/IKEYXLATA,B,C IMPORTER IMPORTER (none)

K1 B,C E T OKEYXLAT OKEYXLAT (none) Permit K1:E to
EXPORTER/OKEYXLATB,C EXPORTER EXPORTER (none)

B,C D T IKEYXLAT IKEYXLAT (none) Permit K1:D to
IMPORTER/IKEYXLATB,C IMPORTER IMPORTER (none)

B,C B T OKEYXLAT OKEYXLAT (none) Permit K1:B to
EXPORTER/OKEYXLATB,C EXPORTER EXPORTER (none)

B,C IKEYXLAT IKEYXLAT (none) Permit K1:B to
IMPORTER/IKEYXLATB,C IMPORTER IMPORTER (none)

Note:

1. K1’ keys are not distinguished from ‘K0’ keys within CCA. The ‘K1’ key is a particular KEK for deriving keys
used in the ‘B’ or ‘C’ version wrapping of TR-31 key blocks. CCA does not distinguish between targeted
protocols currently and so there is no good way to represent the difference; also note that most wrapping
mechanisms now involve derivation or key variation steps.

2. It is possible to convert a CCA EXPORTER key to an OKEYXLAT, or to convert an IMPORTER to an IKEYXLAT
by export / re-import. This can be restricted by using ACPs, but if both translations are required they cannot be
disabled and control is up to the development, deployment, and execution of the applications themselves.

3. It will not be possible to export a CCA key to TR-31 type K0-B, in order to avoid the ability to translate a CCA
EXPORTER to a CCA IMPORTER via export/import to the TR-31 token type. When a TR-31 key block does not
have an included CV as an optional block, the default CV will be used to construct the output token. For
IMPORTER / EXPORTER keys this means that the Key Generate bits will also be on in the KEK.

MAC Keys

M0 A,B,C G,C T (none) MAC ANY-MAC Permit M0/M1/M3 to
MAC/MACVER:ANY-MACA,B,C V T (none) MACVER ANY-MAC

M1 A,B,C G,C D, T (none) MAC ANY-MAC

A,B,C V D, T (none) MACVER ANY-MAC

M3 A,B,C G,C D, T (none) MAC ANY-MAC

A,B,C V D, T (none) MACVER ANY-MAC

Note:

1. M0 and M1 are identical (ISO 16609 based on ISO 9797) normal DES/TDES (CBC) MAC computation, except M1
allows 8 byte and 16 byte keys while M0 allows only 16 byte keys. Mode M3 is the X9.19 style triple-DES MAC.

2. CCA does not support M2, M4, or M5.

3. Although export of DATAM/DATAMV keys to TR-31 M0/M1/M3 key types is allowed, import to
DATAM/DATAMV CCA types is not allowed since they are obsolete types

PIN Keys

TR-31 Import

Chapter 5. Managing Symmetric Cryptographic Keys 311

Table 124. Valid TR-31 to CCA Import Translations and Required Access Control Points (ACPs) (continued)

Import
T31
Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Keywords

Output
CCA Type
(CSNBCVG
keywords)

Output CCA
Usage
(CSNBCVG
keywords) Required TR31 Import ACP

P0 A,B,C E T (none) OPINENC (none) Permit P0:E to OPINENC

A,B,C D (none) IPINENC (none) Permit P0:D to IPINENC

A,B,C B – not
supp

(none) (none) (none) (none)

V0 A N T PINGEN
[NOOFFSET]

PINGEN NO-SPEC
[+NOOFFSET]

Permit V0 to PINGEN:NO-SPEC,
Permit V0/V1/V2:N to
PINGEN/PINVER

A,B,C G,C [NOOFFSET] PINGEN NO-SPEC
[+NOOFFSET]

Permit V0 to PINGEN:NO-SPEC

A N PINVER
[NOOFFSET]

PINVER NO-SPEC
[+NOOFFSET]

Permit V0 to PINVER:NO-SPEC,
Permit V0/V1/V2:N to
PINGEN/PINVER

A,B,C V [NOOFFSET] PINVER NO-SPEC
[+NOOFFSET]

Permit V0 to PINVER:NO-SPEC

V1 A N T PINGEN
[NOOFFSET]

PINGEN IBM-PIN
/IBM-PINO

Permit V1 to
PINGEN:IBM-PIN/IBM-PINO,
Permit V0/V1/V2:N to
PINGEN/PINVER

A,B,C G,C [NOOFFSET] PINGEN IBM-PIN
/IBM-PINO

Permit V1 to
PINGEN:IBM-PIN/IBM-PINO

A N PINVER
[NOOFFSET]

PINVER IBM-PIN
/IBM-PINO

Permit V1 to
PINVER:IBM-PIN/IBM-PINO,
Permit V0/V1/V2:N to
PINGEN/PINVER

A,B,C V [NOOFFSET] PINVER IBM-PIN
/IBM-PINO

Permit V1 to
PINVER:IBM-PIN/IBM-PINO

V2 A N T PINGEN PINGEN VISA-PVV Permit V2 to PINGEN:VISA-PVV,
Permit V0/V1/V2:N to
PINGEN/PINVER

A,B,C G,C PINGEN VISA-PVV Permit V2 to PINGEN:VISA-PVV

A N PINVER PINVER VISA-PVV Permit V2 to PINVER:VISA-PVV,
Permit V0/V1/V2:N to
PINGEN/PINVER

A,B,C V PINVER VISA-PVV Permit V2 to PINVER:VISA-PVV

Note:

1. NOOFFSET keyword may be passed to specify resultant CCA key to have NOOFFSET bit (bit 37) on in CV.
However this will be automatic if CV is included and has NOOFFSET bit set.

2. NOOFFSET keyword is not supported for V2 usage since VISA-PVV algorithm does not support that concept.

3. There is a subtle difference between TR-31 V0 mode and CCA ‘NO-SPEC’ subtype. V0 mode restricts keys from
3224 or PVV methods, while CCA ‘NO-SPEC’ allows any method.

4. Turning on the ACP(s) controlling export of PINVER to usage:mode V*:N and import of V*:N to PINGEN at the
same time will allow changing PINVER keys to PINGEN keys. This is not recommended. This is possible
because legacy (TR-31 2005-based) implementations used the same mode ‘N’ for PINGEN as well as PINVER
keys.

EMV Chip / Issuer Master Keys

TR-31 Import

312 z/OS ICSF Application Programmer's Guide

Table 124. Valid TR-31 to CCA Import Translations and Required Access Control Points (ACPs) (continued)

Import
T31
Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Keywords

Output
CCA Type
(CSNBCVG
keywords)

Output CCA
Usage
(CSNBCVG
keywords) Required TR31 Import ACP

E0 A N T DKYL0
+DMAC

DKYGENKY DKYL0
+DMAC

Permit E0 to
DKYGENKY:DKYL0+DMAC

B,C X DKYL0
+DMAC

DKYL0
+DMAC

A N DKYL0
+DMV

DKYL0 +DMV Permit E0 to
DKYGENKY:DKYL0+DMV

B,C X DKYL0
+DMV

DKYL0 +DMV

A N DKYL1
+DMAC

DKYL1
+DMAC

Permit E0 to
DKYGENKY:DKYL1+DMAC

B,C X DKYL1
+DMAC

DKYL1
+DMAC

A N DKYL1
+DMV

DKYL1 +DMV Permit E0 to
DKYGENKY:DKYL1+DMV

B,C X DKYL1
+DMV

DKYL1 +DMV

E1 A N, E, D,
B

T DKYL0
+DMPIN

DKYGENKY DKYL0
+DMPIN

Permit E1 to
DKYGENKY:DKYL0+DMPIN

B,C X DKYL0
+DMPIN

DKYL0
+DMPIN

A N, E, D,
B

DKYL0
+DDATA

DKYL0
+DDATA

Permit E1 to
DKYGENKY:DKYL0+DDATA

B,C X DKYL0
+DDATA

DKYL0
+DDATA

A N, E, D,
B

DKYL1
+DMPIN

DKYL1
+DMPIN

Permit E1 to
DKYGENKY:DKYL1+DMPIN

B,C X DKYL1
+DMPIN

DKYL1
+DMPIN

A N, E, D,
B

DKYL1
+DDATA

DKYL1
+DDATA

Permit E1 to
DKYGENKY:DKYL1+DDATA

B,C X DKYL1
+DDATA

DKYL1
+DDATA

E2 A N T DKYL0
+DMAC

DKYGENKY DKYL0
+DMAC

Permit E2 to
DKYGENKY:DKYL0+DMAC

B,C X DKYL0
+DMAC

DKYL0
+DMAC

A N DKYL1
+DMAC

DKYL1
+DMAC

Permit E2 to
DKYGENKY:DKYL1+DMAC

B,C X DKYL1
+DMAC

DKYL1
+DMAC

E3 A N, E, D,
B, G

T (none) ENCIPHER (none) Permit E3 to ENCIPHER

B,C X (none) (none)

TR-31 Import

Chapter 5. Managing Symmetric Cryptographic Keys 313

Table 124. Valid TR-31 to CCA Import Translations and Required Access Control Points (ACPs) (continued)

Import
T31
Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Keywords

Output
CCA Type
(CSNBCVG
keywords)

Output CCA
Usage
(CSNBCVG
keywords) Required TR31 Import ACP

E4 A N, B T (none) DKYGENKY DKYL0
+DDATA

Permit E4 to
DKYGENKY:DKYL0+DDATA

B,C X (none) DKYL0
+DDATA

E5 A G, C, V,
E, D, B,
N

T DKYL0
+DMAC

DKYGENKY DKYL0
+DMAC

Permit E5 to
DKYGENKY:DKYL0+DMAC

B,C X DKYL0
+DMAC

DKYL0
+DMAC

A G, C, V,
E, D, B,
N

DKYL0
+DDATA

DKYL0
+DDATA

Permit E5 to
DKYGENKY:DKYL0+DDATA

B,C X DKYL0
+DDATA

DKYL0
+DDATA

A G, C, V,
E, D, B,
N

DKYL0
+DEXP

DKYL0 +DEXP Permit E5 to
DKYGENKY:DKYL0+DEXP

B,C X DKYL0
+DEXP

DKYL0 +DEXP

Note: EMV Chip Card Master Keys are used by the chip cards to perform cryptographic operations, or in some
cases to derive keys used to perform operations. In CCA, these are:

v Key Gen Keys of level DKYL0 or DKYL1 allowing derivation of operational keys, or

v operational keys.

EMV support in CCA is significantly different. CCA key types do not match TR-31 types.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 125. TR-31 export required hardware

Server

Required
cryptographic
hardware Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

IBM System z10 EC

IBM System z10 BC

This service is not supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

TR-31 key support requires the Sept. 2011 or
later LIC.

TR-31 Import

314 z/OS ICSF Application Programmer's Guide

Table 125. TR-31 export required hardware (continued)

Server

Required
cryptographic
hardware Restrictions

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

TR-31 Optional Data Build (CSNBT31O and CSNET31O)
A TR-31 key block can hold optional fields which are securely bound to the key
block using the integrated MAC. The optional blocks may either contain
information defined in the TR-31 standard, or they may contain proprietary data.

Use the TR-31 Optional Data Build callable service to construct the optional block
data structure for a TR-31 key block. It builds the structure by adding one optional
block with each call, until your entire set of optional blocks have been added.

With each call, the application program provides a single optional block by
specifying its ID, its length, and its data in parameters opt_block_id, opt_block_length,
and opt_block_data respectively. Each subsequent call appends the current optional
block to any preexisting blocks in the opt_blocks parameter. On the first call to the
callable service, opt_blocks is typically empty.

The callable service name for AMODE(64) is CSNET31O.

Format
CSNBT31O(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
opt_blocks_bfr_length,
opt_blocks_length,
opt_blocks,
num_opt_blocks,
opt_block_id,
opt_block_data_length,
opt_block_data)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

TR-31 Import

Chapter 5. Managing Symmetric Cryptographic Keys 315

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The
rule_array_count parameter must be 0 since no keywords are currently defined
for this callable service.

rule_array

Direction Type

Input String

The rule_array contains keywords that provide control information to the
callable service. There are no rule_array keywords currently defined for this
callable service.

opt_blocks_bfr_length

Direction Type

Input Integer

This parameter specifies the length of the buffer passed with the opt_blocks
parameter. This length is used to determine if it would overflow the buffer size
when adding a new optional block to the current contents of the buffer.

opt_blocks_length

Direction Type

Input/Output Integer

TR-31 Optional Data Build

316 z/OS ICSF Application Programmer's Guide

This parameter specifies the actual length of the set of optional blocks
currently contained in the opt_blocks buffer. On output, it is updated with the
length after the callable service has added the new optional block.

opt_blocks

Direction Type

Input/Output String

This parameter specifies a buffer containing the set of optional blocks being
built. In the first call, it will generally be empty. The callable service will
append one optional block to the buffer with each call. Parameter
opt_blocks_bfr_length specifies the total length of this buffer, and an error will be
returned if this length would be exceeded by adding the optional block in
parameter opt_block_data to the current contents. This parameter is encoded in
ASCII on both input and output.

num_opt_blocks

Direction Type

Output Integer

This parameter contains the number of optional blocks contained in the
structure returned in parameter opt_blocks. This is provided as an output
parameter so that it can subsequently be used as an input to the TR-31 Export
callable service.

opt_block_id

Direction Type

Input String

This parameter specifies a two-byte value which is the identifier (ID) of the
optional block passed in parameter opt_block_data.

opt_block_data_length

Direction Type

Input Integer

This parameter specifies the length of the data passed in parameter
opt_block_data. Note that it is valid for this length to be zero; an optional block
can have an ID and a length, but no data.

opt_block_data

Direction Type

Input String

This parameter specifies a buffer where the application passes the data for the
optional block that is to be added to those already in the buffer in parameter
opt_blocks. The length of this data is specified in parameter
opt_block_data_length.

Restrictions
None.

TR-31 Optional Data Build

Chapter 5. Managing Symmetric Cryptographic Keys 317

Usage Notes
Unless otherwise noted, all String parameters that are either written to, or read
from, a TR-31 key block will be in EBCDIC format. Input parameters are converted
to ASCII before being written to the TR-31 key block and output parameters are
converted to EBCDIC before being returned (see Appendix F, “EBCDIC and ASCII
Default Conversion Tables,” on page 919). TR-31 key blocks themselves are always
in printable ASCII format as required by the ANSI TR-31 specification.

Note that the Padding Block, ID “PB” is not allowed to be added by the user. A
Padding Block of the appropriate size, if needed, will be added when building the
TR-31 key block in TR-31 Export. If the TR-31 Export callable service encounters a
padding block in the optional block data, an error will occur.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 126. TR-31 Optional Data Build required hardware

Server

Required
cryptographic
hardware Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None

IBM System z9 EC

IBM System z9 BC

None

IBM System z10 EC

IBM System z10 BC

None

IBM zEnterprise 196

IBM zEnterprise 114

None

IBM zEnterprise EC12

IBM zEnterprise BC12

None

TR-31 Optional Data Read (CSNBT31R and CSNET31R)
A TR-31 key block can hold optional fields which are securely bound to the key
block using the integrated MAC. The optional blocks may either contain
information defined in the TR-31 standard, or they may contain proprietary data. A
separate range of optional block identifiers is reserved for use with proprietary
blocks.

Note that some of the parameters are only used with keyword INFO and others
are only used with keyword DATA.

The callable service name for AMODE(64) is CSNET31R.

TR-31 Optional Data Build

318 z/OS ICSF Application Programmer's Guide

Format
CSNBT31R(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
TR31_key_block_length,
TR31_key_block,
opt_block_id,
num_opt_blocks,
opt_block_ids,
opt_block_lengths,
opt_block_data_length,
opt_block_data)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

TR-31 Optional Data Read

Chapter 5. Managing Symmetric Cryptographic Keys 319

The number of keywords you are supplying in the rule_array parameter. The
rule_array_count parameter must be 1

rule_array

Direction Type

Input String

The rule_array contains keywords that provide control information to the
callable service. The keywords are 8 bytes in length and must be left-aligned
and padded on the right with space characters. The rule_array keywords for
this callable service are shown in the following table.

Table 127. Keywords for TR-31 Optional Data Read Rule Array Control Information

Keyword Meaning

Operation – one required

INFO Return information about the optional blocks in the TR-31 key
block.

DATA Return the data contained in a specified optional block in the
TR-31 key block.

TR31_key_block_length

Direction Type

Input Integer

This parameter specifies the length of the TR31_key_block parameter, in bytes.
The parameter may specify a length that is greater than the size of the key
block however it can never be greater than the size of the buffer where the key
block resides. This value must be between 16 and 9992 inclusive.

TR31_key_block

Direction Type

Input String

This parameter contains the TR-31 key block that is to be parsed. The length of
the TR-31 block is specified using parameter TR31_key_block_length.

opt_block_id

Direction Type

Input String

This parameter is only used with option DATA. It is ignored for others. It
specifies a 2-byte string which contains the identifier of the block from which
the application is requesting data. The callable service will locate this optional
block within the TR-31 structure and copy the data from that optional block
into the returned opt_block_data buffer. If the specified optional block is not
found in the TR-31 key block, an error will occur.

num_opt_blocks

Direction Type

Input Integer

This parameter specifies the number of optional blocks in the TR-31 key block.

TR-31 Optional Data Read

320 z/OS ICSF Application Programmer's Guide

The value is compared to the corresponding value in the TR-31 block header
and if they do not match the callable service fails with an error. This parameter
is only used for option INFO and is not examined for any other options.

opt_block_ids

Direction Type

Output String Array

This parameter contains an array of two-byte string values. Each of these
values is the identifier (ID) of one of the optional blocks contained in the TR-31
key block. The callable service returns a list containing the ID of each optional
block that is in the TR-31 block, and the list is in the order that the optional
blocks appear in the TR-31 header. The total length of the returned list will be
two times the number of optional blocks, and the caller must supply a buffer
with a length at least twice the value it passes in parameter num_opt_blocks.
This parameter is only used for option INFO and is not examined for any
other options.

opt_block_lengths

Direction Type

Output Array

This parameter contains an array of 16-bit integer values. Each of these values
is the length in bytes of one of the optional blocks contained in the TR-31 key
block. The callable service returns a list containing the length of each optional
block that is in the TR-31 block, and the list is in the order that the optional
blocks appear in the TR-31 header. The total length of the returned list will be
four times the number of optional blocks and the application program must
supply a buffer with a length at least four times the value it passes in
parameter num_opt_blocks. This parameter is only used for option INFO and is
not examined or altered for any other options.

opt_block_data_length

Direction Type

Input/Output Integer

This parameter specifies the length for parameter opt_block_data. On input it
must be set to the length of the buffer provided by the application program,
and on output it is updated to contain the length of the returned optional
block data, in bytes. It is only used for option DATA.

opt_block_data

Direction Type

Output String

This parameter contains a buffer where the callable service stores the data it
reads from the specified optional block. The buffer must have enough space for
the data, as indicated by the input value of parameter opt_block_data_length.
If not an error occurs and no changes are made to the contents of the buffer. If
the size of the buffer is sufficient, the data is copied to the buffer and its length
is stored in parameter opt_block_data_length. It is only used for option DATA
and is not examined or altered for any other options.

Restrictions
None

TR-31 Optional Data Read

Chapter 5. Managing Symmetric Cryptographic Keys 321

Usage Notes
Unless otherwise noted, all String parameters that are either written to, or read
from, a TR-31 key block will be in EBCDIC format. Input parameters are converted
to ASCII before being written to the TR-31 key block and output parameters are
converted to EBCDIC before being returned (see Appendix F, “EBCDIC and ASCII
Default Conversion Tables,” on page 919). TR-31 key blocks themselves are always
in printable ASCII format as required by the ANSI TR-31 specification.

The TR-31 Optional Data Read callable service (CSNBT31R and CSNET31R) can be
used in conjunction with the TR-31 Parse callable service (CSNBT31P and
CSNET31P) to obtain both the standard header fields and any optional data blocks
from the key block. This is generally a three-step process.
1. Use the TR-31 Parse callable service to determine how many optional blocks

are in the TR-31 token. This is returned in the num_opt_blocks parameter.
2. Use keyword INFO with the TR-31 Optional Data Read callable service to

obtain lists of the optional block identifiers and optional block lengths. Your
buffers must be large enough to hold the returned data, but the required size
can be determined from the number of blocks obtained in the step above.

3. Use keyword DATA with the TR-31 Optional Data Read callable service to
obtain the data for a particular optional block, specified by the block identifier.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 128. TR-31 Optional Data Read required hardware

Server

Required
cryptographic
hardware Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None

IBM System z9 EC

IBM System z9 BC

None

IBM System z10 EC

IBM System z10 BC

None

IBM zEnterprise 196

IBM zEnterprise 114

None

IBM zEnterprise EC12

IBM zEnterprise BC12

None

TR-31 Parse (CSNBT31P and CSNET31P)
Use the TR-31 Parse callable service to retrieve standard header information from a
TR-31 key block without importing the key.

The callable service name for AMODE(64) is CSNET31P.

TR-31 Optional Data Read

322 z/OS ICSF Application Programmer's Guide

Format
CALL CSNBT31P(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
TR31_key_block_length,
TR31_key_block,
key_block_version,
key_block_length,
key_usage,
algorithm,
mode,
key_version_number,
exportability,
num_opt_blocks)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

TR-31 Parse

Chapter 5. Managing Symmetric Cryptographic Keys 323

The number of keywords you are supplying in the rule_array parameter. The
rule_array_count parameter must be 0 because no keywords are currently
defined for this callable service.

rule_array

Direction Type

Input String

A rule_array contains keywords that provide control information to the callable
service. No rule array keywords are currently defined for this callable service.

TR31_key_block_length

Direction Type

Input Integer

This parameter specifies the length of the TR31_key_block parameter, in bytes.
The parameter may specify a length that is greater than the size of the key
block (however it can never be greater than the size of the buffer where the
key block resides). This value must be between 16 and 9992 inclusive.

TR31_key_block

Direction Type

Input String

This parameter contains the TR-31 key block that is to be parsed.

key_block_version

Direction Type

Output String

This parameter contains a one-byte character value that indicates the version of
the TR-31 key block, parsed from the block itself. CCA only supports versions
"A", "B", and "C" key blocks.

key_block_length

Direction Type

Output Integer

This parameter contains the length of the key block as obtained from the TR-31
key block header. Note that this may be different from the input value in
parameter TR31_key_block_length, if the application program specifies a length
that is greater than the actual length of the key block.

key_usage

Direction Type

Output String

This parameter contains a 2-byte string value indicating the TR-31 key usage
value for the key contained in the block. The value is obtained from the TR-31

TR-31 Parse

324 z/OS ICSF Application Programmer's Guide

key block header. The usage defines the type of function this key can be used
with, such as data encryption, PIN encryption, or key wrapping.

algorithm

Direction Type

Output String

This parameter contains a one-byte string identifying the cryptographic
algorithm the wrapped key is to be used with. The value is read from the
TR-31 key block header. CCA only supports "D" for a Single-DES key and "T"
for a Triple-DES key.

mode

Direction Type

Output String

This parameter contains a one-byte string indicating the TR-31 mode of use for
the key contained in the block. The value is obtained from the TR-31 key block
header. The mode of use describes what operations the key can perform,
within the limitations specified with the key usage value. For example, a key
with usage for data encryption can have a mode to indicate it may be used for
encryption only, decryption only, or both encryption and decryption.

key_version_number

Direction Type

Output String

This parameter contains a two-byte string obtained from the TR-31 key block
header which represents versioning information about the key contained in the
block.

exportability

Direction Type

Output String

This parameter contains a one-byte string indicating the key exportability value
from the TR-31 key block header. This value indicates whether the key can be
exported from this system, and if so it specifies conditions under which export
is permitted.

num_opt_blocks

Direction Type

Output Integer

This parameter contains the number of optional blocks that are part of the
TR-31 key block.

Restrictions
None

TR-31 Parse

Chapter 5. Managing Symmetric Cryptographic Keys 325

Usage Notes
Unless otherwise noted, all String parameters that are either written to, or read
from, a TR-31 key block will be in EBCDIC format. Input parameters are converted
to ASCII before being written to the TR-31 key block and output parameters are
converted to EBCDIC before being returned (see Appendix F, “EBCDIC and ASCII
Default Conversion Tables,” on page 919). TR-31 key blocks themselves are always
in printable ASCII format as required by the ANSI TR-31 specification.

The TR-31 Optional Data Read callable service (CSNBT31R and CSNET31R) can be
used in conjunction with the TR-31 Parse callable service (CSNBT31P and
CSNET31P) to obtain both the standard header fields and any optional data blocks
from the key block. This is generally a three-step process.
1. Use the TR-31 Parse callable service to determine how many optional blocks

are in the TR-31 token. This is returned in the num_opt_blocks parameter.
2. Use keyword INFO with the TR-31 Optional Data Read callable service to

obtain lists of the optional block identifiers and optional block lengths. Your
buffers must be large enough to hold the returned data, but the required size
can be determined from the number of blocks obtained in the step above.

3. Use keyword DATA with the TR-31 Optional Data Read callable service to
obtain the data for a particular optional block, specified by the block identifier.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 129. TR-31 Parse required hardware

Server

Required
cryptographic
hardware Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None

IBM System z9 EC

IBM System z9 BC

None

IBM System z10 EC

IBM System z10 BC

None

IBM zEnterprise 196

IBM zEnterprise 114

None

IBM zEnterprise EC12

IBM zEnterprise BC12

None

Unique Key Derive (CSNBUKD and CSNEUKD)
Unique Key Derive (CSNBUKD and CSNEUKD) will perform the key derivation
process as defined in ANSI X9.24 Part 1.

The process derives keys from two values — The base derivation key and the
derivation data:

TR-31 Parse

326 z/OS ICSF Application Programmer's Guide

v The base derivation key is the key from which the others are derived. This must
be a KEYGENKY with the UKPT bit (bit 18) set to 1 in the Control Vector.

v The derivation data is used to make the derived key specific to a particular
device and to a specific transaction from that device. The derivation data, called
the Current Key Serial Number (CKSN), is the 80-bit concatenation of the
device's 59-bit Initial Key Serial Number value and the 21-bit value of the
current encryption counter which the device increments for each new
transaction.

The Initial Pin Encryption Key (IPEK) is derived from the base derivation key and
the initial derivation data. Specify the K3IPEK rule array keyword to return the
IPEK.

Rule array keywords determine the types and number of keys derived on a
particular call. See the Rule Array parameter description for more information.

Output keys are wrapped using the mode configured as the default wrapping
mode, either enhanced wrapping mode (WRAP-ENH) or original ECB wrapping
mode (WRAP-ECB).

Format
CALL CSNBUKD(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
base_derivation_key_identifier_length,
base_derivation_key_identifier,
derivation_data_length,
derivation_data,
generated_key_identifier1_length,
generated_key_identifier1,
generated_key_identifier2_length,
generated_key_identifier2,
generated_key_identifier3_length,
generated_key_identifier3,
transport_key_identifier_length,
transport_key_identifier,
reserved2_length,
reserved2,
reserved3_length,
reserved3,
reserved4_length,
reserved4,
reserved5_length,
reserved5,
reserved6_length,
reserved6)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

Unique Key Derive

Chapter 5. Managing Symmetric Cryptographic Keys 327

|
|
|

|
|
|

|
|

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. Values are
1 through 5.

rule_array

Direction Type

Input String

The rule_array parameter is an array of keywords. The keywords must be 8
bytes of contiguous storage with the keyword left-justified in its 8-byte location
and padded on the right with blanks. The rule_array keywords are:

Table 130. Keywords for Unique Key Derive

Keyword Meaning

Algorithm (One, optional. The default is DES)

DES Specifies that the keys to be generated are DES (Triple DES)
keys. All input skeleton tokens must be DES tokens and all
generated output tokens will be DES tokens.

Token output type (One, required for K3IPEK)

TDES-TOK Specifies that the output IPEK should be wrapped by the
TDES transport key and returned in an external TDES token.

TR31-TOK Specifies that the output IPEK should be wrapped by the
TDES transport key and returned in a TR-31 key block.

Unique Key Derive

328 z/OS ICSF Application Programmer's Guide

|

||
|

||
|

Table 130. Keywords for Unique Key Derive (continued)

Keyword Meaning

Key wrapping method (One, optional. The default is USECONFG. The Access Control
Point Unique Key Derive – Override Default Wrapping Method must be enabled to
specify these keywords.

USECONFG Specifies to wrap the key using the configuration setting for
the default wrapping method.

WRAP-ECB Specifies to wrap the key using the original wrapping
method.

WRAP-ENH Specifies to wrap the key using the enhanced wrapping
method.

Output Key Selection Keywords. (One required, up to 3 can be specified.) Neither the
PIN-DATA nor the K3IPEK keyword can be specified with any other Output Key Selection
keywords. Any combination of the other keywords (K1DATA, K2MAC, and K3PIN) can be
specified, enabling a program to produce up to 3 different output keys with one call.

PIN-DATA The returned key type for this keyword is a PIN key, which
is returned in a DATA key token. This is an output key
selection keyword for the generated_key_identifier3_length and
generated_key_identifier3 parameters.

Output value generated_key_identifier3 will be created and
will be a DATA key. The skeleton token provided in that
parameter on input must be one of the permitted "PIN key
with rule keyword PIN-DATA" key types for this callable
service. For valid values, see Table 131 on page 333.

To use this option:

v Control Vector bit 61 (Not-CCA) will be set to a one.

v Access Control Point Unique Key Derive – Allow
PIN-DATA processing must be enabled.

K1DATA The returned key type for this keyword is a DATA
ENCRYPTION key. This is the output key selection keyword
for the generated_key_identifier1_length and
generated_key_identifier1 parameters.

Output value generated_key_identifier1 will be created and
will be a data encryption key. The skeleton token provided
in that parameter on input must be one of the permitted
"Data encryption key" types for this callable service. For
valid values see Table 131 on page 333.

K2MAC The returned key type for this keyword is a MAC key. This
is the output key selection keyword for the
generated_key_identifier2_length and generated_key_identifier2
parameters.

Output value generated_key_identifier2 will be created and
will be a MAC key. The skeleton token provided in that
parameter on input must be one of the permitted MAC key
types for this callable service. For valid values, see Table 131
on page 333.

Unique Key Derive

Chapter 5. Managing Symmetric Cryptographic Keys 329

||
|

|
|
|
|

Table 130. Keywords for Unique Key Derive (continued)

Keyword Meaning

K3PIN The returned key type for this keyword is a PIN key. This is
an output key selection keyword for the
generated_key_identifier3_length and generated_key_identifier3
parameters.

Output value generated_key_identifier3 will be created and
will be a PIN key. The skeleton token provided in that
parameter on input must be one of the permitted PIN key
types for this callable service. For valid values see Table 131
on page 333.

K3IPEK The returned key for this keyword is the IPEK. This is an
output key selection keyword for the
generated_key_identifier3_length and generated_key_identifier3
parameters.

Output value generated_key_identifier3 will be created and
will be the initial PIN encryption key wrapped by the TDES
transport key and returned in an external symmetric token
or TR-31 key block as indicated by the token output type
keyword. The skeleton token provided in that parameter on
input must be one of the permitted PIN key types for this
callable service. For valid values see Table 131 on page 333.

This keyword may not be combined with any other output
key selection keyword.

base_derivation_key_identifier_length

Direction Type

Input Integer

The length of the base_derivation_key parameter. This value must be 64

base_derivation_key_identifier

Direction Type

Input/Output String

The base derivation key is the key from which the operational keys are derived
using the DUKPT algorithms defined in ANSI X9.24 Part 1. The base
derivation key must be an internal key token or the label of an internal key
token containing a double-length KEYGENKY key with the UKPT bit (bit 18)
set to 1 in the Control Vector.

derivation_data_length

Direction Type

Input Integer

The length of the derivation_data parameter. This value must be 10.

derivation_data

Direction Type

Input String

The derivation data is an 80-bit (10-byte) string that contains the Current Key

Unique Key Derive

330 z/OS ICSF Application Programmer's Guide

||
|
|
|

|
|
|
|
|
|
|

|
|

Serial Number (CKSN) of the device concatenated with the 21-bit value of the
current Encryption Counter which the device increments for each new
transaction.

generated_key_identifier1_length

Direction Type

Input/Output Integer

The length of the generated_key_identifier1 parameter. Values are 0 and 64.

generated_key_identifier1

Direction Type

Input/Output String

On input, this must be a DES Data encryption key token or a skeleton token of
a DES Data encryption key, with one of the Data encryption control vectors as
shown in Table 131 on page 333.

On output, generated_key_identifier1 will contain the data encryption token with
the derived data encryption key.

generated_key_identifier2_length

Direction Type

Input/Output Integer

The length of the generated_key_identifier2 parameter. Values are 0 and 64.

generated_key_identifier2

Direction Type

Input/Output String

On input, this must be a DES MAC key token or a skeleton token of a DES
MAC key, with one of the MAC control vectors as shown in Table 131 on page
333. On output, generated_key_identifier2 will contain the MAC token with the
derived MAC key.

generated_key_identifier3_length

Direction Type

Input/Output Integer

The length of the generated_key_identifier3 parameter. When the rule array
keyword is K3IPEK, the length must be at least 64 bytes. Otherwise, values are
0 and 64.

generation_key_identifier3

Direction Type

Input/Output String

The input and output values for this parameter depends on the keyword
specified in the rule_array parameter. The rule_array keyword for the
generation_key_identifier3 parameter can be either PIN-DATA or K3PIN.
v When Rule Array Keyword is PIN-DATA, input must be a Data key token or

skeleton token of a Data key with one of the “PIN key with rule keyword
PIN-DATA” control vectors as shown in Table 131 on page 333. On output,
this parameter will contain the Data token with the derived PIN key.

Unique Key Derive

Chapter 5. Managing Symmetric Cryptographic Keys 331

|

v When Rule Array Keyword is K3PIN, input must be a DES PIN key token or
a skeleton token of a DES PIN key, with one of the PIN control vectors as
shown in Table 131 on page 333. On output, this parameter will contain the
PIN token with the derived PIN key.

v When Rule Array Keyword is K3IPEK, input must be a DES PIN key token
or a skeleton token of a DES PIN key left-justified in the field, with one of
the PIN control vectors as shown in Table 131 on page 333. On output, this
parameter will contain the TDES wrapped IPEK in an external symmetric
key token or TR-31 key block.

transport_key_identifier_length

Direction Type

Input Integer

The length of the transport_key_identifier parameter. If the transport key
identifier is not used, the length must be 0. Otherwise, the length must be 64.

transport_key_identifier

Direction Type

Input/Output String

If the K3IPEK keyword is specified, the transport_key_identifier contains the
label or key token for the key encrypting key to be used to wrap the IPEK. The
transport key must be a DES EXPORTER KEK. Otherwise this field is ignored.

reserved2_length

Direction Type

Input Integer

This parameter must be zero.

reserved2

Direction Type

Ignored String

This parameter is ignored.

reserved3_length

Direction Type

Input Integer

This parameter must be zero.

reserved3

Direction Type

Ignored String

This parameter is ignored.

reserved4_length

Direction Type

Input Integer

Unique Key Derive

332 z/OS ICSF Application Programmer's Guide

|
|
|
|
|

|

|||

||
|
|
|

|

|||

||
|
|
|
|

This parameter must be zero.

reserved4

Direction Type

Ignored String

This parameter is ignored.

reserved5_length

Direction Type

Input Integer

This parameter must be zero.

reserved5

Direction Type

Ignored String

This parameter is ignored.

reserved6_length

Direction Type

Input Integer

This parameter must be zero.

reserved6

Direction Type

Ignored String

This parameter is ignored.

Restrictions
The following table shows the valid skeleton tokens depending on the key type to
be derived.

Table 131. Valid Control Vectors for Derived Keys

Key to be derived Supported key types in the skeleton token

Data encryption
key

CIPHER 00 03 71 00 03 41 00 00 00 03 71 00 03 21 00 00

ENCIPHER 00 03 60 00 03 41 00 00 00 03 60 00 03 21 00 00

DECIPHER 00 03 50 00 03 41 00 00 00 03 50 00 03 21 00 00

Message
authentication
(MAC) key

MAC 00 05 4D 00 03 41 00 00 00 05 4D 00 03 21 00 00

MACVER 00 05 44 00 03 41 00 00 00 05 44 00 03 21 00 00

PIN key IPINENC 00 21 5F 00 03 41 00 00 00 21 5F 00 03 21 00 00

OPINENC 00 24 77 00 03 41 00 00 00 24 77 00 03 21 00 00

PIN key with rule
keyword
PIN-DATA

DATA PIN 00 00 7D 00 03 41 00 00 00 00 7D 00 03 21 00 00

Unique Key Derive

Chapter 5. Managing Symmetric Cryptographic Keys 333

Note that the following bits of the control vector are not checked and may have a
value of either 0 or 1.
v Bit 17 - Export control
v Bit 56 – Enhanced wrapping control
v Bit 57 – TR-31 export control
v Bits 4 and 5 – UDX

Additional control vector bit that is not checked for PIN key with rule keyword
PIN-DATA.
v Bit 61 - Not-CCA

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal key tokens that are stored in the CKDS.

The following table indicates the variants used for each output key type to be
derived.

Table 132. Derivation Variants

Key Type DUKPT derivation
variant

DUKPT key usage description

IPINENC
OPINENC PIN
key (using
PIN-DATA rule
array keyword)

00000000000000FF
00000000000000FF

PIN Encryption

MAC 000000000000FF00
000000000000FF00

MAC, request or both ways

MACVER 00000000FF000000
00000000FF000000

MAC, response only

CIPHER

ENCIPHER

0000000000FF0000
0000000000FF0000

Data Encryption, request or both ways

DECIPHER 000000FF00000000
000000FF00000000

Data Encryption, response only

Access Control Points
The Unique Key Derive access control point controls the function of this service.
Specifying a “Key wrapping method” in the rule array requires the Unique Key
Derive – Override Default Wrapping Method access control point to be enabled
in the active role.

Specifying the PIN-DATA rule array keyword requires the Unique Key Derive –
Allow PIN-DATA access control point to be enabled in the active role.

Specifying the K3IPEK rule array keyword requires the Unique Key Derive –
K3IPEK access control point to be enabled in the active role.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Unique Key Derive

334 z/OS ICSF Application Programmer's Guide

|
|

Table 133. Unique Key Derive required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

This callable service is not supported.

IBM System z9 EC

IBM System z9 BC

This callable service is not supported.

IBM System z10 EC

IBM System z10 BC

This callable service is not supported.

IBM zEnterprise 196

IBM zEnterprise 114

This callable service is not supported.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

The K3IPEK, TDES-TOK, and TR31-TOK
keywords require the Sep. 2013 or later
licensed internal code (LIC)

Unique Key Derive

Chapter 5. Managing Symmetric Cryptographic Keys 335

|

|

|
|

|
|

|
|
|

Unique Key Derive

336 z/OS ICSF Application Programmer's Guide

Chapter 6. Protecting Data

Use ICSF to protect sensitive data stored on your system, sent between systems, or
stored off your system on magnetic tape. To protect data, encipher it under a key.
When you want to read the data, decipher it from ciphertext to plaintext form.

ICSF provides encipher and decipher callable services to perform these functions. If
you use a key to encipher data, you must use the same key to decipher the data.
To use clear keys directly, ICSF provides symmetric key decipher, symmetric key
encipher, encode and decode callable services. These services encipher and decipher
with clear keys. You can use clear keys indirectly by first using the clear key
import callable service, and then using the encipher and decipher callable services.

This topic describes these services:
v “Ciphertext Translate2 (CSNBCTT2, CSNBCTT3, CSNECTT2, CSNECTT3)” on

page 340
v “Decipher (CSNBDEC or CSNBDEC1 and CSNEDEC or CSNEDEC1)” on page

352
v “Decode (CSNBDCO and CSNEDCO)” on page 359
v “Encipher (CSNBENC or CSNBENC1 and CSNEENC or CSNEENC1)” on page

361
v “Encode (CSNBECO and CSNEECO)” on page 368
v “Symmetric Algorithm Decipher (CSNBSAD or CSNBSAD1 and CSNESAD or

CSNESAD1)” on page 370
v “Symmetric Algorithm Encipher (CSNBSAE or CSNBSAE1 and CSNESAE or

CSNESAE1)” on page 377
v “Symmetric Key Decipher (CSNBSYD or CSNBSYD1 and CSNESYD or

CSNESYD1)” on page 384
v “Symmetric Key Encipher (CSNBSYE or CSNBSYE1 and CSNESYE or

CSNESYE1)” on page 394

Modes of Operation
To encipher or decipher data or keys, ICSF uses either the U.S. National Institute of
Standards and Technology (NIST) Data Encryption Standard (DES) algorithm or
the Advanced Encryption Standard (AES) algorithm. The DES algorithm is
documented in Federal Information Processing Standard #46. The AES algorithm is
documented in Federal Information Processing Standard 197.

ICSF enciphers and deciphers using several modes of operation. Some of the
modes have variations related to padding or blocking of the data. The text in
parentheses is the processing rule associated with that mode.

The supported modes are:
v Electronic code book (ECB)
v Cipher block chaining (CBC)

– Cipher block chaining with ciphertext stealing (CBC-CS)
– Cipher block chaining compatible with CUSP/PCF (CUSP)
– Cipher block chaining compatible with IPS (IPS)

© Copyright IBM Corp. 1997, 2013 337

|
|
|
|
|

– Cipher block chaining using PKCS#7 padding (PKCS-PAD)
– Cipher block chaining using ANSI X9.23 padding (X9.23)
– Cipher block chaining using IBM 4700 padding (4700-PAD)

v Cipher Feedback (CFB)
– Cipher Feedback with a non-blocksize segment (CFB-LCFB)

v Output Feedback (OFB)
v Galois/Counter Mode (GCM)

Electronic Code Book (ECB) Mode
In the ECB mode, each block of plaintext is separately enciphered and each block
of the ciphertext is separately deciphered. In other words, the encipherment or
decipherment of a block is totally independent of other blocks. ICSF uses the ECB
encipherment mode for enciphering and deciphering data with clear keys using the
encode and decode callable services.

Cipher Block Chaining (CBC) Mode
The CBC mode uses an initial chaining vector (ICV) in its processing. The CBC
mode only processes blocks of data in exact multiples of the blocksize. The ICV is
exclusive ORed with the first block of plaintext prior to the encryption step; the
block of ciphertext just produced is exclusive-ORed with the next block of
plaintext, and so on. You must use the same ICV to decipher the data. This
disguises any pattern that may exist in the plaintext. CBC mode is the default for
encrypting and decrypting data using the Encipher and Decipher callable services.
“Cipher Processing Rules” on page 904 describes the CBC-specific processing rules
in detail.

Cipher Feedback (CFB) Mode
The CFB mode uses an initial chaining vector (ICV) in its processing. CFB mode
performs cipher feedback encryption. CFB mode operates on segments instead of
blocks. The segment length (called s) is between one bit and the block size (called
b) for the underlying algorithm (DES or AES), inclusive. ICSF only allows segment
sizes which are a multiple of eight bits (complete bytes). Each encryption step
takes an input block, enciphers it with the key provided to generate an output
block, takes the most significant s bits of the output block, and then exclusive ORs
that with the plaintext segment. The first input block is the ICV and each
subsequent input block is formed by concatenating the (b-s) least significant bits of
the previous input block and the ciphertext (s bits) from the previous step to form
a full block. The input text can be of any length. The output text will have the
same length as the input text.

Output Feedback (OFB) Mode
The OFB mode uses an initial chaining vector (ICV) in its processing. OFB mode
requires that the ICV is a nonce (the ICV must be unique for each execution of the
mode under the given key). Each encryption step takes an input block, enciphers it
with the key provided to generate an output block, and then exclusive ORs the
output block with the plaintext block. The first input block is the ICV and each
subsequent input block is the previous output block. The input text can be of any
length. The output text will have the same length as the input text.

Galois/Counter Mode (GCM)
The GCM mode uses an initialization vector (IV) in its processing. This mode is
used for authenticated encryption with associated data. GCM provides

338 z/OS ICSF Application Programmer's Guide

confidentiality and authenticity for the encrypted data and authenticity for the
additional authenticated data (AAD). The AAD is not encrypted. GCM mode
requires that the IV is a nonce, i.e., the IV must be unique for each execution of the
mode under the given key. The steps for GCM encryption are:
1. The hash subkey for the GHASH function is generated by applying the block

cipher to the “zero” block.
2. The pre-counter block (J0) is generated from the IV. In particular, when the

length of the IV is 96 bits, then the padding string 031||1 is appended to the IV
to form the pre-counter block. Otherwise, the IV is padded with the minimum
number of ‘0’ bits, possibly none, so that the length of the resulting string is a
multiple of 128 bits (the block size); this string in turn is appended with 64
additional ‘0’ bits, followed by the 64-bit representation of the length of the IV,
and the GHASH function is applied to the resulting string to form the
pre-counter block.

3. The 32-bit incrementing function is applied to the pre-counter block to produce
the initial counter block for an invocation of the GCTR function on the
plaintext. The output of this invocation of the GCTR function is the
ciphertext.

4. The AAD and the ciphertext are each appended with the minimum number of
‘0’ bits, possibly none, so that the bit lengths of the resulting strings are
multiples of the block size. The concatenation of these strings is appended with
the 64-bit representations of the lengths of the AAD and the ciphertext to
produce block u.

5. The GHASH function is applied to block u to produce a single output block.
6. This output block is encrypted using the GCTR function with the pre-counter

block that was generated in Step 2, and the result is truncated to the specified
tag length to form the authentication tag.

7. The ciphertext and the tag are returned as the output.
The plaintext can be of any length. The ciphertext will have the same length as
the plaintext.

For GCM decryption, the tag is an input parameter. ICSF calculates a tag using the
same process as encryption and compares that to the parameter passed by the
caller. If they match, the decryption will proceed.

Triple DES Encryption
Triple-DES encryption uses a triple-length DATA key comprised of three 8-byte
DES keys to encipher 8 bytes of data using this method:
v Encipher the data using the first key
v Decipher the result using the second key
v Encipher the second result using the third key

The procedure is reversed to decipher data that has been triple-DES enciphered:
v Decipher the data using the third key
v Encipher the result using the second key
v Decipher the second result using the first key

ICSF uses the triple-DES encryption in the CBC encipherment mode.

A variation of the triple DES algorithm supports the use of a double-length DATA
key comprised of two 8-byte DATA keys. In this method, the first 8-byte key is
reused in the last encipherment step.

Chapter 6. Protecting Data 339

Due to export regulations, triple-DES encryption may not be available on your
processor.

Ciphertext Translate2 (CSNBCTT2, CSNBCTT3, CSNECTT2, CSNECTT3)
This callable service deciphers encrypted data (ciphertext) under one cipher text
translation key and reenciphers it under another cipher text translation key
without having the data appear in the clear outside the cryptographic coprocessor.
ICSF uses the ciphertext translation key as either the input or the output data
transport key. Such a function is useful in a multiple node network, where
sensitive data is passed through multiple nodes prior to it reaching its final
destination.

“Using the Ciphertext Translate2 Callable Service” on page 61 provides some tips
on using the callable service.

Use the ciphertext translate2 callable service to decipher text under an “input” key
and then to encipher the text under an “output” key. Both AES and DES
algorithms are supported. Translation between AES and DES is allowed with
restrictions controlled by access control points.

The encryption modes supported are:
v DES – CBC, CUSP. and IPS
v AES – CBC and ECB

The padding methods supported are:
v DES – X9.23
v AES – PKCSPAD

Choosing Between CSNBCTT2 and CSNBCTT3
CSNBCTT2 and CSNBCTT3 provide identical functions. When choosing the service
to use, consider this:
v CSNBCTT2 requires the input text and output text to reside in the caller's

primary address space. Also, a program using CSNBCTT2 adheres to the IBM
Common Cryptographic Architecture: Cryptographic Application Programming
Interface. The callable service name for AMODE(64) invocation is CSNECTT2.

v CSNBCTT3 allows the input text and output text to reside either in the caller's
primary address space or in a data space. This allows you to translate more data
with one call. However, a program using CSNBCTT3 does not adhere to the IBM
Common Cryptographic Architecture: Cryptographic Application Programming
Interface, and may need to be modified prior to it running with other
cryptographic products that follow this programming interface. The callable
service name for AMODE(64) invocation is CSNECTT3. For CSNBCTT3 and
CSNECTT3, text_id_in and text_id_out are access list entry token (ALET)
parameters of the data spaces containing the input text and output text.

Format
CALL CSNBCTT2(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_in_length,

340 z/OS ICSF Application Programmer's Guide

key_identifier_in,
initialization_vector_in_length,
initialization_vector_in,
cipher_text_in_length,
cipher_text_in,
chaining_vector_length,
chaining_vector,
key_identifier_out_length,
key_identifier_out,
initialization_vector_out_length,
initialization_vector_out,
cipher_text_out_length,
cipher_text_out,
reserved1_length,
reserved1,
reserved2_length,
reserved2)

CALL CSNBCTT3(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_in_length,
key_identifier_in,
initialization_vector_in_length,
initialization_vector_in,
cipher_text_in_length,
cipher_text_in,
chaining_vector_length,
chaining_vector,
key_identifier_out_length,
key_identifier_out,
initialization_vector_out_length,
initialization_vector_out,
cipher_text_out_length,
cipher_text_out,
reserved1_length,
reserved1,
reserved2_length,
reserved2,
text_id_in,
text_id_out)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that

Ciphertext Translate2

Chapter 6. Protecting Data 341

indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value
must be 4 or 5.

rule_array

Direction Type

Input String

The keywords that provide control information to the callable service. The
following table provides a list. The keywords must be 8 bytes of contiguous
storage with the keyword left-justified in its 8-byte location and padded on the
right with blanks.

Table 134. Keywords for Ciphertext Translate2

Keyword Meaning

Inbound Processing Rule (One required)

I-CBC Specifies encryption using CBC mode for the inbound
ciphertext. The text length must be a multiple of the block
size. The DES block size is 8 bytes. The AES block size is 16
bytes.

I-CUSP Specifies that CBC with CUSP processing for the inbound
ciphertext. The ciphertext may be any length. The ciphertext
is the same length as the plaintext. This keyword is only
valid with DES.

I-ECB Specifies encryption using ECB mode for the inbound
ciphertext. The text must be a multiple of the block size.
This keyword is only valid for AES encryption.

I-IPS Specifies that CBC with IPS processing has been used for the
inbound ciphertext. The ciphertext may be any length. The
ciphertext is the same length as the plaintext. This keyword
is only valid with DES.

Ciphertext Translate2

342 z/OS ICSF Application Programmer's Guide

Table 134. Keywords for Ciphertext Translate2 (continued)

Keyword Meaning

IPKCSPAD Specifies that CBC with PKCS padding was used for the
inbound ciphertext. The text was padded on the right with 1
- 16 bytes of pad characters, making the padded text a
multiple of the AES block size, before the data was
enciphered. Each pad character is valued to the number of
pad characters added. This keyword is only valid for AES
encryption.

I-X923 Specifies that CBC with X9.24 padding was used for the
inbound ciphertext. This is compatible with the requirements
in ANSI Standard X9.23. This keyword is only valid for DES
encryption.

Outbound Processing Rule (One required)

O-CBC Specifies encryption in CBC mode will be used for the
outbound ciphertext. The text length must be a multiple of
the block size. The DES block size is 8 bytes. The AES block
size is 16 bytes.

O-CUSP Specifies that CBC with CUSP processing will be used for
the outbound text. The outbound ciphertext will be the same
length as the plaintext. This keyword is only valid with
DES.

O-ECB Specifies encryption using ECB mode will be used for the
outbound ciphertext. The text must be a multiple of the
block size. This keyword is only valid for AES encryption.

O-IPS Specifies that CBC with IPS processing will be used for the
outbound text. The outbound ciphertext will be the same
length as the plaintext. This keyword is only valid with
DES.

OPKCSPAD Specifies that CBC with PKCS padding will be used for the
outbound text. The outbound text will be padded on the
right with 1 - 16 bytes of pad characters, making the padded
text a multiple of the AES block size, before the data was
enciphered. Each pad character is valued to the number of
pad characters added. This keyword is only valid for AES
encryption.

O-X923 Specifies that CBC with X9.24 padding will be used for the
outbound text. This is compatible with the requirements in
ANSI Standard X9.23. This keyword option is only valid for
DES encryption.

Segmenting Control (One optional)

CONTINUE Specifies the initialization vectors are taken from the
chaining vector. The chaining vector will be updated and
must not be modified between calls. This keyword is
ignored for I-ECB and O-ECB processing rules. The
CONTINUE keyword is not valid with the I-X923 or O-X923
keywords.

INITIAL Specifies the initialization vectors will be taken from the
initialization_vector_in and initialization_vector_out parameters.
This is the default. This keyword is ignored for I-ECB and
O-ECB processing rules.

Inbound Key Identifier (One Required)

IKEY-DES Specifies that the inbound key identifier is a DES key.

Ciphertext Translate2

Chapter 6. Protecting Data 343

Table 134. Keywords for Ciphertext Translate2 (continued)

Keyword Meaning

IKEY-AES Specifies that the inbound key identifier is an AES key.

Outbound Key Identified (One Required)

OKEY-DES Specifies that the outbound key identifier is a DES key.

OKEY-AES Specifies that the outbound key identifer is an AES key.

key_identifier_in_length

Direction Type

Input Integer

Length of the key_identifier_in field in bytes. The value is 64 when a label is
supplied. When the key identifier is a key token, the value is the length of the
token. The maximum value is 725.

key_identifier_in

Direction Type

Input/Output String

An internal key token or the label of the CKDS record containing the cipher
translation key for the inbound ciphertext.

Acceptable DES key types are DATA, CIPHER, CIPHERXI, CIPHERXL, and
DECIPHER. The keys must have bit 19 for “DECIPHER” set on in the control
vector. The key may be a single-, double-, or triple-length key. If the Cipher
Text translate2 - Allow only cipher text translate types access control point is
enabled, only CIPHERXI and CIPHERXL are allowed.

Acceptable AES key types include the 64-byte AES DATA key and the variable
length token CIPHER key with the DECRYPT bit on in the key usage field. The
C-XLATE bit can optionally be on. If the Cipher Text translate2 - Allow only
cipher text translate types access control point is enabled, the C-XLATE bit
must be turned on in the key usage field.

initialization_vector_in_length

Direction Type

Input Integer

Length of the initialization_vector_in field in bytes. For AES keys, the length is
16. For DES keys, the length is 8. When the initialization vector is not required
(segmenting rule CONTINUE, processing rule I-ECB), the value must be 0.

initialization_vector_in

Direction Type

Input String

The initialization vector that is used to decipher the input data. This parameter
is the initialization vector used at the previous cryptographic node. This
parameter is required for segmenting rule INITIAL.

ciphertext_in_length

Ciphertext Translate2

344 z/OS ICSF Application Programmer's Guide

Direction Type

Input Integer

The length of the ciphertext to be processed. See the table of ciphertext length
restrictions in the Usage Notes.

ciphertext_in

Direction Type

Input String

The text that is to be translated. The text is enciphered under the cipher key
specified in the key_identifier_in parameter.

chaining_vector_length

Direction Type

Input Integer

The length of the chaining_vector parameter in bytes. The chaining_vector field
must be 128 bytes long.

chaining_vector

Direction Type

Input/Output String

The chaining_vector parameter is a work area used by the service to carry
segmented data between procedure calls. This area must not be modified
between calls to the service.

key_identifier_out_length

Direction Type

Input Integer

Length of the key_identifier_out field in bytes. This value is 64 when a label is
supplied. When the key identifier is a key token, the value is the length of the
token. The maximum value is 725.

key_identifier_out

Direction Type

Input/Output String

An internal key token or the label of the CKDS record containing the cipher
translation key for the outbound ciphertext.

Acceptable DES key types are DATA, CIPHER, CIPHERXL, CIPHERXO, and
ENCIPHER. The key may be a double- or triple-length key. If the Cipher Text
translate2 – Allow only cipher text translate types access control point is
enabled, only CIPHERXO and CIPHERXL are allowed. Acceptable DES key
types are DATA, CIPHER, CIPHERXL, CIPHERXO, and ENCIPHER. The keys
must have bit 18 for “ENCIPHER” set on in the control vector. The key may be
a double- or triple-length key. If the Cipher Text translate2 - Allow only cipher
text translate types access control point is enabled, only CIPHERXO and
CIPHERXL are allowed.

Acceptable AES key types include the 64-byte AES DATA key and the variable
length token CIPHER key with the ENCRYPT bit on in the key usage field.

Ciphertext Translate2

Chapter 6. Protecting Data 345

The C-XLATE bit can optionally be on. If the Cipher Text translate2 – Allow
only cipher text translate types access control point is enabled, the C-XLATE
bit must be turned on in the key usage field.

initialization_vector_out_length

Direction Type

Input Integer

Length of the initialization_vector_out field in bytes. For AES keys, the length is
16. For DES keys, the length is 8. When the initialization vector is not required
(segmenting rule CONTINUE, processing rule O-ECB), the value must be 0.

initialization_vector_out

Direction Type

Input String

The initialization vector that is used to encipher the input data. This is the new
initialization vector used when the callable service enciphers the plaintext. This
parameter is required for segmenting rule INITIAL.

ciphertext_out_length

Direction Type

Input/Output Integer

Length of the ciphertext_out in bytes. This parameter will updated with the
actual length of the data in the ciphertext_out parameter. Note that padding
may require this value to be larger than the ciphertext_in_length parameter. See
the table of ciphertext length restrictions in the Usage Notes.

ciphertext_out

Direction Type

Output String

The field where the callable service returns the translated text.

reserved1_length

Direction Type

Input Integer

The length of the reserved1 parameter in bytes. The value must be zero.

reserved1

Direction Type

Input String

This parameter is ignored.

reserved2_length

Direction Type

Input Integer

The length of the reserved2 parameter in bytes. The value must be zero.

reserved2

Ciphertext Translate2

346 z/OS ICSF Application Programmer's Guide

Direction Type

Input String

This parameter is ignored.

text_id_in

Direction Type

Input Integer

For CSNBCTT3 only, the ALET of the ciphertext_in parameter.

text_id_out

Direction Type

Input Integer

For CSNBCTT3 only, the ALET of the ciphertext_out parameter.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

The initialization vectors must have already been established between the
communicating applications or must be passed with the data.

The following table outlines the restrictions for the ciphertext_in_length and
ciphertext_out_length parameters. The DES blocks referred to in this table are 8
bytes. The AES blocks referred to in this table are 16 bytes.

Table 135. Restrictions for ciphertext_in_length and ciphertext_out_length

Input cipher
method

Output cipher
method

Input ciphertext length
restriction[s]

Output ciphertxt length
restriction[s]

DES CBC DES CBC
X9.23

Input ciphertext must be a
multiple of a DES block.

Output ciphertext length
must be greater than or
equal to the sum of the
length of the input
ciphertext and a DES block.

DES CBC AES CBC
PKCSPAD

Input cipher text must be a
multiple of a DES block.

If the input ciphertext is
NOT a multiple of an AES
block, then the output
ciphertext length must be
greater than or equal to the
sum of the input ciphertext
length and a DES block.

If the input ciphertext is a
multiple of an AES block,
then the output ciphertext
length must be greater than
or equal to the sum of the
input ciphertext length and
an AES block.

DES CBC DES CUSP or
IPS

Input cipher text must be a
multiple of a DES block.

Output ciphertext length
must be greater than or
equal to the input ciphertext
length.

Ciphertext Translate2

Chapter 6. Protecting Data 347

Table 135. Restrictions for ciphertext_in_length and ciphertext_out_length (continued)

Input cipher
method

Output cipher
method

Input ciphertext length
restriction[s]

Output ciphertxt length
restriction[s]

DES CBC DES CBC Input cipher text must be a
multiple of a DES block.

Output ciphertext length
must be greater than or
equal to the input ciphertext
length.

DES CBC AES CBC Input cipher text must be a
multiple of an AES block.

Output ciphertext length
must be greater than or
equal to the input ciphertext
length.

DES CBC AES ECB Input cipher text must be a
multiple of an AES block.

Output ciphertext length
must be greater than or
equal to the input ciphertext
length.

DES CBC
CUSP or IPS

DES CBC
CUSP or IPS

No restrictions Output ciphertext length
must be greater than or
equal to the input ciphertext
length.

DES CBC
CUSP or IPS

DES CBC Input cipher text must be a
multiple of a DES block.

Output ciphertext length
must be be greater than or
equal to the input ciphertext
length.

DES CBC
CUSP or IPS

AES CBC or
ECB

Input cipher text must be a
multiple of an AES block.

Output ciphertext length
must be be greater than or
equal to the input ciphertext
length.

DES CBC
CUSP or IPS

DES CBC
X9.23

No restrictions Output ciphertext length
must be be greater than or
equal to the sum of the
input ciphertext length and
a DES block.

DES CBC
CUSP or IPS

AES CBC
PKCSPAD

No restrictions Output ciphertext length
must be be greater than or
equal to the sum of the
input ciphertext length and
a AES block.

DES CBC
X9.23

DES CBC
X9.23

Input ciphertext must be a
multiple of a DES block.

Output ciphertext length
must be greater than or
equal to the input ciphertext
length.

DES CBC
X9.23

AES CBC
PKCSPAD

Input ciphertext must be a
multiple of a DES block.

Output ciphertext length
must be greater than or
equal to the sum of the
input ciphertext length and
a DES bock.

DES CBC
X9.23

DES CBC
CUSP or IPS

Input ciphertext must be a
multiple of a DES block.

Output ciphertext length
must be greater than or
equal to the input ciphertext
length.

Ciphertext Translate2

348 z/OS ICSF Application Programmer's Guide

Table 135. Restrictions for ciphertext_in_length and ciphertext_out_length (continued)

Input cipher
method

Output cipher
method

Input ciphertext length
restriction[s]

Output ciphertxt length
restriction[s]

DES CBC
X9.23

DES CBC Input ciphertext must be a
multiple of a DES block.

Output ciphertext length
must be greater than or
equal to the input ciphertext
length.
Note: This operation will
not be possible if the
padding is determined by
the adapter to be from 1-7
bytes.

DES CBC
X9.23

AES CBC Input ciphertext must be a
multiple of a DES block but
must not be a multiple of an
AES block.

Output ciphertext length
must be greater than or
equal to the input ciphertext
length.
Note: This operation will
not be possible if the
padding is determined by
the adapter to be from 1-7
bytes.

DES CBC
X9.23

AES ECB Input ciphertext must be a
multiple of a DES block but
must not be a multiple of an
AES block.

Output ciphertext length
must be greater than or
equal to the input ciphertext
length.
Note: This operation will
not be possible if the
padding is determined by
the adapter to be from 1-7
bytes.

AES CBC or
ECB

DES CBC
X9.23

Input cipher text must be a
multiple of an AES block.

Output ciphertext length
must be greater than or
equal to the sum of the
input ciphertext length and
a DES bock.

AES CBC or
ECB

AES CBC
PKCSPAD

Input cipher text must be a
multiple of an AES block.

Output ciphertext length
must be greater than or
equal to the sum of the
input ciphertext length and
an AES bock.

AES CBC or
ECB

DES CBC
CUSP or IPS

Input cipher text must be a
multiple of an AES block.

Output ciphertext length
must be greater than or
equal to the input ciphertext
length.

AES CBC or
ECB

DES CBC Input cipher text must be a
multiple of an AES block.

Output ciphertext length
must be greater than or
equal to the input ciphertext
length.

AES CBC or
ECB

AES CBC Input cipher text must be a
multiple of an AES block.

Output ciphertext length
must be greater than or
equal to the input ciphertext
length.

AES CBC or
ECB

AES ECB Input cipher text must be a
multiple of an AES block.

Output ciphertext length
must be greater than or
equal to the input ciphertext
length.

Ciphertext Translate2

Chapter 6. Protecting Data 349

Table 135. Restrictions for ciphertext_in_length and ciphertext_out_length (continued)

Input cipher
method

Output cipher
method

Input ciphertext length
restriction[s]

Output ciphertxt length
restriction[s]

AES CBC
PKCSPAD

DES CBC
X9.23

Input cipher text must be a
multiple of an AES block.

Output ciphertext length
must be greater than or
equal to the input ciphertext
length.

AES CBC
PKCSPAD

AES CBC
PKCSPAD

Input cipher text must be a
multiple of an AES block.

Output ciphertext length
must be greater than or
equal to the input ciphertext
length.

AES CBC
PKCSPAD

DES CBC
CUSP or IPS

Input cipher text must be a
multiple of an AES block.

Output ciphertext length
must be greater than or
equal to the input ciphertext
length minus 1.

AES CBC
PKCSPAD

DES CBC Input cipher text must be a
multiple of an AES block.

Output ciphertext length
must be greater than or
equal to the input ciphertext
length minus the length of a
DES block.
Note: This operation will
not be possible if the
padding is determined by
the adapter to be from 1-7
bytes or 9-15 bytes.

AES CBC
PKCSPAD

AES CBC Input cipher text must be a
multiple of an AES block.

Output ciphertext length
must be greater than or
equal to the input ciphertext
length minus the length of a
AES block.
Note: This operation will
not be possible if the
padding is determined by
the adapter to be from 1-15
bytes.

AES CBC
PKCSPAD

AES ECB Input cipher text must be a
multiple of an AES block.

Output ciphertext length
must be greater than or
equal to the input ciphertext
length minus the length of a
AES block.
Note: This operation will
not be possible if the
padding is determined by
the adapter to be from 1-15
bytes.

There are requirements for the keys for the key_identifier_in and key_identifier_out
parameters. The key_identifier_in key must be able to decipher text. The
key_identifier_out key must be able to encipher text.

The following table shows the valid key types which are allowed for the
key_identifier_in and key_identifier_out parameters. In the table, a variable length key
token cipher key is denoted by vCIPHER. vCIPHER is the default which has the
ENCRYPT and DECRYPT bits on in the usage field. vCIPHERe has only the
ENCRYPT bit on in the usage field. vCIPHERd has only the DECRYPT bit on in
the usage field. Adding x to either of the preceding names means the TRANSLAT

Ciphertext Translate2

350 z/OS ICSF Application Programmer's Guide

bit is on in the usage field for that key. (For example, vCIPHERex means a variable
length token with the ENCRYPT and TRANSLAT bits turned on.)

AESDATA is the 64-byte AES DATA key type.

Table 136. Ciphertext translate2 key usage

key_identifier_in (DEC bit except DATA
and AESDATA)

key_identifier_out (ENC bit except DATA
and AESDATA)

DATA
CIPHER
DECIPHER
CIPHERXI
CIPHERXL

DATA
CIPHER
ENCIPHER
CIPHERXO
CIPHERXL
AESDATA
vCIPHER
vCIPHERe
vCIPHERex
vCIPHERedx

AESDATA
vCIPHER
vCIPHERd
vCIPHERdx
vCIPHERdex

DATA (must be at least double-length
key with ACP)
CIPHER (requires ACP to be enabled)
ENCIPHER (requires ACP to be enabled)
CIPHERXO (requires ACP to be enabled)
CIPHERXL (requires ACP to be enabled)
AESDATA
vCIPHER
vCIPHERe
vCIPHERex
vCIPHERedx

Note:

1. Translation from stronger encryption to single-key DES is not allowed.
2. Translation from a triple-length DES key to a double-length DES key requires

the Ciphertext translate2 – Allow translate to weaker DES access control point
to be enabled.

3. When the Ciphertext translate2 – Allow only cipher text translate key types
access control point is enabled, only CIPHERXI, CIPHERXL, and CIPHERXO
DES key types are allowed and the C-XLATE key usage bit must be on for AES
CIPHER keys.

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Table 137. Ciphertext translate2 Access Control Points

Access control point Description

Cipher Text translate2 Enable Ciphertext Translate2 service

Cipher Text translate2 – Allow translate from
AES to TDES

Allow translation from an AES key to 2 or 3
key triple DES key.

Cipher Text translate2 – Allow translate to
weaker AES

Allow translation from a stronger to weaker
AES key. (For example, IN key AES256 and
OUT key AES128.)

Ciphertext Translate2

Chapter 6. Protecting Data 351

Table 137. Ciphertext translate2 Access Control Points (continued)

Access control point Description

Cipher Text translate2 – Allow translate to
weaker DES

Allow translation from a stronger to weaker
DES key. The only supported translation is
from 3-key TDES to 2-key TDES.

Cipher Text translate2 – Allow only cipher
text translate types

When enabled, the key_identifiers parameters
must be a key with key type CIPHERXI,
CIPHERXL, or CIPHERXO for DES and key
type CIPHER with the C-XLATE key usage
bit on for AES.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 138. Ciphertext translate2 required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

This callable service is not supported.

IBM System z9 EC

IBM System z9 BC

This callable service is not supported.

IBM System z10 EC

IBM System z10 BC

This callable service is not supported.

IBM zEnterprise 196

IBM zEnterprise 114

This callable service is not supported.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Decipher (CSNBDEC or CSNBDEC1 and CSNEDEC or CSNEDEC1)
Use the decipher callable service to decipher data in an address space or a data
space using the cipher block chaining mode. ICSF supports these processing rules
to decipher data. You choose the type of processing rule that the decipher callable
service should use for block chaining.

Processing Rule
Purpose

ANSI X9.23
For cipher block chaining. The ciphertext must be an exact multiple of 8
bytes, but the plaintext will be 1 to 8 bytes shorter than the ciphertext. The
text_length will also be reduced to show the original length of the plaintext.

Ciphertext Translate2

352 z/OS ICSF Application Programmer's Guide

CBC For cipher block chaining. The ciphertext must be an exact multiple of 8
bytes, and the plaintext will have the same length.

CUSP For cipher block chaining, but the ciphertext can be of any length. The
plaintext will be the same length as the ciphertext.

IBM 4700
For cipher block chaining. The ciphertext must be an exact multiple of 8
bytes, but the plaintext will be 1 to 8 bytes shorter than the ciphertext. The
text_length will also be reduced to show the original length of the plaintext.

IPS For cipher block chaining, but the ciphertext can be of any length. The
plaintext will be the same length as the ciphertext.

The cipher block chaining (CBC) mode uses an initial chaining value (ICV) in its
processing. The first 8 bytes of ciphertext is deciphered and then the ICV is
exclusive ORed with the resulting 8 bytes of data to form the first 8-byte block of
plaintext. Thereafter, the 8-byte block of ciphertext is deciphered and exclusive
ORed with the previous 8-byte block of ciphertext until all the ciphertext is
deciphered.

The selection between single-DES decryption mode and triple-DES decryption
mode is controlled by the length of the key supplied in the key_identifier parameter.
If a single-length key is supplied, single-DES decryption is performed. If a
double-length or triple-length key is supplied, triple-DES decryption is performed.

A different ICV may be passed on each call to the decipher callable service.
However, the same ICV that was used in the corresponding encipher callable
service must be passed.

Short blocks are text lengths of 1 to 7 bytes. A short block can be the only block.
Trailing short blocks are blocks of 1 to 7 bytes that follow an exact multiple of 8
bytes. For example, if the text length is 21, there are two 8-byte blocks and a
trailing short block of 5 bytes. Because DES processes text only in exact multiples
of 8 bytes, some special processing is required to decipher such short blocks. Short
blocks and trailing short blocks of 1 to 7 bytes of data are processed according to
the Cryptographic Unit Support Program (CUSP) rules, or by the record chaining
scheme devised by and used in the Information Protection System (IPS) in the
IPS/CMS product.

These methods of treating short blocks and trailing short blocks do not increase the
length of the ciphertext over the plaintext. If the plaintext was padded during
encipherment, the length of the ciphertext will always be an exact multiple of 8
bytes.

ICSF supports these padding schemes:
v ANSI X9.23
v 4700-PAD

Choosing Between CSNBDEC and CSNBDEC1
CSNBDEC and CSNBDEC1 provide identical functions. When choosing which
service to use, consider this:
v CSNBDEC requires the ciphertext and plaintext to reside in the caller's primary

address space. Also, a program using CSNBDEC adheres to the IBM Common
Cryptographic Architecture: Cryptographic Application Programming Interface.
The callable service name for AMODE(64) invocation is CSNEDEC.

Decipher

Chapter 6. Protecting Data 353

|
|

v CSNBDEC1 allows the ciphertext and plaintext to reside either in the caller's
primary address space or in a data space. This can allow you to decipher more
data with one call. However, a program using CSNBDEC1 does not adhere to
the IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface, and may need to be modified prior to it running with
other cryptographic products that follow this programming interface.
The callable service name for AMODE(64) invocation is CSNEDEC1.
For CSNBDEC1 and CSNEDEC1, cipher_text_id and clear_text_id are access list
entry token (ALET) parameters of the data spaces containing the ciphertext and
plaintext.

Format
CALL CSNBDEC(

return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
cipher_text,
initialization_vector,
rule_array_count,
rule_array,
chaining_vector,
clear_text)

CALL CSNBDEC1(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
cipher_text,
initialization_vector,
rule_array_count,
rule_array,
chaining_vector,
clear_text,
cipher_text_id,
clear_text_id)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that

Decipher

354 z/OS ICSF Application Programmer's Guide

indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

key_identifier

Direction Type

Input/Output String

A 64-byte string that is the internal key token containing the data-encrypting
key, or the label of a CKDS record containing a data-encrypting key, to be used
for deciphering the data. If the key token or key label contains a single-length
key, single-DES decryption is performed. If the key token or key label contains
a double-length or triple-length key, triple-DES decryption is performed.

Single and double length CIPHER and DECIPHER keys are also supported.

text_length

Direction Type

Input/Output Integer

On entry, you supply the length of the ciphertext. The maximum length of text
is 214783647 bytes. A zero value for the text_length parameter is not valid. If
the returned deciphered text (clear_text parameter) is a different length because
of the removal of padding bytes, the value is updated to the length of the
plaintext.

Note: The MAXLEN value may still be specified in the options data set, but
only the maximum value limit will be enforced.

The application program passes the length of the ciphertext to the callable
service. The callable service returns the length of the plaintext to your
application program.

cipher_text

Direction Type

Input String

The text to be deciphered.

Decipher

Chapter 6. Protecting Data 355

|

initialization_vector

Direction Type

Input String

The 8-byte supplied string for the cipher block chaining. The first block of the
ciphertext is deciphered and exclusive ORed with the initial chaining vector
(ICV) to get the first block of cleartext. The input block is the next ICV. To
decipher the data, you must use the same ICV used when you enciphered the
data.

rule_array_count

Direction Type

Input Integer

The number of keywords you supply in the rule_array parameter. The value
must be 1, 2, or 3.

rule_array

Direction Type

Input Character String

An array of 8-byte keywords providing the processing control information. The
array is positional. See the keywords in Table 139. The first keyword in the
array is the processing rule. You choose the processing rule you want the
callable service to use for deciphering the data. The second keyword is the ICV
selection keyword. The third keyword (or the second if the ICV selection
keyword is allowed to default) is the encryption algorithm to use.

Table 139. Keywords for the Decipher Rule Array Control Information

Keyword Meaning

Processing Rule (required)

Rules CUSP, IPS, X9.23, and 4700-PAD should be specified only when there is one request
or on the last request of a sequence of chained requests

CBC Performs ANSI X3.102 cipher block chaining. The data must
be a multiple of 8 bytes. An OCV is produced and placed
in the chaining_vector parameter. If the ICV selection
keyword CONTINUE is specified, the CBC OCV from the
previous call is used as the ICV for this call.

CUSP Performs deciphering that is compatible with IBM's CUSP
and PCF products. The data can be of any length and does
not need to be in multiples of 8 bytes. The ciphertext will
be the same length as the plaintext. The CUSP/PCF OCV is
placed in the chaining_vector parameter. If the ICV selection
keyword CONTINUE is specified, the CUSP/PCF OCV
from the previous call is used as the ICV for this call.

IPS Performs deciphering that is compatible with IBM's IPS
product. The data can be of any length and does not need
to be in multiples of 8 bytes. The ciphertext will be the
same length as the plaintext. The IPS OCV is placed in the
chaining_vector parameter. If the ICV selection keyword
CONTINUE is specified, the IPS OCV from the previous
call is used as the ICV for this call.

Decipher

356 z/OS ICSF Application Programmer's Guide

|
|
|
|
|
|

Table 139. Keywords for the Decipher Rule Array Control Information (continued)

Keyword Meaning

X9.23 Deciphers with cipher block chaining and text length
reduced to the original value. This is compatible with the
requirements in ANSI standard X9.23. The ciphertext length
must be an exact multiple of 8 bytes. Padding is removed
from the plaintext.

4700-PAD Deciphers with cipher block chaining and text length
reduced to the original value. The ciphertext length must
be an exact multiple of 8 bytes. Padding is removed from
the plaintext.

ICV Selection (optional)

CONTINUE This specifies taking the initialization vector from the
output chaining vector (OCV) contained in the work area to
which the chaining_vector parameter points. CONTINUE is
valid only for processing rules CBC, IPS, and CUSP.

INITIAL This specifies taking the initialization vector from the
initialization_vector parameter. INITIAL is the default value.

Encryption Algorithm (optional)

DES This specifies using the data encryption standard and
ignoring the token marking.

TOKEN This specifies using the data encryption algorithm in the
DATA key token. This is the default.

“Cipher Processing Rules” on page 904 describes the cipher processing rules in
detail.

chaining_vector

Direction Type

Input/Output String

An 18-byte field that ICSF uses as a system work area. Your application
program must not change the data in this string. The chaining vector holds the
output chaining vector (OCV) from the caller. The OCV is the first 8 bytes in
the 18-byte string.

The direction is output if the ICV selection keyword of the rule_array
parameter is INITIAL. The direction is input/output if the ICV selection
keyword of the rule_array parameter is CONTINUE.

clear_text

Direction Type

Input/Output String

The field where the callable service returns the deciphered text.

cipher_text_id

Direction Type

Input Integer

For CSNBDEC1/CSNEDEC1 only, the ALET of the ciphertext to be deciphered.

Decipher

Chapter 6. Protecting Data 357

clear_text_id

Direction Type

Input Integer

For CSNBDEC1/CSNEDEC1 only, the ALET of the clear text supplied by the
application.

Restrictions
The service will fail under these conditions:
v If the key token contains double or triple-length keys and triple-DES is not

enabled.
v If a token is marked CDMF.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

You cannot destructively overlap the plaintext and ciphertext fields. For example:
pppppp

cccccc is supported.

cccccc
pppppp is not supported.

ppppppcccccc is supported.

P represents the plaintext and c represents the ciphertext.

“Cipher Processing Rules” on page 904 discusses the cipher processing rules.

The Encipher callable services are described under “Encipher (CSNBENC or
CSNBENC1 and CSNEENC or CSNEENC1)” on page 361.

Access Control Point
The Decipher - DES access control point controls the function of this service.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 140. Decipher required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

If the token is marked as CDMF, the service
fails.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

If the token is marked as CDMF, the service
fails.

Decipher

358 z/OS ICSF Application Programmer's Guide

|
|

|

|

|
|

|

|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|

Table 140. Decipher required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

If the token is marked as CDMF, the service
fails.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

If the token is marked as CDMF, the service
fails.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

If the token is marked as CDMF, the service
fails.

Decode (CSNBDCO and CSNEDCO)
Use this callable service to decipher an 8-byte string using a clear key. The callable
service uses the electronic code book (ECB) mode of the DES.

The callable service name for AMODE(64) invocation is CSNEDCO.

Considerations
If you have only a clear key, you are not limited to using only the encode and
decode callable services.
v You can pass your clear key to the clear key import service, and get back a

token that will allow you to use the encipher and decipher callable services.
v Consider using the Symmetric Key Decipher service (“Symmetric Key Decipher

(CSNBSYD or CSNBSYD1 and CSNESYD or CSNESYD1)” on page 384).

Format
CALL CSNBDCO(

return_code,
reason_code,
exit_data_length,
exit_data,
clear_key,
cipher_text,
clear_text)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Decipher

Chapter 6. Protecting Data 359

|
|

|
|

|
|

|
|

|
|

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

clear_key

Direction Type

Input String

The 8-byte clear key value that is used to decode the data.

cipher_text

Direction Type

Input String

The ciphertext that is to be decoded. Specify 8 bytes of text.

clear_text

Direction Type

Output String

The 8-byte field where the plaintext is returned by the callable service.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Decode

360 z/OS ICSF Application Programmer's Guide

Table 141. Decode required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

CP Assist for
Cryptographic
Functions

IBM System z9 EC

IBM System z9 BC

CP Assist for
Cryptographic
Functions

IBM System z10 EC

IBM System z10 BC

CP Assist for
Cryptographic
Functions

IBM zEnterprise 196

IBM zEnterprise 114

CP Assist for
Cryptographic
Functions

IBM zEnterprise EC12

IBM zEnterprise BC12

CP Assist for
Cryptographic
Functions

Encipher (CSNBENC or CSNBENC1 and CSNEENC or CSNEENC1)
Use the encipher callable service to encipher data in an address space or a data
space using the cipher block chaining mode. ICSF supports these processing rules
to encipher data. You choose the type of processing rule that the encipher callable
service should use for the block chaining.

Processing Rule
Purpose

ANSI X9.23
For block chaining not necessarily in exact multiples of 8 bytes. This
process rule pads the plaintext so that ciphertext produced is an exact
multiple of 8 bytes.

CBC For block chaining in exact multiples of 8 bytes.

CUSP For block chaining not necessarily in exact multiples of 8 bytes. The
ciphertext will be the same length as the plaintext.

IBM 4700
For block chaining not necessarily in exact multiples of 8 bytes. This
process rule pads the plaintext so that the ciphertext produced is an exact
multiple of 8 bytes.

IPS For block chaining not necessarily in exact multiples of 8 bytes. The
ciphertext will be the same length as the plaintext.

For more information about the processing rules, see Table 142 on page 365 and
“Cipher Processing Rules” on page 904.

The cipher block chaining (CBC) mode of operation uses an initial chaining vector
(ICV) in its processing. The ICV is exclusive ORed with the first 8 bytes of
plaintext prior to the encryption step, and thereafter, the 8-byte block of ciphertext

Decode

Chapter 6. Protecting Data 361

just produced is exclusive ORed with the next 8-byte block of plaintext, and so on.
This disguises any pattern that may exist in the plaintext.

The selection between single-DES encryption mode and triple-DES encryption
mode is controlled by the length of the key supplied in the key_identifier parameter.
If a single-length key is supplied, single-DES encryption is performed. If a
double-length or triple-length key is supplied, triple-DES encryption is performed.

To nullify the CBC effect on the first 8-byte block, supply 8 bytes of zero. However,
the ICV may require zeros.

Cipher block chaining also produces a resulting chaining value called the output
chaining vector (OCV). The application can pass the OCV as the ICV in the next
encipher call. This results in record chaining.

Note that the OCV that results is the same, whether an encipher or a decipher
callable service was invoked, assuming the same text, ICV, and key were used.

Short blocks are text lengths of 1 to 7 bytes. A short block can be the only block.
Trailing short blocks are blocks of 1 to 7 bytes that follow an exact multiple of 8
bytes. For example, if the text length is 21, there are two 8-byte blocks, and a
trailing short block of 5 bytes. Short blocks and trailing short blocks of 1 to 7 bytes
of data are processed according to the Cryptographic Unit Support Program
(CUSP) rules, or by the record chaining scheme devised by and used by the
Information Protection System (IPS) in the IPS/CMS program product. These
methods of treating short blocks and trailing short blocks do not increase the
length of the ciphertext over the plaintext.

An alternative method is to pad the plaintext and produce a ciphertext that is
longer than the plaintext. The plaintext can be padded with up to 8 bytes using
one of several padding schemes. This padding produces a ciphertext that is an
exact multiple of 8 bytes long.

If the cleartext is already a multiple of 8, the ciphertext can be created using any
processing rule.

Because of padding, the returned ciphertext length is longer than the provided
plaintext; the text_length parameter will have been modified. The returned ciphertext
field should be 8 bytes longer than the length of the plaintext to accommodate the
maximum amount of padding. You should provide this extension in your
installation's storage because ICSF cannot detect whether the extension was done.

The minimum length of data that can be enciphered is one byte.

Attention: If you lose the data-encrypting key under which the data (plaintext)
is enciphered, the data enciphered under that key (ciphertext) cannot be recovered.

Choosing between CSNBENC and CSNBENC1
CSNBENC and CSNBENC1 provide identical functions. When choosing which
service to use, consider this:
v CSNBENC requires the cleartext and ciphertext to reside in the caller's primary

address space. Also, a program using CSNBENC adheres to the IBM Common
Cryptographic Architecture: Cryptographic Application Programming Interface.
The callable service name for AMODE(64) invocation is CSNEENC.

Encipher

362 z/OS ICSF Application Programmer's Guide

v CSNBENC1 allows the cleartext and ciphertext to reside either in the caller's
primary address space or in a data space. This can allow you to encipher more
data with one call. However, a program using CSNBENC1 does not adhere to
the IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface, and may need to be modified prior to it running with
other cryptographic products that follow this programming interface.
The callable service name for AMODE(64) invocation is CSNEENC1.
For CSNBENC1 and CSNEENC1, clear_text_id and cipher_text_id are access list
entry token (ALET) parameters of the data spaces containing the cleartext and
ciphertext.

Format
CALL CSNBENC(

return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
clear_text,
initialization_vector,
rule_array_count,
rule_array,
pad_character,
chaining_vector,
cipher_text)

CALL CSNBENC1(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
clear_text,
initialization_vector,
rule_array_count,
rule_array,
pad_character,
chaining_vector,
cipher_text,
clear_text_id,
cipher_text_id)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

Encipher

Chapter 6. Protecting Data 363

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

key_identifier

Direction Type

Input/Output String

A 64-byte string that is the internal key token containing the data-encrypting
key, or the label of a CKDS record containing the data-encrypting key, to be
used for encrypting the data. If the key token or key label contains a
single-length key, single-DES encryption is performed. If the key token or key
label contains a double-length or triple-length key, triple-DES encryption is
performed.

On an IBM eServer zSeries 990 and subsequent releases, single and double
length CIPHER and ENCIPHER keys are also supported.

text_length

Direction Type

Input/Output Integer

On entry, the length of the plaintext (clear_text parameter) you supply. The
maximum length of text is 2,14783647 bytes. A zero value for the text_length
parameter is not valid. If the returned enciphered text (cipher_text parameter) is
a different length because of the addition of padding bytes, the value is
updated to the length of the ciphertext.

Note: The MAXLEN value may still be specified in the options data set, but
only the maximum value limit will be enforced (2147483647).

The application program passes the length of the plaintext to the callable
service. The callable service returns the length of the ciphertext to the
application program.

clear_text

Encipher

364 z/OS ICSF Application Programmer's Guide

Direction Type

Input String

The text that is to be enciphered.

initialization_vector

Direction Type

Input String

The 8-byte supplied string for the cipher block chaining. The first 8 bytes (or
less) block of the data is exclusive ORed with the ICV and then enciphered.
The input block is enciphered and the next ICV is created. You must use the
same ICV to decipher the data.

rule_array_count

Direction Type

Input Integer

The number of keywords you supply in the rule_array parameter. The value
must be 1, 2, or 3.

rule_array

Direction Type

Input Character String

An array of 8-byte keywords providing the processing control information. The
array is positional. See the keywords in Table 142. The first keyword in the
array is the processing rule. You choose the processing rule you want the
callable service to use for enciphering the data. The second keyword is the ICV
selection keyword. The third keyword (or the second if the ICV selection
keyword is allowed to default to INITIAL) is the encryption algorithm to use.

Table 142. Keywords for the Encipher Rule Array Control Information

Keyword Meaning

Processing Rule (required)

Rules CUSP, IPS, X9.23, and 4700-PAD should be specified only when there is one request
or on the last request of a sequence of chained requests.

CBC Performs ANSI X3.102 cipher block chaining. The data must
be a multiple of 8 bytes. An OCV is produced and placed in
the chaining_vector parameter. If the ICV selection keyword
CONTINUE is specified, the CBC OCV from the previous
call is used as the ICV for this call.

CUSP Performs ciphering that is compatible with IBM's CUSP and
PCF products. The data can be of any length and does not
need to be in multiples of 8 bytes. The ciphertext will be the
same length as the plaintext. The CUSP/PCF OCV is placed
in the chaining_vector parameter. If the ICV selection keyword
CONTINUE is specified, the CUSP/PCF OCV from the
previous call is used as the ICV for this call.

Encipher

Chapter 6. Protecting Data 365

Table 142. Keywords for the Encipher Rule Array Control Information (continued)

Keyword Meaning

IPS Performs ciphering that is compatible with IBM's IPS
product. The data may be of any length and does not need to
be in multiples of 8 bytes. The ciphertext will be the same
length as the plaintext. The IPS OCV is placed in the
chaining_vector parameter. If the ICV selection keyword
CONTINUE is specified, the IPS OCV from the previous call
is used as the ICV for this call.

X9.23 Performs cipher block chaining with 1 to 8 bytes of padding.
This is compatible with the requirements in ANSI standard
X9.23. If the data is not in exact multiples of 8 bytes, X9.23
pads the plaintext so that the ciphertext produced is an exact
multiple of 8 bytes. The plaintext is padded to the next
multiple 8 bytes, even if this adds 8 bytes. An OCV is
produced.

4700-PAD Performs padding by extending the user's plaintext with the
caller's specified pad character, followed by a one-byte binary
count field that contains the total number of bytes added to
the message. 4700-PAD pads the plaintext so that the
ciphertext produced is an exact multiple of 8 bytes. An OCV
is produced.

ICV Selection (optional)

CONTINUE This specifies taking the initialization vector from the output
chaining vector (OCV) contained in the work area to which
the chaining_vector parameter points. CONTINUE is valid
only for processing rules CBC, IPS, and CUSP.

INITIAL This specifies taking the initialization vector from the
initialization_vector parameter. INITIAL is the default value.

Encryption Algorithm (optional)

DES This specifies using the data encryption standard and
ignoring the token marking.

TOKEN This specifies using the data encryption algorithm in the
DATA key token. TOKEN is the default.

These recommendations help the caller determine which encipher processing
rule to use:
v If you are exchanging enciphered data with a specific implementation, for

example, CUSP or ANSI X9.23, use that processing rule.
v If the ciphertext length must be equal to the plaintext length and the

plaintext length cannot be a multiple of 8 bytes, use either the IPS or CUSP
processing rule.

“Cipher Processing Rules” on page 904 describes the cipher processing rules in
detail.

pad_character

Direction Type

Input Integer

An integer, 0 to 255, that is used as a padding character for the 4700-PAD
process rule (rule_array parameter).

chaining_vector

Encipher

366 z/OS ICSF Application Programmer's Guide

Direction Type

Input/Output String

An 18-byte field that ICSF uses as a system work area. Your application
program must not change the data in this string. The chaining vector holds the
output chaining vector (OCV) from the caller. The OCV is the first 8 bytes in
the 18-byte string.

The direction is output if the ICV selection keyword of the rule_array
parameter is INITIAL.

The direction is input/output if the ICV selection keyword of the rule_array
parameter is CONTINUE.

cipher_text

Direction Type

Output String

The enciphered text the callable service returns. The length of the ciphertext is
returned in the text_length parameter. The cipher_text may be 8 bytes longer
than the length of the clear_text field because of the padding that is required
for some processing rules.

clear_text_id

Direction Type

Input Integer

For CSNBENC1/CSNEENC1 only, the ALET of the clear text to be enciphered.

cipher_text_id

Direction Type

Input Integer

For CSNBENC1/CSNEENC1 only, the ALET of the ciphertext that the
application supplied.

Restrictions
The service will fail under these conditions:
v If the key token contains double- or triple-length keys and triple-DES is not

enabled.
v If a token is marked CDMF.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

You cannot destructively overlap the plaintext and ciphertext fields. For example:
cccccc

pppppp is supported.
cccccc

pppppp is not supported.

Encipher

Chapter 6. Protecting Data 367

|
|

|

|

|
|

|

|
|
|
|
|

ppppppcccccc is supported.

P represents the plaintext and c represents the ciphertext.

The method used to produce the OCV is the same with the CBC, 4700-PAD, and
X9.23 processing rules. However, that method is different from the method used by
the CUSP and IPS processing rules.

“Cipher Processing Rules” on page 904 discusses the cipher processing rules.

The Decipher callable services are described under “Decipher (CSNBDEC or
CSNBDEC1 and CSNEDEC or CSNEDEC1)” on page 352.

Access Control Point
The Encipher - DES access control point controls the function of this service.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 143. Encipher required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

If the token is marked as CDMF, the service
fails.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

If the token is marked as CDMF, the service
fails.

IBM System z10 EC
IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

If the token is marked as CDMF, the service
fails.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

If the token is marked as CDMF, the service
fails.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

If the token is marked as CDMF, the service
fails.

Encode (CSNBECO and CSNEECO)
Use the encode callable service to encipher an 8-byte string using a clear key. The
callable service uses the electronic code book (ECB) mode of the DES.

The callable service name for AMODE(64) invocation is CSNEECO.

Encipher

368 z/OS ICSF Application Programmer's Guide

|
|
|

|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

Considerations
If you have only a clear key, you are not limited to using just the encode and
decode callable services.
v You can pass your clear key to the clear key import service, and get back a

token that will allow you to use the encipher and decipher callable services.
v Consider using the Symmetric Key Encipher service (“Symmetric Key Encipher

(CSNBSYE or CSNBSYE1 and CSNESYE or CSNESYE1)” on page 394).

Format
CALL CSNBECO(

return_code,
reason_code,
exit_data_length,
exit_data,
clear_key,
clear_text,
cipher_text)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

clear_key

Encode

Chapter 6. Protecting Data 369

|
|

Direction Type

Input String

The 8-byte clear key value that is used to encode the data.

clear_text

Direction Type

Input String

The plaintext that is to be encoded. Specify 8 bytes of text.

cipher_text

Direction Type

Output String

The 8-byte field where the ciphertext is returned by the callable service.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 144. Encode required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

CP Assist for
Cryptographic
Functions

IBM System z9 EC

IBM System z9 BC

CP Assist for
Cryptographic
Functions

IBM System z10 EC

IBM System z10 BC

CP Assist for
Cryptographic
Functions

IBM zEnterprise 196

IBM zEnterprise 114

CP Assist for
Cryptographic
Functions

IBM zEnterprise EC12

IBM zEnterprise BC12

CP Assist for
Cryptographic
Functions

Symmetric Algorithm Decipher (CSNBSAD or CSNBSAD1 and
CSNESAD or CSNESAD1)

The symmetric algorithm decipher callable service deciphers data with the AES
algorithm. Data is deciphered that has been enciphered in either CBC mode or
ECB mode.

Encode

370 z/OS ICSF Application Programmer's Guide

You can specify that the clear text data was padded before encryption using the
method described in the PKCS standards. In this case, the callable service will
remove the padding bytes and return the unpaded clear text data. PKCS padding
is described in “PKCS Padding Method” on page 907.

The callable service names for AMODE(64) invocation are CSNESAD and
CSNESAD1.

Choosing Between CSNBSAD and CSNBSAD1 or CSNESAD
and CSNESAD1

CSNBSAD, CSNBSAD1, CSNESAD, and CSNESAD1 provide identical functions.
When choosing which service to use, consider this:
v CSNBSAD and CSNESAD require the cipher text and plaintext to reside in the

caller’s primary address space. Also, a program using CSNBSAD adheres to the
IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface.

v CSNBSAD1 and CSNESAD1 allow the cipher text and plaintext to reside either
in the caller’s primary address space or in a data space. This can allow you to
decipher more data with one call. However, a program using CSNBSAD1 and
CSNESAD1 does not adhere to the IBM CCA: Cryptographic API and may need
to be modified prior to it running with other cryptographic products that follow
this programming interface.

For CSNBSAD1 and CSNESAD1, cipher_text_id and clear_text_id are access list entry
token (ALET) parameters of the data spaces containing the cipher text and
plaintext.

Format
CALL CSNBSAD(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
key_parms_length,
key_parms,
block_size,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
cipher_text_length,
cipher_text,
clear_text_length,
clear_text,
optional_data_length,
optional_data)

CALL CSNBSAD1(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_length,
key_identifier,

Symmetric Algorithm Decipher

Chapter 6. Protecting Data 371

key_parms_length,
key_parms,
block_size,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
cipher_text_length,
cipher_text,
clear_text_length,
clear_text,
optional_data_length,
optional_data
cipher_text_id
clear_text_id)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value
may be 2, 3 or 4.

rule_array

Symmetric Algorithm Decipher

372 z/OS ICSF Application Programmer's Guide

Direction Type

Input String

An array of 8-byte keywords providing the processing control information. The
keywords must be in contiguous storage, left-justified and padded on the right
with blanks.

Table 145. Symmetric Algorithm Decipher Rule Array Keywords

Keyword Meaning

Algorithm (one keyword, required)

AES Specifies that the Advanced Encryption Standard (AES)
algorithm is to be used. The block size is 16 bytes. The key
length may be 16, 24, or 32 bytes.

Processing Rule (optional - zero or one keyword)

CBC Performs encryption in cipher block chaining (CBC) mode.
The text length must be a multiple of the AES block size
(16-bytes). This is the default value.

ECB Performs encryption in electronic code book (ECB) mode.
The text length must be a multiple of the AES block size
(16-bytes).

PKCS-PAD Deciphers with cipher block chaining and text length
reduced to the original value. The ciphertext length must be
an exact multiple of 16 bytes. Padding is removed from the
plaintext. This rule should be specified only when there is
one request or on the last request of a sequence of chained
requests.

Key Rule (required)

KEYIDENT This indicates that the value in the key_identifier parameter is
either an internal key token or the label of a key token in
the CKDS. The key must be a secure AES key, that is,
enciphered under the current master key.

ICV Selection (optional - zero or one keyword)

INITIAL This specifies that this is the first request of a sequence of
chained requests, and indicates that the initialization vector
should be taken from the initialization_vector parameter. This
is the default value.

CONTINUE This specifies that this request is part of a sequence of
chained requests, and is not the first request in that
sequence. The initialization vector will be taken from the
work area identified in the chain_data parameter. This
keyword is only valid for processing rules CBC or
PKCS-PAD.

key_identifier_length

Direction Type

Input Integer

The length of the key_identifier parameter. The length must be 64 bytes for an
AES DATA Internal Key Token (version X’04’) or a CKDS label, or between the
actual length of the token and 725 for an AES CIPHER Internal Key Token
(version X’05’).

Symmetric Algorithm Decipher

Chapter 6. Protecting Data 373

key_identifier

Direction Type

Input String

This specifies an internal secure AES token or the labelname of a secure AES
token in the CKDS. Normal CKDS labelname syntax is required.

The AES key identifier must be an encrypted key contained in an internal key
token, where the key is enciphered under the AES master key. The key can be
128-, 192-, or 256-bits in length.

key_parms_length

Direction Type

Input Integer

The length of the key_parms parameter. This must be 0.

key_parms

Direction Type

Ignored String

This parameter is ignored. It is reserved for future use.

block_size

Direction Type

Input Integer

The block size for the cryptographic algorithm. AES requires the block size to
be 16.

initialization_vector_length

Direction Type

Input Integer

The length of the initialization_vector parameter. The length should be equal to
the block length for the algorithm specified. This parameter is ignored if the
process rule is ECB.

initialization_vector

Direction Type

Input String

This parameter contains the initialization vector (IV) for CBC mode decryption,
including CBC mode invoked using the PKCS-PAD keyword. This parameter is
ignored if the process rule is ECB. For AES CBC mode decryption, the
initialization vector length must be 16 bytes, the length of an AES block. The
IV must be the same value used when the data was encrypted.

chain_data_length

Symmetric Algorithm Decipher

374 z/OS ICSF Application Programmer's Guide

Direction Type

Input/Output Integer

The length of the chain_data parameter. On input it contains the length of the
buffer provided with parameter chain_data. On output, it is updated with the
length of the data returned in the chain_data parameter.

chain_data

Direction Type

Input/Output String

A buffer that is used as a work area for sequences of chained symmetric
algorithm decipher requests. When the keyword INITIAL is used, this is an
output parameter and receives data that is needed when deciphering the next
part of the input data. When the keyword CONTINUE is used, this is an
input/output parameter; the value received as output from the previous call in
the sequence is provided as input to this call, and in turn this call will return
new chain_data that will be used as input on the next call. When CONTINUE is
used, both the data (chain_data parameter) and the length (chain_data_length
parameter) must be the same values that were received in these parameters as
output on the preceding call to the service in the chained sequence.

The exact content and layout of chain_data is not described. For AES CBC
encryption, the field must be at least 32-bytes in length. For AES ECB
encryption the field is not used and any length is acceptable including zero.

cipher_text_length

Direction Type

Input Integer

The length of the cipher text. The length must be a multiple of the algorithm
block size.

cipher_text

Direction Type

Input String

The text to be deciphered.

clear_text_length

Direction Type

Input/Output Integer

On input, this parameter specifies the size of the storage pointed to by the
clear_text parameter. On output, this parameter has the actual length of the text
stored in the clear_text parameter.

If process rule PKCS-PAD is used, the clear text length will be less than the
cipher text length since padding bytes are removed.

clear_text

Symmetric Algorithm Decipher

Chapter 6. Protecting Data 375

Direction Type

Output String

The deciphered text the service returns.

optional_data_length

Direction Type

Input Integer

The length of the optional_data parameter. This parameter must be 0.

optional_data

Direction Type

Ignored String

Optional data required by a specified algorithm.

cipher_text_id

Direction Type

Input Integer

For CSNBSAD1 and CSNESAD1 only, the ALET of the dataspace in which the
cipher_text parameter resides.

clear_text_id

Direction Type

Input Integer

For CSNBSAD1 and CSNESAD1 only, the ALET of the dataspace in which the
clear_text parameter resides.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Access Control Point
The Symmetric Algorithm Decipher - secure AES keys access control point
controls the function of this service.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Symmetric Algorithm Decipher

376 z/OS ICSF Application Programmer's Guide

Table 146. Symmetric Algorithm Decipher required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC)

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC)

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

AES Variable-length Symmetric Internal
Key Tokens require the Sep. 2011 or later
licensed internal code (LIC).

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Symmetric Algorithm Encipher (CSNBSAE or CSNBSAE1 and
CSNESAE or CSNESAE1)

The symmetric algorithm encipher callable service enciphers data with the AES
algorithm. Data is enciphered that has been deciphered in either CBC mode or
ECB mode.

The callable service names for AMODE(64) invocation are CSNESAE and
CSNESAE1

Choosing between CSNBSAE and CSNBSAE1 or CSNESAE
and CSNESAE1

CSNBSAE, CSNBSAE1, CSNESAE, and CSNESAE1 provide identical functions.
When choosing which service to use, consider this:
v CSNBSAE and CSNESAE require the cipher text and plaintext to reside in the

caller’s primary address space. Also, a program using CSNBSAE adheres to the
IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface.

v CSNBSAE1 and CSNESAE1 allow the cipher text and plaintext to reside either in
the caller’s primary address space or in a data space. This can allow you to
encipher more data with one call. However, a program using CSNBSAE1 and
CSNESAE1 does not adhere to the IBM CCA: Cryptographic API and may need
to be modified prior to it running with other cryptographic products that follow
this programming interface.

Symmetric Algorithm Decipher

Chapter 6. Protecting Data 377

For CSNBSAE1 and CSNESAE1, cipher_text_id and clear_text_id are access list entry
token (ALET) parameters of the data spaces containing the cipher text and
plaintext.

Format
CALL CSNBSAE(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
key_parms_length,
key_parms,
block_size,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
clear_text_length,
clear_text,
cipher_text_length,
cipher_text,
optional_data_length,
optional_data)

CALL CSNBSAE1(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
key_parms_length,
key_parms,
block_size,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
clear_text_length,
clear_text,
cipher_text_length,
cipher_text,
optional_data_length,
optional_data
clear_text_id
cipher_text_id)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Symmetric Algorithm Encipher

378 z/OS ICSF Application Programmer's Guide

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value
may be 2, 3 or 4.

rule_array

Direction Type

Input String

This keyword provides control information to the callable service. The
keywords must be eight bytes of contiguous storage with the keyword
left-justified in its 8-byte location and padded on the right with blanks.

Table 147. Symmetric Algorithm Encipher Rule Array Keywords

Keyword Meaning

Algorithm (one keyword, required)

AES Specifies that the Advanced Encryption Standard (AES)
algorithm will be used. The block size is 16-bytes, and the
key length may be 16-, 24-, or 32-bytes (128-, 192-, 256-bits).

Processing Rule (optional - zero or one keyword)

CBC Performs encryption in cipher block chaining (CBC) mode.
The text length must be a multiple of the AES block size
(16-bytes). This is the default value.

ECB Performs encryption in electronic code book (ECB) mode.
The text length must be a multiple of the AES block size
(16-bytes).

Symmetric Algorithm Encipher

Chapter 6. Protecting Data 379

Table 147. Symmetric Algorithm Encipher Rule Array Keywords (continued)

Keyword Meaning

PKCS-PAD Performs encryption in cipher block chaining (CBC) mode,
but the data is padded using PKCS padding rules. The
length of the clear text data does not have to be a multiple
of the cipher block length. The cipher text will be longer
than the clear text by at least one byte, and up to 16-bytes.
The PKCS padding method is described in “PKCS Padding
Method” on page 907. This rule should be specified only
when there is one request or on the last request of a
sequence of chained requests.

Key Rule (required)

KEYIDENT This indicates that the value in the key_identifier parameter is
either an internal key token or the label of a key token in
the CKDS. The key must be a secure AES key, that is,
enciphered under the current master key.

ICV Selection (optional - zero or one keyword)

INITIAL This specifies that this is the first request of a sequence of
chained requests, and indicates that the initialization vector
should be taken from the initialization_vector parameter. This
is the default value.

CONTINUE This specifies that this request is part of a sequence of
chained requests, and is not the first request in that
sequence. The initialization vector will be taken from the
work area identified in the chain_data parameter. This
keyword is only valid for processing rules CBC or
PKCS-PAD.

key_identifier_length

Direction Type

Input Integer

The length of the key_identifier parameter. The length must be 64 bytes for an
AES DATA Internal Key Token (version X’04’) or a CKDS label, or between the
actual length of the token and 725 for an AES CIPHER Internal Key Token
(version X’05’).

key_identifier

Direction Type

Input String

This specifies an internal secure AES token or the labelname of a secure AES
token in the CKDS. Normal CKDS labelname syntax is required.

The AES key identifier must be an encrypted key contained in an internal key
token, where the key is enciphered under the AES master key. The key can be
128-, 192-, or 256-bits in length.

key_parms_length

Direction Type

Input Integer

Symmetric Algorithm Encipher

380 z/OS ICSF Application Programmer's Guide

The length of the key_parms parameter in bytes. It must be set to 0.

key_parms

Direction Type

Ignored String

This parameter is ignored. It is reserved for future use.

block_size

Direction Type

Input Integer

The block size for the cryptographic algorithm. AES requires the block size to
be 16.

initialization_vector_length

Direction Type

Input Integer

The length of the initialization_vector parameter in bytes. This parameter is
ignored if the process rule is ECB.

initialization_vector

Direction Type

Input String

This parameter contains the initialization vector (IV) for CBC mode encryption,
including the CBC mode invoked using the PKCS-PAD keyword. This
parameter is ignored if the process rule is ECB. For AES CBC mode encryption,
the initialization vector length must be 16 bytes, the length of an AES block.
The same IV must be used when decrypting the data.

chain_data_length

Direction Type

Input/Output Integer

The length in bytes of the chain_data parameter. On input it contains the length
of the buffer provided with parameter chain_data. On output, it is updated with
the length of the data returned in the chain_data parameter.

chain_data

Direction Type

Input/Output String

A buffer that is used as a work area for sequences of chained symmetric
algorithm encipher requests. When the keyword INITIAL is used, this is an
output parameter and receives data that is needed when enciphering the next
part of the input data. When the keyword CONTINUE is used, this is an
input/output parameter; the value received as output from the previous call in
the sequence is provided as input to this call, and in turn this call will return

Symmetric Algorithm Encipher

Chapter 6. Protecting Data 381

new chain_data that will be used as input on the next call. When CONTINUE is
used, both the data (chain_data parameter) and the length (chain_data_length
parameter) must be the same values that were received in these parameters as
output on the preceding call to the service in the chained sequence.

The exact content and layout of chain_data is not described. For AES CBC
encryption, the field must be at least 32-bytes in length. For AES ECB
encryption the field is not used and any length is acceptable including zero.

clear_text_length

Direction Type

Input Integer

The length of the clear text data in the clear_text parameter. Unless process rule
PKCS-PAD is used, the length must be a multiple of the algorithm block size.
The length must be 1 or greater.

clear_text

Direction Type

Input String

The text to be enciphered.

cipher_text_length

Direction Type

Input/Output Integer

On input, this parameter specifies the size of the storage pointed to by the
cipher_text parameter. On output, this parameter has the actual length of the
text stored in the buffer addressed by the cipher_text parameter.

If process rule PKCS-PAD is used, the cipher text length will exceed the clear
text length by at least one byte, and up to 16-bytes. For other process rules, the
cipher text length will be equal to the clear text length.

cipher_text

Direction Type

Output String

The enciphered text the service returns.

optional_data_length

Direction Type

Input Integer

The length of the optional_data parameter. This parameter is reserved for future
use. It must be set to 0.

optional_data

Direction Type

Ignored String

Symmetric Algorithm Encipher

382 z/OS ICSF Application Programmer's Guide

The optional data used in processing the request. This parameter is ignored.

cipher_text_id

Direction Type

Input Integer

For CSNBSAE1 and CSNESAE1 only, the ALET of the dataspace in which the
cipher_text parameter resides.

clear_text_id

Direction Type

Input Integer

For CSNBSAE1 and CSNESAE1 only, the ALET of the dataspace in which the
clear_text parameter resides.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Access Control Point
The Symmetric Algorithm Encipher - secure AES keys access control point
controls the function of this service.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 148. Symmetric Algorithm Encipher required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor Secure AES key support requires the Nov.

2008 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

AES Variable-length Symmetric Internal
Key Tokens require the Sep. 2011 or later
licensed internal code (LIC).

Symmetric Algorithm Encipher

Chapter 6. Protecting Data 383

Table 148. Symmetric Algorithm Encipher required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Symmetric Key Decipher (CSNBSYD or CSNBSYD1 and CSNESYD or
CSNESYD1)

Use the symmetric key decipher callable service to decipher data using one of the
supported modes. ICSF supports several processing rules to decipher data. You
choose the type of processing rule that the Symmetric Key Decipher callable
service should use for block chaining. See “Modes of Operation” on page 337 for
more information.

Processing Rule
Purpose

ANSI X9.23
For cipher block chaining. The ciphertext must be an exact multiple of the
block size for the specified algorithm (8 bytes for DES). The plaintext will
be between 1 and 8 bytes shorter than the ciphertext. This process rule
always pads the plaintext during encryption so that ciphertext produced is
an exact multiple of the block size, even if the plaintext was already a
multiple of the blocksize.

CBC For cipher block chaining. The ciphertext must be an exact multiple of the
block size for the specified algorithm (8 bytes for DES, 16 bytes for AES).
The plaintext will have the same length as the ciphertext.

CBC-CS
For cipher block chaining. The ciphertext can be any length. The plaintext
will have the same length as the ciphertext.

CFB Performs cipher feedback encryption with the segment size equal to the
block size. The ciphertext can be of any length. The plaintext will have the
same length as the ciphertext.

CFB-LCFB
Performs cipher feedback encryption with the segment size set by the
caller. The ciphertext can be of any length. The plaintext will have the
same length as the ciphertext.

CUSP For cipher block chaining. The ciphertext can be of any length. The
plaintext will have the same length as the ciphertext.

ECB Performs electronic code book encryption. The ciphertext must be an exact
multiple of the block size for the specified algorithm (8 bytes for DES, 16
bytes for AES). The plaintext will have the same length as the ciphertext.

GCM Perform Galois/Counter mode decryption, which provides both
confidentiality and authentication for the plaintext and authentication for
the additional authenticated data (AAD). The ciphertext can be any length.
The plaintext will have the same length as the ciphertext. Additionally, the
authentication tag will be verified before any data is returned.

Symmetric Algorithm Encipher

384 z/OS ICSF Application Programmer's Guide

IPS For cipher block chaining. The ciphertext can be any length. The plaintext
will have the same length as the ciphertext.

OFB Perform output feedback mode encryption. The ciphertext can be any
length. The plaintext will have the same length as the ciphertext.

PKCS-PAD
For cipher block chaining. The ciphertext must be an exact multiple of the
block size (8 bytes for DES and 16 bytes for AES). The plaintext will be
between 1 and the blocksize (8 bytes for DES, 16 bytes for AES) bytes
shorter than the ciphertext. This process rule always pads the ciphertext so
that ciphertext produced is an exact multiple of the blocksize, even if the
plaintext was already a multiple of the blocksize.

The Advanced Encryption Standard (AES) and Data Encryption Standard (DES) are
supported. AES encryption uses a 128-, 192-, or 256-bit key. DES encryption uses a
56-, 112-, or 168-bit key. See the processing rule descriptions for limitations. For
each algorithm, certain processing rules are not allowed. See the rule_array
parameter description for more information.

All modes except ECB use an initial chaining vector (ICV) in their processing.

All modes that utilize chaining produce a resulting chaining value called the
output chaining vector (OCV). The application can pass the OCV as the ICV in the
next decipher call. This results in record chaining.

The selection between single-DES decryption mode and triple-DES decryption
mode is controlled by the length of the key supplied in the key_identifier
parameter. If a single-length key is supplied, single-DES decryption is performed.
If a double-length or triple-length key is supplied, triple-DES decryption is
performed.

The key may be specified as a clear key value, an internal clear key token, or the
label name of a clear key or an encrypted key in the CKDS.

Choosing Between CSNBSYD and CSNBSYD1
CSNBSYD and CSNBSYD1 provide identical functions. When choosing which
service to use, consider this:
v CSNBSYD requires the ciphertext and plaintext to reside in the caller's primary

address space. Also, a program using CSNBSYD adheres to the IBM Common
Cryptographic Architecture: Cryptographic Application Programming Interface.
The callable service name for AMODE(64) invocation is CSNESYD.

v CSNBSYD1 allows the ciphertext and plaintext to reside either in the caller's
primary address space or in a data space. This can allow you to decipher more
data with one call. However, a program using CSNBSYD1 does not adhere to
the IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface, and may need to be modified prior to it running with
other cryptographic products that follow this programming interface.
For CSNBSYD1, cipher_text_id and clear_text_id are access list entry token (ALET)
parameters of the data spaces containing the ciphertext and plaintext.
The callable service name for AMODE(64) invocation is CSNESYD1.

Symmetric Key Decipher

Chapter 6. Protecting Data 385

Format
CALL CSNBSYD(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
key_parms_length,
key_parms,
block_size,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
cipher_text_length,
cipher_text,
clear_text_length,
clear_text,
optional_data_length,
optional_data)

CALL CSNBSYD1(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
key_parms_length,
key_parms,
block_size,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
cipher_text_length,
cipher_text,
clear_text_length,
clear_text,
optional_data_length,
optional_data
cipher_text_id
clear_text_id)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

Symmetric Key Decipher

386 z/OS ICSF Application Programmer's Guide

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value
may be 1, 2, 3 or 4.

rule_array

Direction Type

Input String

An array of 8-byte keywords providing the processing control information. The
keywords must be in contiguous storage, left-justified and padded on the right
with blanks.

Table 149. Symmetric Key Decipher Rule Array Keywords

Keyword Meaning

Algorithm (required)

AES Specifies that the Advanced Encryption Standard (AES)
algorithm is to be used. The block size is 16 bytes. The key
length may be 16, 24, or 32 bytes. The chain_data field must
be at least 32 bytes in length. The OCV is the first 16 bytes
in the chain_data. AES does not support the CUSP, IPS, or
X9.23 processing rules.

DES Specifies that the Data Encryption Standard (DES) algorithm
is to be used. The algorithm, DES or TDES, will be
determined from the length of the key supplied. The key
length may be 8, 16, or 24. The block size is 8 bytes. The
chain_data field must be at least 16 bytes in length. The OCV
is the first eight bytes in the chain_data. DES does not
support the GCM processing rule.

Processing Rule (optional)

Rules CBC-CS, CUSP, IPS, PKCS-PAD, and X9.23 should be specified only when there is
one request or on the last request of a sequence of chained requests.

Symmetric Key Decipher

Chapter 6. Protecting Data 387

Table 149. Symmetric Key Decipher Rule Array Keywords (continued)

Keyword Meaning

CBC Performs cipher block chaining. The text length must be a
multiple of the block size for the specified algorithm. CBC is
the default value.

CBC-CS CBC mode (cipher block chaining) with ciphertext stealing.
Input text may be any length.

CFB CFB mode (cipher feedback) that is compatible with IBM's
Encryption Facility product. Input text may be any length.

CFB-LCFB CFB mode (cipher feedback). This rule allows the value of s
(the segment size) to be something other than the block size
(s is set to the block size with the CFB processing rule).
key_parms_length and key_parms are used to set the value of
s. Input text may be any length.

CUSP CBC mode (cipher block chaining) that is compatible with
IBM's CUSP and PCF products. Input text may be any
length.

ECB Performs electronic code book encryption. The text length
must be a multiple of the block size for the specified
algorithm.

GCM GCM (Galois/Counter Mode). key_parms_length and
key_parms are used to indicate the length of the tag (the
value t) on input and contain the tag on output. Additional
Authenticated Data (AAD) is contained in
optional_data_length and optional_data. Input text may be any
length. GCM does not support chaining, so CONTINUE and
FINAL are not allowed for the ICV Selection rule.

IPS CBC mode (cipher block chaining) that is compatible with
IBM's IPS product. Input text may be any length.

OFB OFB mode (output feedback). Input text may be any length.

PKCS-PAD CBC mode (cipher block chaining) but the ciphertext must
be an exact multiple of the block length (8 bytes for DES
and 16 bytes for AES). The plaintext will be 1 to 8 bytes
shorter for DES and 1 to 16 bytes shorter for AES than the
ciphertext.

X9.23 CBC mode (cipher block chaining) for 1 to 8 bytes of
padding dropped from the output clear text.

Key Rule (optional)

KEY-CLR This specifies that the key parameter contains a clear key
value. KEY-CLR is the default value.

KEYIDENT This specifies that the key_identifier field will be an internal
clear token, or the label name of a clear key or encrypted
key in the CKDS. Normal CKDS labelname syntax is
required.

ICV Selection (optional)

INITIAL This specifies taking the initialization vector from the
initialization_vector parameter. INITIAL is the default value.
INITIAL is not valid with processing rule GCM.

CONTINUE This specifies taking the initialization vector from the output
chaining vector contained in the work area to which the
chain_data parameter points. CONTINUE is not valid for
processing rules ECB, GCM, or X9.23.

Symmetric Key Decipher

388 z/OS ICSF Application Programmer's Guide

Table 149. Symmetric Key Decipher Rule Array Keywords (continued)

Keyword Meaning

FINAL This specifies taking the initialization vector from the output
chaining vector contained in the work area to which the
chain_data parameter points. Using FINAL indicates that this
call contains the last portion of data. FINAL is valid for
processing rules CBC-CS, CFB, CFB-LCBF, and OFB.

ONLY This specifies taking the initialization vector from the
initialization_vector parameter and that the entirety of the
data to be processed is in this single call. ONLY is valid for
processing rules CBC-CS, CFB, CFB-LCFB, GCM, and OFB.

key_identifier_length

Direction Type

Input Integer

The length of the key_identifier parameter. For clear keys, the length is in bytes
and includes only the value of the key. The maximum size is 256 bytes.

For the KEYIDENT keyword, this parameter value must be 64.

key_identifier

Direction Type

Input String

For the KEY-CLR keyword, this specifies the cipher key. The parameter must
be left justified.

For the KEYIDENT keyword, this specifies an internal clear token, or the label
name of a clear key or an encrypted key in the CKDS. Normal CKDS
labelname syntax is required. KEYIDENT is valid with DES and AES.

key_parms_length

Direction Type

Input Integer

The length of the key_parms parameter.
v For the CFB-LCFB processing rule, this length must be 1.
v For the GCM processing rule, this is the length in bytes of the authentication

tag to be verified. Valid lengths are 4, 8, 12, 13, 14, 15, 16. Using a length of
4 or 8 is stringly discouraged.

v For all other processing rules, this field is ignored.

You must specify the same length used when enciphering the text.

key_parms

Direction Type

Input String

This parameter contains key-related parameters specific to the encryption
algorithm and processing mode.

Symmetric Key Decipher

Chapter 6. Protecting Data 389

v For the CFB-LCFB processing rule, this 1-byte field specifies the segment
size in bytes. Valid values are 1 to the block size, inclusive. The block size is
eight for DES and sixteen for AES.

v For the GCM processing rule, this contains the authentication tag for the
provided ciphertext (cipher_text parameter) and additional authenticated data
(optional_data parameter).

v For all other processing rules, this field is ignored.

For the modes where key_parms is used, you must specify the same key_parms
used when enciphering the text using the Symmetric Key Encipher.

block_size

Direction Type

Input Integer

This parameter contains the processing size of the text block in bytes. This
value will be algorithm specific. Be sure to specify the same block size as used
to encipher the text.

initialization_vector_length

Direction Type

Input Integer

The length of the initialization_vector parameter. This parameter is ignored for
the ECB processing rule. For the GCM processing rule, NIST recommends a
length of 12, but tolerates any non-zero length. For all other processing rules,
the length should be equal to the block length for the algorithm specified.

initialization_vector

Direction Type

Input String

This initialization chaining value. You must use the same ICV that was used to
encipher the data. This parameter is ignored for the ECB processing rule.

chain_data_length

Direction Type

Input/Output Integer

The length of the chain_data parameter. On output, the actual length of the
chaining vector will be stored in the parameter. This parameter is ignored if
the ICV selection keyword is ONLY.

chain_data

Direction Type

Input/Output String

This field is used as a system work area for the chaining vector. Your
application program must not change the data in this string. The chaining
vector holds the output chaining vector from the caller.

Symmetric Key Decipher

390 z/OS ICSF Application Programmer's Guide

The direction is output if the ICV selection keyword is INITIAL. This
parameter is ignored if the ICV selection keyword is ONLY.

The mapping of the chain_data depends on the algorithm specified. For AES,
the chain_data field must be at least 32 bytes in length. The OCV is in the first
16 bytes in the chain_data. For DES, chain_data field must be at least 16 bytes in
length.

cipher_text_length

Direction Type

Input Integer

The length of the ciphertext. A zero value in the cipher_text_length parameter is
not valid except with the GCM processing rule when performing a GMAC
operation. The length must be a multiple of the algorithm block size for the
CBC, ECB, and PKCS-PAD processing rules, but may be any length with the
other processing rules.

cipher_text

Direction Type

Input String

The text to be deciphered.

clear_text_length

Direction Type

Input/Output Integer

On input, this parameter specifies the size of the storage pointed to by the
clear_text parameter. On output, this parameter has the actual length of the text
stored in the clear_text parameter. The clear_text parameter must be at least the
same length as the cipher_text parameter, except for the PKCS-PAD and X9.23
processing rules, where the padding is automatically dropped on output.

clear_text

Direction Type

Output String

The deciphered text the service returns.

optional_data_length

Direction Type

Input Integer

The length of the optional_data parameter. For the GCM processing rule, this
parameter contains the length of the Additional Authenticated Data (AAD). For
all other processing rules, this field is ignored.

optional_data

Symmetric Key Decipher

Chapter 6. Protecting Data 391

Direction Type

Input String

Optional data required by a specified algorithm or processing mode. For the
GCM processing rule, this parameter contains the Additional Authenticated
Data (AAD). For all other processing rules, this field is ignored.

You must specify the same optional_data used when enciphering the text using
Symmetric Key Encipher.

cipher_text_id

Direction Type

Input Integer

For CSNBSYD1 only, the ALET of the ciphertext to be deciphered.

clear_text_id

Direction Type

Input Integer

For CSNBSYD1 only, the ALET of the clear text supplied by the application.

Usage Notes
v SAF may be invoked to verify the caller is authorized to use the specified key

label stored in the CKDS.
v To use a CKDS encrypted key, the ICSF segment of the CSFKEYS class general

resource profile associated with the specified key label must contain
SYMCPACFWRAP(YES).

v No pre- or post-processing exits are enabled for this service.
v The master keys need to be loaded only when using this service with encrypted

key labels.
v The AES algorithm will use hardware if it is available. Otherwise, clear key

operations will be performed in software.
v AES has the same availability restrictions as triple-DES.
v This service will fail if execution would cause destructive overlay of the

cipher_text field.

Access Control Points
When the label of an encrypted key is specified for the key_identifier parameter, the
appropriate access control point listed below must be enabled.

Table 150. Required access control points for Symmetric Key Decipher

Key algorithm Access control point

AES Symmetric Key Encipher/Decipher - Encrypted AES
keys

DES Symmetric Key Encipher/Decipher - Encrypted DES
keys

Symmetric Key Decipher

392 z/OS ICSF Application Programmer's Guide

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 151. Symmetric Key Decipher required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

CP Assist for
Cryptographic
Functions

GCM processing rule is not supported.

CFB-LCFB processing rule is supported
only when key_parms specifies a segment
size equal to the blocksize.

IBM System z9 EC

IBM System z9 BC

CP Assist for
Cryptographic
Functions

GCM processing rule is not supported.

CFB-LCFB processing rule is supported
only when key_parms specifies a segment
size equal to the blocksize.

IBM System z10 EC

IBM System z10 BC

CP Assist for
Cryptographic
Functions

Crypto Express3
Coprocessor

GCM processing rule is not supported.

CFB-LCFB processing rule is supported
only when key_parms specifies a segment
size equal to the blocksize.

Encrypted keys require CEX3C with the
Nov. 2009 or later licensed internal code
(LIC).

IBM zEnterprise 196

IBM zEnterprise 114

CP Assist for
Cryptographic
Functions

Crypto Express3
Coprocessor

Encrypted keys require CEX3C with the
Nov. 2009 or later licensed internal code
(LIC).

IBM zEnterprise EC12

IBM zEnterprise BC12

CP Assist for
Cryptographic
Functions

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Related Information
You cannot overlap the plaintext and ciphertext fields. For example:
pppppp

cccccc is not supported.

cccccc
pppppp is not supported.

ppppppcccccc is supported.

P represents the plaintext and c represents the ciphertext.

Symmetric Key Decipher

Chapter 6. Protecting Data 393

|

|
|
|

|

|
|
|

|

|
|
|

“Cipher Processing Rules” on page 904 discusses the cipher processing rules.

Symmetric Key Encipher (CSNBSYE or CSNBSYE1 and CSNESYE or
CSNESYE1)

Use the symmetric key encipher callable service to encipher data using one of the
supported modes. ICSF supports several processing rules to encipher data. You
choose the type of processing rule that the Symmetric Key Encipher callable service
should use for the block chaining. See “Modes of Operation” on page 337 for more
information.

Processing Rule
Purpose

ANSI X9.23
For cipher block chaining. The ciphertext must be an exact multiple of the
block size for the specified algorithm (8 bytes for DES). The plaintext will
be between 1 and 8 bytes shorter than the ciphertext. This process rule
always pads the plaintext during encryption so that ciphertext produced is
an exact multiple of the block size, even if the plaintext was already a
multiple of the blocksize.

CBC For cipher block chaining. The ciphertext must be an exact multiple of the
block size for the specified algorithm (8 bytes for DES, 16 bytes for AES).
The plaintext will have the same length as the ciphertext.

CBC-CS
For cipher block chaining. The ciphertext can be any length. The plaintext
will have the same length as the ciphertext.

CFB Performs cipher feedback encryption with the segment size equal to the
block size. The ciphertext can be of any length. The plaintext will have the
same length as the ciphertext.

CFB-LCFB
Performs cipher feedback encryption with the segment size set by the
caller. The ciphertext can be of any length. The plaintext will have the
same length as the ciphertext.

CUSP For cipher block chaining. The ciphertext can be of any length. The
plaintext will have the same length as the ciphertext.

ECB Performs electronic code book encryption. The ciphertext must be an exact
multiple of the block size for the specified algorithm (8 bytes for DES, 16
bytes for AES). The plaintext will have the same length as the ciphertext.

GCM Perform Galois/Counter mode decryption, which provides both
confidentiality and authentication for the plaintext and authentication for
the additional authenticated data (AAD). The ciphertext can be any length.
The plaintext will have the same length as the ciphertext. Additionally, the
authentication tag will be verified before any data is returned.

IPS For cipher block chaining. The ciphertext can be any length. The plaintext
will have the same length as the ciphertext.

OFB Perform output feedback mode encryption. The ciphertext can be any
length. The plaintext will have the same length as the ciphertext.

PKCS-PAD
For cipher block chaining. The ciphertext must be an exact multiple of the
block size (8 bytes for DES and 16 bytes for AES). The plaintext will be

Symmetric Key Encipher

394 z/OS ICSF Application Programmer's Guide

between 1 and the blocksize (8 bytes for DES, 16 bytes for AES) bytes
shorter than the ciphertext. This process rule always pads the ciphertext so
that ciphertext produced is an exact multiple of the blocksize, even if the
plaintext was already a multiple of the blocksize.

The Advanced Encryption Standard (AES) and Data Encryption Standard (DES) are
supported. AES encryption uses a 128-, 192-, or 256-bit key. The CBC, CBC-CS,
CFB, CFB-LCFB, ECB, GCM, OFB, and XTS-AES modes are supported.

All modes except ECB and XTS-AES use an initial chaining vector (ICV) in their
processing.

All modes that tolerate chaining produce a resulting chaining value called the
output chaining vector (OCV). The application can pass the OCV as the ICV in the
next encipher call. This results in record chaining.

The selection between single-DES decryption mode and triple-DES decryption
mode is controlled by the length of the key supplied in the key_identifier parameter.
If a single-length key is supplied, single-DES decryption is performed. If a
double-length or triple-length key is supplied, triple-DES decryption is performed.

The key may be specified as a clear key value, an internal clear key token, or the
label name of a clear key or an encrypted key in the CKDS.

Choosing between CSNBSYE and CSNBSYE1
CSNBSYE and CSNBSYE1 provide identical functions. When choosing which
service to use, consider this:
v CSNBSYE requires the cleartext and ciphertext to reside in the caller's primary

address space. Also, a program using CSNBSYE adheres to the IBM Common
Cryptographic Architecture: Cryptographic Application Programming Interface.
The callable service name for AMODE(64) invocation is CSNESYE.

v CSNBSYE1 allows the cleartext and ciphertext to reside either in the caller's
primary address space or in a data space. This can allow you to encipher more
data with one call. However, a program using CSNBSYE1 does not adhere to the
IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface, and may need to be modified prior to it running with
other cryptographic products that follow this programming interface.
For CSNBSYE1, clear_text_id and cipher_text_id are access list entry token (ALET)
parameters of the data spaces containing the cleartext and ciphertext.
The callable service name for AMODE(64) invocation is CSNESYE1.

Format
CALL CSNBSYE(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
key_parms_length,
key_parms,
block_size,
initialization_vector_length,
initialization_vector,

Symmetric Key Encipher

Chapter 6. Protecting Data 395

chain_data_length,
chain_data,
clear_text_length,
clear_text,
cipher_text_length,
cipher_text,
optional_data_length,
optional_data)

CALL CSNBSYE1(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
key_parms_length,
key_parms,
block_size,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
clear_text_length,
clear_text,
cipher_text_length,
cipher_text,
optional_data_length,
optional_data,
clear_text_id,
cipher_text_id)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Symmetric Key Encipher

396 z/OS ICSF Application Programmer's Guide

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value
may be 1, 2, 3 or 4.

rule_array

Direction Type

Input Integer

An array of 8-byte keywords providing the processing control information. The
keywords must be in contiguous storage, left-justified and padded on the right
with blanks.

Table 152. Symmetric Key Encipher Rule Array Keywords

Keyword Meaning

Algorithm (required)

AES Specifies that the Advanced Encryption Standard (AES)
algorithm is to be used. The block size is 16 bytes. The key
length may be 16, 24, or 32 bytes. The chain_data field must
be at least 32 bytes in length. The OCV is the first 16 bytes
in the chain_data. AES does not support the CUSP, IPS, or
X9.23 processing rules.

DES Specifies that the Data Encryption Standard (DES) algorithm
is to be used. The algorithm, DES or TDES, will be
determined from the length of the key supplied. The key
length may be 8, 16, or 24. The block size is 8 bytes. The
chain_data field must be at least 16 bytes in length. The OCV
is the first eight bytes in the chain_data. DES does not
support the GCM processing rule.

Processing Rule (optional)

Rules CBC-CS, CUSP, IPS, PKCS-PAD, and X9.23 should be specified only when there is
one request or on the last request of a sequence of chained requests.

CBC CBC mode (cipher block chaining). The text length must be
a multiple of the block size for the specified algorithm. CBC
is the default value.

CBC-CS CBC mode (cipher block chaining) with ciphertext stealing.
Input text may be any length.

CFB CFB mode (cipher feedback) that is compatible with IBM's
Encryption Facility product. Input text may be any length.

CFB-LCFB CFB mode (cipher feedback). This rule allows the value of s
(the segment size) to be something other than the block size
(s is set to the block size with the CFB processing rule). The
key_parms_length and key_parms parameters are used to set
the value of s. Input text may be any length.

Symmetric Key Encipher

Chapter 6. Protecting Data 397

||
|

Table 152. Symmetric Key Encipher Rule Array Keywords (continued)

Keyword Meaning

CUSP CBC mode (cipher block chaining) that is compatible with
IBM's CUSP and PCF products. Input text may be any
length.

ECB ECB mode (electronic codebook). The text length must be a
multiple of the block size for the specified algorithm.

GCM GCM mode (Galois/Counter Mode). The key_parms_length
and key_parms parameters are used to indicate the length of
the tag (the value t) on input and contain the tag on output.
Additional Authenticated Data (AAD) is contained in the
optional_data_length and optional_data parameters. Input text
may be any length.

IPS CBC mode (cipher block chaining) that is compatible with
IBM's IPS product. Input text may be any length.

OFB OFB mode (output feedback). Input text may be any length.

PKCS-PAD CBC mode (cipher block chaining) not necessarily in exact
multiples of the block length (8 bytes for DES and 16 bytes
for AES). PKCS-PAD always pads the plaintext so that the
ciphertext produced is an exact multiple of the block length
and longer than the plaintext.

X9.23 CBC mode (cipher block chaining) for 1 to 8 bytes of
padding added according to ANSI X9.23. Input text may be
any length.

Key Rule (optional)

KEY-CLR This specifies that the key parameter contains a clear key
value. KEY-CLR is the default.

KEYIDENT This specifies that the key_identifier field will be an internal
clear token, or the label name of a clear key or encrypted
key in the CKDS. Normal CKDS labelname syntax is
required.

ICV Selection (optional)

INITIAL This specifies taking the initialization vector from the
initialization_vector parameter. INITIAL is the default value.
INITIAL is not valid with processing rule GCM.

CONTINUE This specifies taking the initialization vector from the output
chaining vector contained in the work area to which the
chain_data parameter points. CONTINUE is not valid for
processing rules ECB, GCM, or X9.23.

FINAL This specifies taking the initialization vector from the output
chaining vector contained in the work area to which the
chain_data parameter points. Using FINAL indicates that this
call contains the last portion of data. FINAL is valid for
processing rules CBC-CS, CFB, CFB-LCBF, and OFB.

ONLY This specifies taking the initialization vector from the
initialization_vector parameter and that the entirety of the
data to be processed is in this single call. ONLY is valid for
processing rules CBC-CS, CFB, CFB-LCFB, GCM, and OFB.

key_identifier_length

Symmetric Key Encipher

398 z/OS ICSF Application Programmer's Guide

Direction Type

Input Integer

The length of the key_identifier parameter. For clear keys, the length is in bytes
and includes only the value of the key.

For the KEYIDENT keyword, this parameter value must be 64.

key_identifier

Direction Type

Input String

For the KEY-CLR keyword, this specifies the cipher key. The parameter must
be left justified.

For the KEYIDENT keyword, this specifies a internal clear token, or the label
name of a clear key or an encrypted key in the CKDS. Normal CKDS label
name syntax is required.

key_parms_length

Direction Type

Input Integer

The length of the key_parms parameter.
v For the CFB-LCFB processing rule, this length must be 1.
v For the GCM processing rule, this is the length in bytes of the authentication

tag to be generated. Valid lengths are 4, 8, 12, 13, 14, 15, 16. Using a length
of 4 or 8 is strongly discouraged.

v For all other processing rules, this field is ignored.

When deciphering the text, you must specify this same length.

key_parms

Direction Type

Input/Output String

This parameter contains key-related parameters specific to the encryption
algorithm and processing mode.
v For the CFB-LCFB processing rule, this 1-byte field specifies the segment

size in bytes. Valid values are 1 to the blocksize, inclusive. The blocksize is
eight for DES and sixteen for AES.

v For the GCM processing rule, this will contain the generated authentication
tag for the provided plaintext (plain_text parameter) and additional
authenticated data (optional_data parameter).

v For all other processing rules, this field is ignored.

For the modes where key_parms is used, you must specify the same key_parms
when deciphering the text using the Symmetric Key Decipher callable service.

block_size

Symmetric Key Encipher

Chapter 6. Protecting Data 399

Direction Type

Input Integer

This parameter contains the processing size of the text block in bytes. This
value will be algorithm specific.

initialization_vector_length

Direction Type

Input Integer

The length of the initialization_vector parameter. This parameter is ignored for
the ECB processing rule. For the GCM processing rule, NIST recommends a
length of 12, but tolerates any non-zero length. For all other processing rules,
the length should be equal to the block length for the algorithm specified.

initialization_vector

Direction Type

Input String

This initialization chaining value. You must use the same ICV to decipher the
data. This parameter is ignored for the ECB processing rule.

chain_data_length

Direction Type

Input/Output Integer

The length of the chain_data parameter. On output, the actual length of the
chaining vector will be stored in the parameter. This parameter is ignored if
the ICV selection keyword in ONLY.

chain_data

Direction Type

Input/Output String

This field is used as a system work area for the chaining vector. Your
application program must not change the data in this string. The chaining
vector holds the output chaining vector from the caller.

The direction is output if the ICV selection keyword is INITIAL. This
parameter is ignored if the ICV selection keyword in ONLY.

The mapping of the chain_data depends on the algorithm specified. For AES,
the chain_data field must be at least 32 bytes in length. The OCV is in the first
16 bytes in the chain_data. For DES, the chain_data field must be at least 16
bytes in length.

clear_text_length

Direction Type

Input Integer

Symmetric Key Encipher

400 z/OS ICSF Application Programmer's Guide

The length of the cleartext. A zero value in the clear_text_length parameter is
not valid except with the GCM processing rule when performing a GMAC
operation. The length must be a multiple of the algorithm block size for the
CBC, ECB, and PKCS-PAD processing rules, but may be any length with the
other processing rules. For the processing rules that support partial blocks (or
segments for CFB-LCFB), it is recommended that is the final block (or segment)
be the only one that is partial. Having a partial block in the middle is not a
supported operation as defined by the standards documents and may not be
portable to other encryption systems.

clear_text

Direction Type

Input String

The text to be enciphered.

cipher_text_length

Direction Type

Input/Output Integer

On input, this parameter specifies the size of the storage pointed to by the
cipher_text parameter. On output, this parameter has the actual length of the
text stored in the buffer addressed by the cipher_text parameter.

cipher_text

Direction Type

Output String

The enciphered text the service returns.

optional_data_length

Direction Type

Input Integer

The length of the optional_data parameter. For the GCM processing rule, this
parameter contains the length of the Additional Authenticated Data (AAD),
and may be any length, including zero. For all other processing rules, this field
is ignored.

optional_data

Direction Type

Input String

Optional data required by a specified algorithm. Optional data required by a
specified algorithm or processing mode. For the GCM processing rule, this
parameter contains the Additional Authenticated Data (AAD). For all other
processing rules, this field is ignored.

You must specify the same optional_data when deciphering the text using
Symmetric Key Decipher.

clear_text_id

Symmetric Key Encipher

Chapter 6. Protecting Data 401

Direction Type

Input Integer

For CSNBSYE1 only, the ALET of the clear text to be enciphered.

cipher_text_id

Direction Type

Input Integer

For CSNBSYE1 only, the ALET of the ciphertext that the application supplied.

Usage Notes
v SAF may be invoked to verify the caller is authorized to use the specified key

label stored in the CKDS.
v To use a CKDS encrypted key, the ICSF segment of the CSFKEYS class general

resource profile associated with the specified key label must contain
SYMCPACFWRAP(YES).

v No pre- or post-processing exits are enabled for this service.
v The master keys need to be loaded only when using this service with the

encrypted key labels.
v The AES algorithm will use hardware if it is available. Otherwise, clear key

operations will be performed in software.
v AES has the same availability restrictions as triple-DES.
v This service will fail if execution would cause destructive overlay of the

clear_text field.

Access Control Points
When the label of an encrypted key is specified for the key_identifier parameter, the
appropriate access control point listed below must be enabled.

Table 153. Required access control points for Symmetric Key Encipher

Key algorithm Access control point

AES Symmetric Key Encipher/Decipher - Encrypted AES
keys

DES Symmetric Key Encipher/Decipher - Encrypted DES
keys

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Symmetric Key Encipher

402 z/OS ICSF Application Programmer's Guide

Table 154. Symmetric Key Encipher required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

CP Assist for
Cryptographic
Functions

GCM processing rule is not supported.

CFB-LCFB processing rule is supported
only when key_parms specifies a segment
size equal to the blocksize.

IBM System z9 EC

IBM System z9 BC

CP Assist for
Cryptographic
Functions

GCM processing rule is not supported.

CFB-LCFB processing rule is supported
only when key_parms specifies a segment
size equal to the blocksize.

IBM System z10 EC

IBM System z10 BC

CP Assist for
Cryptographic
Functions

Crypto Express3
Coprocessor

GCM processing rule is not supported.

CFB-LCFB processing rule is supported
only when key_parms specifies a segment
size equal to the blocksize.

Encrypted keys require the CEX3C with the
Nov. 2009 or later licensed internal code
(LIC).

IBM zEnterprise 196

IBM zEnterprise 114

CP Assist for
Cryptographic
Functions

Crypto Express3
Coprocessor

Encrypted keys require the CEX3C with the
Nov. 2009 or later licensed internal code
(LIC).

IBM zEnterprise EC12

IBM zEnterprise BC12

CP Assist for
Cryptographic
Functions

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Related Information
You cannot overlap the plaintext and ciphertext fields. For example:
pppppp

cccccc is not supported.

cccccc
pppppp is not supported.

ppppppcccccc is supported.

P represents the plaintext and c represents the ciphertext.

The method used to produce the OCV is the same with the CBC and X9.23
processing rules. However, that method is different from the method used by the
CUSP and IPS processing rules.

Symmetric Key Encipher

Chapter 6. Protecting Data 403

“Cipher Processing Rules” on page 904 discusses the cipher processing rules.

Symmetric Key Encipher

404 z/OS ICSF Application Programmer's Guide

Chapter 7. Verifying Data Integrity and Authenticating
Messages

ICSF provides several methods to verify the integrity of transmitted messages and
stored data:
v Message authentication code (MAC)
v Hash functions, including modification detection code (MDC) processing and

one-way hash generation

Note: You can also use digital signatures (see Chapter 9, “Using Digital
Signatures,” on page 545) to authenticate messages.

The choice of callable service depends on the security requirements of the
environment in which you are operating. If you need to ensure the authenticity of
the sender as well as the integrity of the data, and both the sender and receiver
can share a secret key, consider message authentication code processing. If you
need to ensure the integrity of transmitted data in an environment where it is not
possible for the sender and the receiver to share a secret cryptographic key,
consider hashing functions, such as the modification detection code process.

The callable services are described in the following topics:
v “HMAC Generate (CSNBHMG or CSNBHMG1 and CSNEHMG or

CSNEHMG1)” on page 407
v “HMAC Verify (CSNBHMV or CSNBHMV1 and CSNEHMV or CSNEHMV1)”

on page 412
v “MAC Generate (CSNBMGN or CSNBMGN1 and CSNEMGN or CSNEMGN1)”

on page 416
v “MAC Verify (CSNBMVR or CSNBMVR1 and CSNEMVR or CSNEMVR1)” on

page 421
v “MDC Generate (CSNBMDG or CSNBMDG1 and CSNEMDG or CSNEMDG1)”

on page 427
v “One-Way Hash Generate (CSNBOWH or CSNBOWH1 and CSNEOWH or

CSNEOWH1)” on page 431
v “Symmetric MAC Generate (CSNBSMG or CSNBSMG1 and CSNESMG or

CSNESMG1)” on page 436
v “Symmetric MAC Verify (CSNBSMV or CSNBSMV1 and CSNESMV or

CSNESMV1)” on page 441

How MACs are Used
When a message is sent, an application program can generate an authentication
code for it using the MAC generation callable service. ICSF supports the ANSI
X9.9-1 basic procedure and both the ANSI X9.19 basic procedure and optional
double key MAC procedure. The service computes the text of the message
authentication code using the algorithm and a key. The ANSI X9.9-1 or ANSI X9.19
basic procedures accept either a single-length MAC generation (MAC) key or a
data-encrypting (DATA) key, and the message text. The ANSI X9.19 optional
double key MAC procedure accepts a double-length MAC key and the message
text. The message text may be in clear or encrypted form. The originator of the
message sends the MAC with the message text.

© Copyright IBM Corp. 1997, 2013 405

When the receiver gets the message, an application program calls the MAC
verification callable service. The callable service generates a MAC using the same
algorithm as the sender and either the single-length or double-length MAC
verification key, the single-length or double-length MAC generation key, or DATA
key, and the message text. The MACVER callable service compares the MAC it
generates with the one sent with the message and issues a return code that
indicates whether the MACs match. If the return code indicates that the MACs
match, the receiver can accept the message as genuine and unaltered. If the return
code indicates that the MACs do not match, the receiver can assume that the
message is either bogus or has been altered. The newly computed MAC is not
revealed outside the cryptographic feature.

In a similar manner, MACs can be used to ensure the integrity of data stored on
the system or on removable media, such as tape.

Secure use of the MAC generation and MAC verification services requires the use
of MAC and MACVER keys in these services, respectively. To accomplish this, the
originator of the message generates a MAC/MACVER key pair, uses the MAC key
in the MAC generation service, and exports the MACVER key to the receiver. The
originator of the message enforces key separation on the link by encrypting the
MACVER key under a transport key that is not an NOCV key before exporting the
key to the receiver. With this type of key separation enforced, the receiver can only
receive a MACVER key and can use only this key in the MAC verification service.
This ensures that the receiver cannot alter the message and produce a valid MAC
with the altered message. These security features are not present if DATA keys are
used in the MAC generation service, or if DATA or MAC keys are used in the
MAC verification service.

By using MACs, you get the following benefits:
v For data transmitted over a network, you can validate the authenticity of the

message as well as ensure that the data has not been altered during
transmission. For example, an active eavesdropper can tap into a transmission
line, and interject bogus messages or alter sensitive data being transmitted. If the
data is accompanied by a MAC, the recipient can use a callable service to detect
whether the data has been altered. Since both the sender and receiver share a
secret key, the receiver can use a callable service that calculates a MAC on the
received message and compares it to the MAC transmitted with the message. If
the comparison is equal, the message may be accepted as unaltered.
Furthermore, since the shared key is secret, when a MAC is verified it can be
assumed that the sender was, in fact, the other person who knew the secret key.

v For data stored on tape or DASD, you can ensure that the data read back onto
the system was the same as the data written onto the tape or DASD. For
example, someone might be able to bypass access controls. Such an access might
escape the notice of auditors. However, if a MAC is stored with the data, and
verified when the data is read, you can detect alterations to the data.

How Hashing Functions Are Used
Hashing functions include the MDC and one-way hash. You need to hash text
before submitting it to digital signature services (see Chapter 9, “Using Digital
Signatures,” on page 545).

How MDCs Are Used
When a message is sent, an application program can generate a modification
detection code for it using the MDC generation callable service. The service computes

406 z/OS ICSF Application Programmer's Guide

the modification detection code, a 128-bit value, using a one-way cryptographic
function and the message text (which itself may be in clear or encrypted form).
The originator of the message ensures that the MDC is transmitted with integrity
to the intended receiver of the message. For example, the MDC could be published
in a reliable source of public information.

When the receiver gets the message, an application program calls the MDC callable
service. The callable service generates an MDC by using the same one-way
cryptographic function and the message text. The application program can
compare the new MDC with the one generated by the originator of the message. If
the MDCs match, the receiver knows that the message was not altered.

In a similar manner, MDCs can be used to ensure the integrity of data stored on
the system or on removable media, such as tape.

By using MDCs, you get the following benefits:
v For data transmitted over a network between locations that do not share a

secret key, you can ensure that the data has not been altered during
transmission. It is easy to compute an MDC for specific data, yet hard to find
data that will result in a given MDC. In effect, the problem of ensuring the
integrity of a large file is reduced to ensuring the integrity of a 128-bit value.

v For data stored on tape or DASD, you can ensure that the data read back onto
the system was the same as the data written onto the tape or DASD. Once an
MDC has been established for a file, the MDC generation callable service can be
run at any later time on the file. The resulting MDC can be compared with the
stored MDC to detect deliberate or inadvertent modification.

SHA-1 is a FIPS standard required for DSS. MD5 is a hashing algorithm used to
derive Message Digests in Digital Signature applications.

HMAC Generate (CSNBHMG or CSNBHMG1 and CSNEHMG or
CSNEHMG1)

Use the HMAC generate callable service to generate a keyed hash message
authentication code (MAC) for the text string provided as input.

The callable service names for AMODE(64) are CSNEHMG and CSFEHMG1.

Choosing Between CSNBHMG and CSNBHMG1
CSNBHMG and CSNBHMG1 provide identical functions. When choosing which
service to use, consider the following:
v CSNBHMG requires the application-supplied text to reside in the caller’s

primary address space.
v CSNBHMG1 allows the application-supplied text to reside either in the caller’s

primary address space or in a data space. This can allow you to process more
data with one call. For CSNBHMG1, text_id_in is an access list entry token
(ALET) parameter of the data space containing the application-supplied text.

Format
CALL CSNBHMG(

return_code,
reason_code,
exit_data_length,
exit_data,

Chapter 7. Verifying Data Integrity and Authenticating Messages 407

rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
text_length,
text,
chaining_vector_length,
chaining_vector,
mac_length,
mac)

CALL CSNBHMG1(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
text_length,
text,
chaining_vector_length,
chaining_vector,
mac_length,
mac,
text_id_in)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

HMAC Generate

408 z/OS ICSF Application Programmer's Guide

The data that is passed to the installation exit.

rule_array_count

Direction Type

Output Integer

The number of keywords you supplied in the rule_array parameter. The value
may be 2 or 3.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. The
following table lists the keywords. Each keyword is left-justified in 8-byte
fields and padded on the right with blanks. All keywords must be in
contiguous storage.

Table 155. Keywords for HMAC Generate Control Information

Keyword Meaning

Token algorithm (One required)

HMAC Specifies the HMAC algorithm to be used to generate the
MAC.

Hash method (One required)

SHA-1 Specifies the FIPS-198 HMAC procedure using the SHA-1
hash method, a symmetric key and text to produce a 20-byte
(160-bit) MAC.

SHA-224 Specifies the FIPS-198 HMAC procedure using the SHA-224
hash method, a symmetric key and text to produce a 28-byte
(224-bit) MAC.

SHA-256 Specifies the FIPS-198 HMAC procedure using the SHA-256
hash method, a symmetric key and text to produce a 32-byte
(256-bit) MAC.

SHA-384 Specifies the FIPS-198 HMAC procedure using the SHA-384
hash method, a symmetric key and text to produce a 48-byte
(384-bit) MAC.

SHA-512 Specifies the FIPS-198 HMAC procedure using the SHA-512
hash method, a symmetric key and text to produce a 64-byte
(512-bit) MAC.

Segmenting Control (One optional)

FIRST First call, this is the first segment of data from the
application program.

LAST Last call; this is the last data segment.

MIDDLE Middle call; this is an intermediate data segment.

ONLY Only call; segmenting is not employed by the application
program. This is the default value.

key_identifier_length

HMAC Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 409

Direction Type

Input Integer

The length of the key_identifier parameter. The maximum value is 725.

key_identifier

Direction Type

Input Integer

The 64-byte label or internal token of an encrypted HMAC key.

text_length

Direction Type

Input Integer

The length of the text you supply in the text parameter. The maximum length
of text is 214783647 bytes. For FIRST and MIDDLE calls, the text_length must be
a multiple of 64 for SHA-1, SHA-224 and SHA-256 and a multiple of 128 for
SHA-384 and SHA-512 hash methods.

text

Direction Type

Input String

The application-supplied text for which the MAC is generated.

chaining_vector_length

Direction Type

Input/Output Integer

The length of the chaining_vector in bytes. The value must be 128 bytes.

chaining_vector

Direction Type

Input/Output String

An 128-byte string that ICSF uses as a system work area. Your application
program must not change the data in this string. The chaining vector permits
data to be chained from one invocation call to another.

On the first call, initialize this parameter as binary zeros.

mac_length

Direction Type

Input/Output Integer

The length of the mac parameter in bytes. This parameter is updated to the
actual length of the mac parameter on output. The minimum value is 4, and
the maximum value is 64.

HMAC Generate

410 z/OS ICSF Application Programmer's Guide

mac

Direction Type

Output String

The field in which the callable service returns the MAC value if the
segmenting rule is ONLY or LAST.

text_id_in

Direction Type

Input Integer

For CSNBHMG1 only, the ALET of the text for which the MAC is generated.

Access Control Points
This table lists the access control points in the domain role that control the function
for this service.

Table 156. HMAC Generate Access Control Points

Hash method Access control point

SHA-1 HMAC Generate - SHA-1

SHA-224 HMAC Generate - SHA-224

SHA-256 HMAC Generate - SHA-256

SHA-384 HMAC Generate - SHA-384

SHA-512 HMAC Generate - SHA-512

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 157. HMAC generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

This service is not supported.

Crypto Express3
Coprocessor

This service is not supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor HMAC key support requires the Nov. 2010

or later licensed internal code (LIC).

HMAC Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 411

Table 157. HMAC generate required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

HMAC Verify (CSNBHMV or CSNBHMV1 and CSNEHMV or CSNEHMV1)
Use the HMAC verify callable service to verify a keyed hash message
authentication code (MAC) for the text string provided as input.

The callable service names for AMODE(64) are CSNEHMV and CSFEHMV1.

Choosing Between CSNBHMV and CSNBHMV1
CSNBHMV and CSNBHMV1 provide identical functions. When choosing which
service to use, consider the following:
v CSNBHMV requires the application-supplied text to reside in the caller’s

primary address space.
v CSNBHMV1 allows the application-supplied text to reside either in the caller’s

primary address space or in a data space. This can allow you to process more
data with one call. For CSNBHMV1, text_id_in is an access list entry token
(ALET) parameter of the data space containing the application-supplied text.

Format
CALL CSNBHMV(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
text_length,
text,
chaining_vector_length,
chaining_vector,
mac_length,
mac)

CALL CSNBHMV1(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
text_length,
text,
chaining_vector_length,

HMAC Generate

412 z/OS ICSF Application Programmer's Guide

chaining_vector,
mac_length,
mac,
text_id_in)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value
may be 2 or 3.

rule_array

Direction Type

Input String

HMAC Verify

Chapter 7. Verifying Data Integrity and Authenticating Messages 413

Keywords that provide control information to the callable service. The
following table lists the keywords. Each keyword is left-justified in 8-byte
fields and padded on the right with blanks. All keywords must be in
contiguous storage.

Table 158. Keywords for HMAC Verify Control Information

Keyword Meaning

Token algorithm (One required)

HMAC Specifies the HMAC algorithm to be used to verify the
MAC.

Hash method (One required)

SHA-1 Specifies the FIPS-198 HMAC procedure using the SHA-1
hash method, a symmetric key and text to produce a 20-byte
(160-bit) MAC.

SHA-224 Specifies the FIPS-198 HMAC procedure using the SHA-224
hash method, a symmetric key and text to produce a 28-byte
(224-bit) MAC.

SHA-256 Specifies the FIPS-198 HMAC procedure using the SHA-256
hash method, a symmetric key and text to produce a 32-byte
(256-bit) MAC.

SHA-384 Specifies the FIPS-198 HMAC procedure using the SHA-384
hash method, a symmetric key and text to produce a 48-byte
(384-bit) MAC.

SHA-512 Specifies the FIPS-198 HMAC procedure using the SHA-512
hash method, a symmetric key and text to produce a 64-byte
(512-bit) MAC.

Segmenting Control (optional)

FIRST First call, this is the first segment of data from the
application program.

LAST Last call; this is the last data segment.

MIDDLE Middle call; this is an intermediate data segment.

ONLY Only call; segmenting is not employed by the application
program. This is the default value.

key_identifier_length

Direction Type

Input Integer

The length of the key_identifier parameter. The maximum value is 725.

key_identifier

Direction Type

Input/Output String

The 64-byte label or internal token of an encrypted HMAC or HMACVER key.

text_length

Direction Type

Input Integer

HMAC Verify

414 z/OS ICSF Application Programmer's Guide

The length of the text you supply in the text parameter. The maximum length
of text is 214783647 bytes. For FIRST and MIDDLE calls, the text_length must be
a multiple of 64 for SHA-1, SHA-224 and SHA-256 and a multiple of 128 for
SHA-384 and SHA-512 hash methods.

text

Direction Type

Input String

The application-supplied text for which the MAC is generated.

chaining_vector_length

Direction Type

Input/Output Integer

The length of the chaining_vector in bytes. The value must be 128 bytes.

chaining_vector

Direction Type

Input/Output String

An 128-byte string that ICSF uses as a system work area. Your application
program must not change the data in this string. The chaining vector permits
data to be chained from one invocation call to another.

On the first call, initialize this parameter as binary zeros.

mac_length

Direction Type

Input Integer

The length of the mac parameter in bytes. The maximum value is 64.

mac

Direction Type

Input String

The field that contains the MAC value you want to verify.

text_id_in

Direction Type

Input Integer

For CSNBHMV1 only, the ALET of the text for which the MAC is generated.

Access Control Points
This table lists the access control points in the domain role that control the function
for this service.

HMAC Verify

Chapter 7. Verifying Data Integrity and Authenticating Messages 415

Table 159. HMAC Verify Access Control Points

Hash method Access control point

SHA-1 HMAC Verify - SHA-1

SHA-224 HMAC Verify - SHA-224

SHA-256 HMAC Verify - SHA-256

SHA-384 HMAC Verify - SHA-384

SHA-512 HMAC Verify - SHA-512

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 160. HMAC generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

This service is not supported.

Crypto Express3
Coprocessor

This service is not supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor HMAC key support requires the Nov. 2010

or later licensed internal code (LIC).

IBM zEnterprise EC12 Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

MAC Generate (CSNBMGN or CSNBMGN1 and CSNEMGN or
CSNEMGN1)

Use the MAC generate callable service to generate a 4-, 6-, or 8-byte message
authentication code (MAC) for an application-supplied text string. You can specify
that the callable service uses either the ANSI X9.9-1 procedure or the ANSI X9.19
optional double key MAC procedure to compute the MAC. For the ANSI X9.9-1
procedure you identify either a MAC generate key or a DATA key, and the
message text. For the ANSI X9.19 optional double key MAC procedure, you
identify a double-length MAC key and the message text.

The MAC generate callable service also supports the padding rules specified in the
EMV Specification and ISO 16609. For the EMV MAC procedure, you identify a

HMAC Verify

416 z/OS ICSF Application Programmer's Guide

||

||

||

||

||

||

||
|

single- or double-length MAC key and the message text. For the ISO 16609
procedure you identify a double-length MAC or DATA key and the message text.

Choosing Between CSNBMGN and CSNBMGN1
CSNBMGN and CSNBMGN1 provide identical functions. When choosing which
service to use, consider the following:
v CSNBMGN requires the application-supplied text to reside in the caller's

primary address space. Also, a program using CSNBMGN adheres to the IBM
Common Cryptographic Architecture: Cryptographic Application Programming
Interface.
The callable service name for AMODE(64) invocation is CSNEMGN.

v CSNBMGN1 allows the application-supplied text to reside either in the caller's
primary address space or in a data space. This can allow you to process more
data with one call. However, a program using CSNBMGN1 does not adhere to
the IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface, and may need to be modified before it can run with
other cryptographic products that follow this programming interface.
The callable service name for AMODE(64) invocation is CSNEMGN1.
For CSNBMGN1, text_id_in is an access list entry token (ALET) parameter of the
data space containing the application-supplied text.

Format
CALL CSNBMGN(

return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector,
mac)

CALL CSNBMGN1(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector,
mac,
text_id_in)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

MAC Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 417

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

key_identifier

Direction Type

Input/Output String

The 64-byte key label or internal key token that identifies a single or
double-length MAC generate key, a DATAM key, or a single-length DATA key.
The type of key depends on the MAC process rule in the rule_array parameter.

text_length

Direction Type

Input Integer

The length of the text you supply in the text parameter. The maximum length
of text is 214783647 bytes. If the text_length is not a multiple of 8 bytes and if
the ONLY or LAST keyword of the rule_array parameter is called, the text is
padded in accordance with the processing rule specified.

Note: The MAXLEN value may still be specified in the options data set, but
only the maximum value limit will be enforced.

text

Direction Type

Input String

The application-supplied text for which the MAC is generated.

rule_array_count

MAC Generate

418 z/OS ICSF Application Programmer's Guide

Direction Type

Input Integer

The number of keywords specified in the rule_array parameter. The value can
be 0, 1, 2, or 3.

rule_array

Direction Type

Input Character String

Zero to three keywords that provide control information to the callable service.
The keywords are shown in Table 161. The keywords must be in 24 bytes of
contiguous storage with each of the keywords left-justified in its own 8-byte
location and padded on the right with blanks. For example,
’X9.9-1 MIDDLE MACLEN4 ’

The order of the rule_array keywords is not fixed.

You can specify one of the MAC processing rules and then choose one of the
segmenting control keywords and one of the MAC length keywords.

Table 161. Keywords for MAC generate Control Information

Keyword Meaning

MAC Process Rules (optional)

EMVMAC EMV padding rule with a single-length MAC key. The
key_identifier parameter must identify a single-length MAC
or a single-length DATA key. The text is always padded with
1 to 8 bytes so that the resulting text length is a multiple of
8 bytes. The first pad character is X'80'. The remaining 0 to 7
pad characters are X'00'.

EMVMACD EMV padding rule with a double-length MAC key. The
key_identifier parameter must identify a double-length MAC
key. The padding rules are the same as for EMVMAC.

X9.19OPT ANSI X9.19 optional double key MAC procedure. The
key_identifier parameter must identify a double-length MAC
key. The padding rules are the same as for X9.9-1.

X9.9-1 ANSI X9.9-1 and X9.19 basic procedure. The key_identifier
parameter must identify a single-length MAC or a
single-length DATA key. X9.9-1 causes the MAC to be
computed from all of the data. The text is padded only if the
text length is not a multiple of 8 bytes. If padding is
required, the pad character X'00' is used. This is the default
value.

TDES-MAC ISO 16609 procedure. The key_identifier must identify a
double-length MAC or a double-length DATA key. The text
is padded only if the text length is not a multiple of 8 bytes.

Segmenting Control (optional)

FIRST First call, this is the first segment of data from the
application program.

LAST Last call; this is the last data segment.

MIDDLE Middle call; this is an intermediate data segment.

MAC Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 419

Table 161. Keywords for MAC generate Control Information (continued)

Keyword Meaning

ONLY Only call; segmenting is not employed by the application
program. This is the default value.

MAC Length and Presentation (optional)

HEX-8 Generates a 4-byte MAC value and presents it as 8
hexadecimal characters.

HEX-9 Generates a 4-byte MAC value and presents it as 2 groups
of 4 hexadecimal characters with a space between the
groups.

MACLEN4 Generates a 4-byte MAC value. This is the default value.

MACLEN6 Generates a 6-byte MAC value.

MACLEN8 Generates an 8-byte MAC value.

chaining_vector

Direction Type

Input/Output String

An 18-byte string that ICSF uses as a system work area. Your application
program must not change the data in this string. The chaining vector permits
data to be chained from one invocation call to another.

On the first call, initialize this parameter as binary zeros.

mac

Direction Type

Output String

The 8-byte or 9-byte field in which the callable service returns the MAC value
if the segmenting rule is ONLY or LAST. Allocate an 8-byte field for MAC
values of 4 bytes, 6 bytes, 8 bytes, or HEX-8. Allocate a 9-byte MAC field if
you specify HEX-9 in the rule_array parameter.

text_id_in

Direction Type

Input Integer

For CSNBMGN1/CSNEMGN1 only, the ALET of the text for which the MAC
is generated.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Access Control Point
The MAC Generate access control point controls the function of this service.

MAC Generate

420 z/OS ICSF Application Programmer's Guide

|

|
|

Required Hardware
The following table lists the required cryptographic hardware for each server type
and describes restrictions for this callable service.

Table 162. MAC generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

TDES-MAC not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC
IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Related Information
For more information about MAC processing rules and segmenting control, refer to
IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface Reference.

The MAC verification callable service is described in “MAC Verify (CSNBMVR or
CSNBMVR1 and CSNEMVR or CSNEMVR1).”

MAC Verify (CSNBMVR or CSNBMVR1 and CSNEMVR or CSNEMVR1)
Use the MAC verify callable service to verify a 4-, 6-, or 8-byte message
authentication code (MAC) for an application-supplied text string. You can specify
that the callable service uses either the ANSI X9.9-1 procedure or the ANSI X9.19
optional double key MAC procedure to compute the MAC. For the ANSI X9.9-1
procedure you identify either a MAC verify key, a MAC generation key, or a
DATA key, and the message text. For the ANSI X9.19 optional double key MAC
procedure, you identify either a double-length MAC verify key or a double-length
MAC generation key and the message text. The cryptographic feature compares the
generated MAC with the one sent with the message. A return code indicates
whether the MACs are the same. If the MACs are the same, the receiver knows the
message was not altered. The generated MAC never appears in storage is not
revealed outside the cryptographic feature.

The MAC verify callable service also supports the padding rules specified in the
EMV Specification and ISO 16609. For the EMV MAC procedure, you identify a

MAC Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 421

single- or double-length MAC key and the message text. For the ISO 16609
procedure you identify a double-length MAC or DATA key and the message text.

Choosing Between CSNBMVR and CSNBMVR1
CSNBMVR and CSNBMVR1 provide identical functions. When choosing which
service to use, consider the following:
v CSNBMVR requires the application-supplied text to reside in the caller's

primary address space. Also, a program using CSNBMVR adheres to the IBM
Common Cryptographic Architecture: Cryptographic Application Programming
Interface.
The callable service name for AMODE(64) invocation is CSNEMVR.

v CSNBMVR1 allows the application-supplied text to reside either in the caller's
primary address space or in a data space. This can allow you to verify more
data with one call. However, a program using CSNBMVR1 does not adhere to
the IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface , and may need to be modified before it can run with
other cryptographic products that follow this programming interface.
The callable service name for AMODE(64) invocation is CSNEMVR1.
For CSNBMVR1, text_id_in is an access list entry token (ALET) parameter of the
data space containing the application-supplied text.

Format
CALL CSNBMVR(

return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector,
mac)

CALL CSNBMVR1(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector,
mac,
text_id_in)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

MAC Verify

422 z/OS ICSF Application Programmer's Guide

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

key_identifier

Direction Type

Input/Output String

The 64-byte key label or internal key token that identifies a single or
double-length MAC verify key, a single or double-length MAC verify key, a
single or double length MAC generation key, a DATAM or DATAMV key, or a
single-length DATA key. The type of key depends on the MAC process rule in
the rule_array parameter.

text_length

Direction Type

Input Integer

The length of the text you supply in the text parameter. The maximum length
of text is 214783647 bytes. If the text_length parameter is not a multiple of 8
bytes and if the ONLY or LAST keyword of the rule_array parameter is called,
the text is padded in accordance with the processing rule specified.

Note: The MAXLEN value may still be specified in the options data set, but
only the maximum value limit will be enforced (2147483647).

text

Direction Type

Input String

MAC Verify

Chapter 7. Verifying Data Integrity and Authenticating Messages 423

The application-supplied text for which the MAC is generated.

rule_array_count

Direction Type

Input Integer

The number of keywords specified in the rule_array parameter. The value can
be 0, 1, 2, or 3.

rule_array

Direction Type

Input String

Zero to three keywords that provide control information to the callable service.
The keywords are shown in Table 163. The keywords must be in 24 bytes of
contiguous storage with each of the keywords left-justified in its own 8-byte
location and padded on the right with blanks. For example,
’X9.9-1 MIDDLE MACLEN4 ’

The order of the rule_array keywords is not fixed.

You can specify one of the MAC processing rules and then choose one of the
segmenting control keywords and one of the MAC length keywords.

Table 163. Keywords for MAC verify Control Information

Keyword Meaning

MAC Process Rules (optional)

EMVMAC EMV padding rule with a single-length MAC key. The
key_identifier parameter must identify a single-length MAC,
MACVER, or DATA key. The text is always padded with 1 to
8 bytes so that the resulting text length is a multiple of 8
bytes. The first pad character is X'80'. The remaining 0 to 7
pad characters are X'00'.

EMVMACD EMV padding rule with a double-length MAC key. The
key_identifier parameter must identify a double-length MAC
or MACVER key. The padding rules are the same as for
EMVMAC.

X9.19OPT ANSI X9.9-1 and X9.19 basic procedure. The key_identifier
parameter must identify a single-length MAC, MACVER, or
DATA key. X9.9-1 causes the MAC to be computed from all
of the data. The text is padded only if the text length is not a
multiple of 8 bytes. If padding is required, the pad character
X'00' is used. This is the default value.

X9.9-1 ANSI X9.9-1 and X9.19 basic procedure. The key_identifier
parameter must identify a single-length MAC, or
single-length DATA key. X9.9-1 causes the MAC to be
computed from all of the data. The text is padded only if the
text length is not a multiple of 8 bytes. If padding is
required, the pad character X'00' is used. This is the default
value.

TDES-MAC ISO 16609 procedure. The key_identifier must identify a
double-length MAC or a double-length DATA key. The text is
padded only if the text length is not a multiple of 8 bytes.

MAC Verify

424 z/OS ICSF Application Programmer's Guide

Table 163. Keywords for MAC verify Control Information (continued)

Keyword Meaning

Segmenting Control (optional)

FIRST First call; this is the first segment of data from the application
program.

LAST Last call; this is the last data segment.

MIDDLE Middle call; this is an intermediate data segment.

ONLY Only call; the application program does not employ
segmenting. This is the default value.

MAC Length and Presentation (optional)

HEX-8 Verifies a 4-byte MAC value that is represented as 8
hexadecimal characters.

HEX-9 Verifies a 4-byte MAC value that is represented as 2 groups
of 4 hexadecimal characters with a space character between
the groups.

MACLEN4 Verifies a 4-byte MAC value. This is the default value.

MACLEN6 Verifies a 6-byte MAC value.

MACLEN8 Verifies an 8-byte MAC value.

chaining_vector

Direction Type

Input/Output String

An 18-byte string that ICSF uses as a system work area. Your application
program must not change the data in this string. The chaining vector permits
data to be chained from one invocation call to another.

On the first call, initialize this parameter to binary zeros.

mac

Direction Type

Output String

The 8- or 9-byte field that contains the MAC value you want to verify. The
value in the field must be left-justified and padded with zeros. If you specified
the X'09' keyword in the rule_array parameter, the input MAC is 9 bytes.

text_id_in

Direction Type

Input Integer

For CSNBMVR1/CSNEMVR1 only, the ALET of the text for which the MAC is
to be verified.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

MAC Verify

Chapter 7. Verifying Data Integrity and Authenticating Messages 425

To verify a MAC in one call, specify the ONLY keyword on the segmenting rule
keyword for the rule_array parameter. For two or more calls, specify the FIRST
keyword for the first input block, MIDDLE for intermediate blocks (if any), and
LAST for the last block.

For a given text string, the MAC resulting from the verification process is the same
regardless of how the text is segmented, or how it was segmented when the
original MAC was generated.

Access Control Point
The MAC Verify access control point controls the function of this service.

Required Hardware
The following table lists the required cryptographic hardware for each server type
and describes restrictions for this callable service.

Table 164. MAC verify required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

TDES-MAC not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC
IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Related Information
For more information about MAC processing rules and segmenting control, refer to
IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface Reference.

The MAC generation callable service is described in “MAC Generate (CSNBMGN
or CSNBMGN1 and CSNEMGN or CSNEMGN1)” on page 416.

MAC Verify

426 z/OS ICSF Application Programmer's Guide

MDC Generate (CSNBMDG or CSNBMDG1 and CSNEMDG or
CSNEMDG1)

A modification detection code (MDC) can be used to provide a form of support for
data integrity.

Use the MDC generate callable service to generate a 128-bit modification detection
code (MDC) for an application-supplied text string.

The returned MDC value should be securely stored and/or sent to another user. To
validate the integrity of the text string at a later time, the MDC generate callable
service is again used to generate a 128-bit MDC. The new MDC value is compared
with the original MDC value. If the values are equal, the text is accepted as
unchanged.

Choosing Between CSNBMDG and CSNBMDG1
CSNBMDG and CSNBMDG1 provide identical functions. When choosing which
service to use, consider the following:
v CSNBMDG requires the application-supplied text to reside in the caller's

primary address space. Also, a program using CSNBMDG adheres to the IBM
Common Cryptographic Architecture: Cryptographic Application Programming
Interface.
The callable service name for AMODE(64) invocation is CSNEMDG.

v CSNBMDG1 allows the application-supplied text to reside either in the caller's
primary address space or in a data space. This can allow you to process more
data with one call. However, a program using CSNBMDG1 does not adhere to
the IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface and may need to be modified before it can run with
other cryptographic products that follow this programming interface.
The callable service name for AMODE(64) invocation is CSNEMDG1.
For CSNBMDG1, text_id_in parameter specifies the access list entry token
(ALET) for the data space containing the application-supplied text.

Format
CALL CSNBMDG(

return_code,
reason_code,
exit_data_length,
exit_data,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector,
mdc)

CALL CSNBMDG1(
return_code,
reason_code,
exit_data_length,
exit_data,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector,
mdc,
text_id_in)

MDC Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 427

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

text_length

Direction Type

Input Integer

The length of the text you supply in the text parameter. The maximum length
of text is 214783647 bytes.

Note: The MAXLEN value may still be specified in the options data set, but
only the maximum value limit will be enforced (2147483647).

Additional restrictions on length of the text depend on whether padding of the
text is requested, and on the segmenting control used.
v When padding is requested (by specifying a process rule of PADMDC-2 or

PADMDC-4 in the rule_array parameter), a text length of 0 is valid for any
segment control specified in the rule_array parameter (FIRST, MIDDLE,
LAST, or ONLY). When LAST or ONLY is specified, the supplied text will be
padded with X'FF's and a padding count in the last byte to bring the total
text length to the next multiple of 8 that is greater than or equal to 16,

MDC Generate

428 z/OS ICSF Application Programmer's Guide

v When no padding is requested (by specifying a process rule of MDC-2 or
MDC-4), the total length of the text provided (over a single or segmented
calls) must be at least 16 bytes, and a multiple of 8.
For segmented calls with no padding, text length of 0 is valid on any of the
calls provided the total length over the segmented calls is at least 16 and a
multiple of 8.
For a single call (that is, segment control is ONLY) with no padding, the
length the text provided must be at least 16, and a multiple of 8.

text

Direction Type

Input String

The application-supplied text for which the MDC is generated.

rule_array_count

Direction Type

Input Integer

The number of keywords specified in the rule_array parameter. This value must
be 2.

rule_array

Direction Type

Input Character String

The two keywords that provide control information to the callable service are
shown in Table 165. The two keywords must be in 16 bytes of contiguous
storage with each of the two keywords left-justified in its own 8-byte location
and padded on the right with blanks. For example,
’MDC-2 FIRST ’

Choose one of the MDC process rule control keywords and one of the
segmenting control keywords from the following table.

Table 165. Keywords for MDC Generate Control Information

Keyword Meaning

MDC Process Rules (required)

MDC-2 MDC-2 specifies two encipherments per 8 bytes of input text
and no padding of the input text.

MDC-4 MDC-4 specifies four encipherments per 8 bytes of input text
and no padding of the input text.

PADMDC-2 PADMDC-2 specifies two encipherments per 8 bytes of input
text and padding of the input text.

When the segment rule specifies ONLY or LAST, the input
text is padded with X'FF's and a padding count in the last
byte to bring the total text length to the next even multiple of
8 that is greater than, or equal to, 16.

MDC Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 429

Table 165. Keywords for MDC Generate Control Information (continued)

Keyword Meaning

PADMDC-4 PADMDC-4 specifies four encipherments per 8 bytes of input
text and padding of the input text.

When the segment rule specifies ONLY or LAST, the input
text is padded with X'FF's and a padding count in the last
byte to bring the total text length to the next even multiple of
8 that is greater than, or equal to, 16.

Segmenting Control (required)

FIRST First call; this is the first segment of data from the application
program.

LAST Last call; this is the last data segment.

MIDDLE Middle call; this is an intermediate data segment.

ONLY Only call; segmenting is not employed by the application
program.

chaining_vector

Direction Type

Input/Output String

An 18-byte string that ICSF uses as a system work area. Your application
program must not change the data in this string. The chaining vector permits
data to be chained from one invocation call to another.

On the first call, initialize this parameter as binary zeros.

mdc

Direction Type

Input/Output String

A 16-byte field in which the callable service returns the MDC value when the
segmenting rule is ONLY or LAST. When the segmenting rule is FIRST or
MIDDLE, the value returned in this field is an intermediate MDC value that
will be used as input for a subsequent call and must not be changed by the
application program.

text_id_in

Direction Type

Input Integer

For CSNBMDG1/CSNEMDG1 only, the ALET for the data space containing the
text for which the MDC is to be generated.

Usage Notes
To calculate an MDC in one call, specify the ONLY keyword for segmenting
control in the rule_array parameter. For more than one call, specify the FIRST
keyword for the first input block, the MIDDLE keyword for any intermediate
blocks, and the LAST keyword for the last block. For a given text string, the
resulting MDC is the same whether the text is segmented or not.

MDC Generate

430 z/OS ICSF Application Programmer's Guide

The two versions of MDC calculation (with two or four encipherments per 8 bytes
of input text) allow the caller to trade a performance improvement for a decrease
in security. Since 2 encipherments create results different from the results of 4
encipherments, ensure that you use the same number of encipherments to verify
the MDC value.

Required Hardware
The following table lists the required cryptographic hardware for each server type
and describes restrictions for this callable service.

Table 166. MDC generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

CP Assist for
Cryptographic
Functions

IBM System z9 EC

IBM System z9 BC

CP Assist for
Cryptographic
Functions

IBM System z10 EC
IBM System z10 BC

CP Assist for
Cryptographic
Functions

IBM zEnterprise 196

IBM zEnterprise 114

CP Assist for
Cryptographic
Functions

IBM zEnterprise EC12

IBM zEnterprise BC12

CP Assist for
Cryptographic
Functions

One-Way Hash Generate (CSNBOWH or CSNBOWH1 and CSNEOWH or
CSNEOWH1)

Use the one-way hash generate callable service to generate a one-way hash on
specified text. This service supports the following methods:
v MD5 - software only
v SHA-1
v RIPEMD-160 - software only
v SHA-224
v SHA-256
v SHA-384
v SHA-512

The callable service names for AMODE(64) invocation are CSNEOWH and
CSNEOWH1.

Format
CALL CSNBOWH(

return_code,
reason_code,

MDC Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 431

exit_data_length,
exit_data,
rule_array_count,
rule_array,
text_length,
text,
chaining_vector_length,
chaining_vector,
hash_length,
hash)

CALL CSNBOWH1(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
text_length,
text,
chaining_vector_length,
chaining_vector,
hash_length,
hash,
text_id_in)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

One-Way Hash Generate

432 z/OS ICSF Application Programmer's Guide

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be 1, 2 or 3.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service are listed in
Table 167. The optional chaining flag keyword indicates whether calls to this
service are chained together logically to overcome buffer size limitations. Each
keyword is left-justified in an 8-byte field and padded on the right with
blanks. All keywords must be in contiguous storage.

Table 167. Keywords for One-Way Hash Generate Rule Array Control Information

Keyword Meaning

Hash Method (required)

MD5 Hash algorithm is MD5 algorithm. Use this hash method for
PKCS-1.0 and PKCS-1.1. Length of hash generated is 16 bytes.

MD5-LG Hash algorithm is similar to the MD5 algorithm. Use this hash
method for PKCS-1.0 and PKCS-1.1. Length of hash generated is
16 bytes. Legacy hash values from release HCR7751 and lower
prior to APAR OA33657 will be generated for verification
purposes with previously archived hash values.

RPMD-LG Hash algorithm is similar to the RIPEMD-160. Length of hash
generated is 20 bytes. Legacy hash values from release HCR7751
and lower prior to APAR OA33657 will be generated for
verification purposes with previously archived hash values.

RPMD-160 Hash algorithm is RIPEMD-160. Length of hash generated is 20
bytes.

SHA-1 Hash algorithm is SHA-1 algorithm. Use this hash method for
DSS. Length of hash generated is 20 bytes.

SHA-224 Hash algorithm is SHA-256 algorithm. Length of hash generated
is 28 bytes.

SHA-256 Hash algorithm is SHA-256 algorithm. Length of hash generated
is 32 bytes.

SHA-384 Hash algorithm is SHA-384 algorithm. Length of hash generated
is 48 bytes.

SHA-512 Hash algorithm is SHA-512 algorithm. Length of hash generated
is 64 bytes.

Chaining Flag (optional)

FIRST Specifies this is the first call in a series of chained calls.
Intermediate results are stored in the hash field.

LAST Specifies this is the last call in a series of chained calls.

One-Way Hash Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 433

|
|

Table 167. Keywords for One-Way Hash Generate Rule Array Control
Information (continued)

Keyword Meaning

MIDDLE Specifies this is a middle call in a series of chained calls.
Intermediate results are stored in the hash field.

ONLY Specifies this is the only call and the call is not chained. This is
the default.

text_length

Direction Type

Input Integer

The length of the text parameter in bytes.

Note: If you specify the FIRST or MIDDLE keyword, then the text length must
be a multiple of the blocksize of the hash method. For MD5, RPMD-160,
SHA-1, SHA-224 and SHA-256, this is a multiple of 64 bytes. For SHA-384 and
SHA-512, this is a multiple of 128 bytes.

For ONLY and LAST, this service performs the required padding according to
the algorithm specified.

text

Direction Type

Input String

The application-supplied text on which this service performs the hash.

chaining_vector_length

Direction Type

Input Integer

The byte length of the chaining_vector parameter. This must be 128 bytes.

chaining_vector

Direction Type

Input/Output String

This field is a 128-byte work area. Your application must not change the data
in this string. The chaining vector permits chaining data from one call to
another.

hash_length

Direction Type

Input Integer

The length of the supplied hash field in bytes.

Note: For SHA-1 and RPMD-160 this must be at least 20 bytes; for MD5 this
must be at least 16 bytes. For SHA-224 and SHA-256, the length must be at

One-Way Hash Generate

434 z/OS ICSF Application Programmer's Guide

least 32 bytes long. Even though the length of the SHA-224 hash is less than
SHA-256, the extra bytes are used as a work area during the generation of the
hash value. The SHA-224 value is left-justified and padded with zeroes.

For SHA-384 and SHA-512, the length must be at least 64 bytes long. Even
though the length of the SHA-384 hash is less than SHA-512, the extra bytes
are used as a work area during the generation of the hash value. The SHA-384
value is left-justified and padded with zeroes.

hash

Direction Type

Input/Output String

This field contains the hash, left-justified. The processing of the rest of the field
depends on the implementation. If you specify the FIRST or MIDDLE
keyword, this field contains the intermediate hash value. Your application must
not change the data in this field between the sequence of FIRST, MIDDLE, and
LAST calls for a specific message.

text_id_in

Direction Type

Input Integer

For CSNBOWH1 only, the ALET for the data space containing the text for
which to generate the hash.

Usage Notes
Although MD5, SHA-1 and SHA-256 allow it, bit length text is not supported for
any hashing method.

If the CSF.CSFSERV.AUTH.CSFOWH.DISABLE SAF resource profile is defined in
the XFACILIT SAF resource class, no SAF authorization checks will be performed
against the CSFSERV class when using this service. If
CSF.CSFSERV.AUTH.CSFOWH.DISABLE is not defined, the SAF authorization
check will be performed. Disabling the SAF check may improve the performance
of your application.

Required Hardware
The following table lists the required cryptographic hardware for each server type
and describes restrictions for this callable service.

Table 168. One-way hash generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

CP Assist for
Cryptographic
Functions

SHA-1 requires CPACF

Keywords SHA-224, SHA-256, SHA-384 and
SHA-512 are not supported.

IBM System z9 EC

IBM System z9 BC

CP Assist for
Cryptographic
Functions

Keywords SHA-384 and SHA-512 are not
supported

One-Way Hash Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 435

|
|
|
|
|
|

|
|

|
|

Table 168. One-way hash generate required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z10 EC
IBM System z10 BC

CP Assist for
Cryptographic
Functions

IBM zEnterprise 196

IBM zEnterprise 114

CP Assist for
Cryptographic
Functions

IBM zEnterprise EC12

IBM zEnterprise BC12

CP Assist for
Cryptographic
Functions

Symmetric MAC Generate (CSNBSMG or CSNBSMG1 and CSNESMG
or CSNESMG1)

Use the symmetric MAC generate callable service to generate a 96- or 128-bit
message authentication code (MAC) for an application-supplied text string using
an AES key.

The callable service names for AMODE(64) invocation are CSNESMG and
CSNESMG1.

Choosing Between CSNBSMG and CSNBSMG1 or CSNESMG
and CSNESMG1

CSNBSMG, CSNBSMG1, CSNESMG, and CSNESMG1 provide identical functions.
When choosing which service to use, consider this:
v CSNBSMG and CSNESMG require the text to reside in the caller’s primary

address space. Also, a program using CSNBSMG adheres to the IBM Common
Cryptographic Architecture: Cryptographic Application Programming Interface.

v CSNBSMG1 and CSNESMG1 allow the text to reside either in the caller’s
primary address space or in a data space. This can allow you to decipher more
data with one call. However, a program using CSNBSMG1 and CSNESMG1 do
not adhere to the IBM CCA: Cryptographic API and may need to be modified
prior to it running with other cryptographic products that follow this
programming interface.

For CSNBSMG1 and CSNESMG1, text_id_in is an access list entry token (ALET)
parameter of the data spaces containing the text.

Format
CALL CSNBSMG(

return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier_length,
key_identifier,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector_length,

One-Way Hash Generate

436 z/OS ICSF Application Programmer's Guide

chaining_vector,
reserved_data_length,
reserved_data,
mac_length,
mac)

CALL CSNBSMG1(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier_length,
key_identifier,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector_length,
chaining_vector,
reserved_data_length,
reserved_data,
mac_length,
mac,
text_id_in)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

Symmetric MAC Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 437

key_identifier_length

Direction Type

Input String

The length of the key_identifier parameter. For the KEY-CLR keyword, the
length is in bytes and includes only the value of the key length. The key length
value can be 16, 24, or 32. For the KEYIDENT keyword, the length must be 64.
For the KEY-DRV keyword, this is the length in bytes of the key material. The
length can be from 16 to 32 bytes.

key_identifier

Direction Type

Input String

For the KEY-CLR keyword, this specifies the clear AES key. The parameter
must be left justified. For the KEYIDENT keyword, this specifies an internal
clear AES token or the label name of a clear AES key in the CKDS. Normal
CKDS label name syntax is required. For the KEY-DRV keyword, this specifies
the key material from which to derive the 128-bit AES key.

text_length

Direction Type

Input Integer

The length of the text you supply in the text parameter. The maximum length
of text is 2147483647 bytes. If the text_length is not a multiple of 8 bytes and if
the ONLY or LAST keyword of the rule_array parameter is called, the text is
padded in accordance with the processing rule specified.

text

Direction Type

Input String

The application-supplied text for which the MAC is generated.

rule_array_count

Direction Type

Input Integer

The number of keywords specified in the rule_array parameter. The value can
be 1, 2, 3 or 4.

rule_array

Direction Type

Input Character String

This keyword provides control information to the callable service. The
keywords must be eight bytes of contiguous storage with the keyword
left-justified in its 8-byte location and padded on the right with blanks.

Symmetric MAC Generate

438 z/OS ICSF Application Programmer's Guide

|
|
|
|
|

|
|
|
|
|

You can specify one of the MAC processing rules and then choose one of the
segmenting control keywords and one of the MAC length keywords.

Table 169. Keywords for symmetric MAC generate control information

Keyword Meaning

Algorithm (required)

AES Specifies that the Advanced Encryption Standard (AES)
algorithm is to be used.

MAC processing rule (optional)

CBC-MAC CBC MAC with padding for any key length. This is the
default value.

XCBC-MAC AES-XCBC-MAC-96 and AES-XCBC-PRF-128 MAC
generation with padding for 128-bit keys.

Key rule (optional)

KEY-CLR This specifies that the key parameter contains a clear key
value. This is the default value.

KEYIDENT This specifies that the key_identifier field will be an internal
clear token or the label name of a clear key in the CKDS.
Normal CKDS label name syntax is required.

KEY-DRV This specifies that the key parameter contains up to 256 bits
of key material from which to derive a 128-bit AES key for
the XCBC-MAC operation. Only valid with XCBC-MAC.

Segmenting Control (optional)

FIRST First call, this is the first segment of data from the
application program.

LAST Last call; this is the last data segment.

MIDDLE Middle call; this is an intermediate data segment.

ONLY Only call; segmenting is not employed by the application
program. This is the default value.

chaining_vector_length

Direction Type

Input/Output Integer

The length of the chaining_vector parameter. On output, the actual length of the
chaining vector will be stored in the parameter.

chaining_vector

Direction Type

Input/Output String

This field is used as a system work area for the chaining vector. Your
application program must not change the data in this string. The chaining
vector holds the output chaining vector from the caller.

The mapping of the chaining_vector depends on the algorithm specified. For
AES, the chaining_vector field must be at least 36 bytes in length.

On the first call, initialize this parameter as binary zeros.

reserved_data_length

Symmetric MAC Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 439

||
|
|

|

Direction Type

Input Integer

Reserved for future use. Value must be zero.

reserved_data

Direction Type

Ignored String

Reserved for future use.

mac_length

Direction Type

Input Integer

The length in bytes of the MAC to be returned in the mac field. The allowable
values are 12 and 16 bytes.

mac

Direction Type

Output String

The 12-byte or 16-byte field in which the callable service returns the MAC
value if the segmenting rule is ONLY or LAST.

text_id_in

Direction Type

Input Integer

For CSNBSMG1 and CSNESMG1 only, the ALET of the text for which the
MAC is generated.

Usage notes
For the XCBC-MAC processing rule, the text_length can be 0 when specifying the
ONLY or LAST keyword. However, the last call should be preceded by a first or
middle call.

Required Hardware
The following table lists the required cryptographic hardware for each server type
and describes restrictions for this callable service.

Table 170. Symmetric MAC generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

CP Assist for
Cryptographic
Functions

Symmetric MAC Generate

440 z/OS ICSF Application Programmer's Guide

|

|
|
|

||

||
|
|

|

|
|

|
|

|
|
|

|

Table 170. Symmetric MAC generate required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z9 EC

IBM System z9 BC

CP Assist for
Cryptographic
Functions

IBM System z10 EC
IBM System z10 BC

CP Assist for
Cryptographic
Functions

IBM zEnterprise 196

IBM zEnterprise 114

CP Assist for
Cryptographic
Functions

IBM zEnterprise EC12

IBM zEnterprise BC12

CP Assist for
Cryptographic
Functions

Symmetric MAC Verify (CSNBSMV or CSNBSMV1 and CSNESMV or
CSNESMV1)

Use the symmetric MAC verify callable service to verify a 96- or 128-bit message
authentication code (MAC) for an application-supplied text string using an AES
key.

The callable service names for AMODE(64) invocation are CSNESMV and
CSNESMV1.

Choosing Between CSNBSMV and CSNBSMV1 or CSNESMV
and CSNESMV1

CSNBSMV, CSNBSMV1, CSNESMV, and CSNESMV1 provide identical functions.
When choosing which service to use, consider this:
v CSNBSMV and CSNESMV require the text to reside in the caller’s primary

address space. Also, a program using CSNBSMV adheres to the IBM Common
Cryptographic Architecture: Cryptographic Application Programming Interface.

v CSNBSMV1 and CSNESMV1 allow the text to reside either in the caller’s
primary address space or in a data space. This can allow you to decipher more
data with one call. However, a program using CSNBSMV1 and CSNESMV1 do
not adhere to the IBM CCA: Cryptographic API and may need to be modified
prior to it running with other cryptographic products that follow this
programming interface.

For CSNBSMV1 and CSNESMV1, text_id_in is an access list entry token (ALET)
parameter of the data spaces containing the text.

Format
CALL CSNBSMV(

return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier_length,
key_identifier,
text_length,

Symmetric MAC Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 441

|

||
|
|

|

|

|

|
|
|

|

|
|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

text,
rule_array_count,
rule_array,
chaining_vector_length,
chaining_vector,
reserved_data_length,
reserved_data,
mac_length,
mac)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

key_identifier_length

Direction Type

Input Integer

The length of the key_identifier parameter. For the KEY-CLR keyword, the
length is in bytes and includes only the value of the key length. The key length
value can be 16, 24, or 32. For the KEYIDENT keyword, the length must be 64.
For the KEY-DRV keyword, this is the length in bytes of the key material. The
length can be from 16 to 32 bytes.

key_identifier

Symmetric MAC Verify

442 z/OS ICSF Application Programmer's Guide

|
|
|
|
|

Direction Type

Input String

For the KEY-CLR keyword, this specifies the clear AES key. The parameter
must be left justified. For the KEYIDENT keyword, this specifies an internal
clear AES token or the label name of a clear AES key in the CKDS. Normal
CKDS label name syntax is required. For the KEY-DRV keyword, this specifies
the key material from which to derive the 128-bit AES key.

text_length

Direction Type

Input Integer

The length of the text you supply in the text parameter. The maximum length
of text is 2147483647 bytes. If the text_length parameter is not a multiple of 8
bytes and if the ONLY or LAST keyword of the rule_array parameter is called,
the text is padded in accordance with the processing rule specified.

text

Direction Type

Input String

The application-supplied text for which the MAC is verified.

rule_array_count

Direction Type

Input Integer

The number of keywords specified in the rule_array parameter. The value can
be 1, 2, 3 or 4.

rule_array

Direction Type

Input String

This keyword provides control information to the callable service. The
keywords must be eight bytes of contiguous storage with the keyword
left-justified in its 8-byte location and padded on the right with blanks.The
order of the rule_array keywords is not fixed.

You can specify one of the MAC processing rules and then choose one of the
segmenting control keywords and one of the MAC length keywords.

Table 171. Keywords for symmetric MAC verify control information

Keyword Meaning

Algorithm (required)

AES Specifies that the Advanced Encryption Standard (AES)
algorithm is to be used.

MAC processing rule (optional)

Symmetric MAC Verify

Chapter 7. Verifying Data Integrity and Authenticating Messages 443

|
|
|
|
|

Table 171. Keywords for symmetric MAC verify control information (continued)

Keyword Meaning

CBC-MAC CBC MAC with padding for any key length. This is the
default value.

XCBC-MAC AES-XCBC-MAC-96 and AES-XCBC-PRF-128 MAC
generation with padding for 128-bit keys.

Key rule (optional)

KEY-CLR This specifies that the key parameter contains a clear key
value. This is the default value.

KEYIDENT This specifies that the key_identifier field will be an internal
clear token or the label name of a clear key in the CKDS.
Normal CKDS label name syntax is required.

KEY-DRV This specifies that the key parameter contains up to 256 bits
of key material from which to derive a 128-bit AES key for
the XCBC-MAC operation. Only valid with XCBC-MAC.

Segmenting Control (optional)

FIRST First call, this is the first segment of data from the
application program.

LAST Last call; this is the last data segment.

MIDDLE Middle call; this is an intermediate data segment.

ONLY Only call; segmenting is not employed by the application
program. This is the default value.

chaining_vector_length

Direction Type

Input/Output String

The length of the chaining_vector parameter. On output, the actual length of the
chaining vector will be stored in the parameter.

chaining_vector

Direction Type

Input/Output String

This field is used as a system work area for the chaining vector. Your
application program must not change the data in this string. The chaining
vector holds the output chaining vector from the caller.

The mapping of the chaining_vector depends on the algorithm specified. For
AES, the chaining_vector field must be at least 36 bytes in length.

On the first call, initialize this parameter as binary zeros.

reserved_data_length

Direction Type

Input Integer

Reserved for future use. Value must be zero.

reserved_data

Symmetric MAC Verify

444 z/OS ICSF Application Programmer's Guide

||
|
|

|

Direction Type

Ignored String

Reserved for future use.

mac_length

Direction Type

Input Integer

The length in bytes of the MAC to be verified the mac field. The allowable
values are 12 and 16 bytes.

mac

Direction Type

Input String

The 12-byte or 16-byte field that contains the MAC value you want to verify.
The value must be left-justified and padded with zeros.

text_id_in

Direction Type

Input Integer

For CSNBSMV1 and CSNESMV1 only, the ALET of the text for which the
MAC is to be verified.

Usage notes
For the XCBC-MAC processing rule, the text_length can be 0 when specifying the
ONLY or LAST keyword. However, the last call should be preceded by a first or
middle call.

Required Hardware
The following table lists the required cryptographic hardware for each server type
and describes restrictions for this callable service.

Table 172. Symmetric MAC verify required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

CP Assist for
Cryptographic
Functions

IBM System z9 EC

IBM System z9 BC

CP Assist for
Cryptographic
Functions

IBM System z10 EC
IBM System z10 BC

CP Assist for
Cryptographic
Functions

Symmetric MAC Verify

Chapter 7. Verifying Data Integrity and Authenticating Messages 445

|

|
|
|

||

||
|
|

|

|
|

|
|

|
|
|

|

|

|

|
|
|

|

|
|
|
|
|

|

Table 172. Symmetric MAC verify required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM zEnterprise 196

IBM zEnterprise 114

CP Assist for
Cryptographic
Functions

IBM zEnterprise EC12

IBM zEnterprise BC12

CP Assist for
Cryptographic
Functions

Symmetric MAC Verify

446 z/OS ICSF Application Programmer's Guide

|

||
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

Chapter 8. Financial Services

The process of validating personal identities in a financial transaction system is
called personal authentication. The personal identification number (PIN) is the basis
for verifying the identity of a customer across financial industry networks. ICSF
provides callable services to translate, verify, and generate PINs. You can use the
callable services to prevent unauthorized disclosures when organizations handle
PINs.

These callable services are described in these topics:
v “Clear PIN Encrypt (CSNBCPE and CSNECPE)” on page 458
v “Clear PIN Generate (CSNBPGN and CSNEPGN)” on page 462
v “Clear PIN Generate Alternate (CSNBCPA and CSNECPA)” on page 466
v “CVV Key Combine (CSNBCKC and CSNECKC)” on page 472
v “Encrypted PIN Generate (CSNBEPG and CSNEEPG)” on page 477
v “Encrypted PIN Translate (CSNBPTR and CSNEPTR)” on page 482
v “Encrypted PIN Verify (CSNBPVR and CSNEPVR)” on page 488
v “PIN Change/Unblock (CSNBPCU and CSNEPCU)” on page 494
v “Secure Messaging for Keys (CSNBSKY and CSNESKY)” on page 505
v “Secure Messaging for PINs (CSNBSPN and CSNESPN)” on page 509
v “SET Block Compose (CSNDSBC and CSNFSBC)” on page 514
v “SET Block Decompose (CSNDSBD and CSNFSBD)” on page 520
v “Transaction Validation (CSNBTRV and CSNETRV)” on page 526
v “VISA CVV Service Generate (CSNBCSG and CSNECSG)” on page 530
v “VISA CVV Service Verify (CSNBCSV and CSNECSV)” on page 535

How Personal Identification Numbers (PINs) are Used
Many people are familiar with PINs, which allow them to use an automated teller
machine (ATM). From the system point of view, PINs are used primarily in
financial networks to authenticate users — typically, a user is assigned a PIN, and
enters the PIN at automated teller machines (ATMs) to gain access to his or her
accounts. It is extremely important that the PIN be kept private, so that no one
other than the account owner can use it. ICSF allows your applications to generate
PINs, to verify supplied PINs, and to translate PINs from one format to another.

How VISA Card Verification Values Are Used
The Visa International Service Association (VISA) and MasterCard International,
Incorporated have specified a cryptographic method to calculate a value that
relates to the personal account number (PAN), the card expiration date, and the
service code. The VISA card-verification value (CVV) and the MasterCard
card-verification code (CVC) can be encoded on either track 1 or track 2 of a
magnetic striped card and are used to detect forged cards. Because most online
transactions use track-2, the ICSF callable services generate and verify the CVV3 by
the track-2 method.

© Copyright IBM Corp. 1997, 2013 447

The VISA CVV service generate callable service calculates a 1- to 5-byte value
through the DES-encryption of the PAN, the card expiration date, and the service
code using two data-encrypting keys or two MAC keys. The VISA CVV service
verify callable service calculates the CVV by the same method, compares it to the
CVV supplied by the application (which reads the credit card's magnetic stripe) in
the CVV_value, and issues a return code that indicates whether the card is
authentic.

Translating Data and PINs in Networks
More and more data is being transmitted across networks where, for various
reasons, the keys used on one network cannot be used on another network.
Encrypted data and PINs that are transmitted across these boundaries must be
“translated” securely from encryption under one key to encryption under another
key. For example, a traveler visiting a foreign city might wish to use an ATM to
access an account at home. The PIN entered at the ATM might need to be
encrypted at the ATM and sent over one or more financial networks to the
traveler's home bank. At the home bank, the PIN must be verified prior to access
being allowed. On intermediate systems (between networks), applications can use
the Encrypted PIN translate callable service to re-encrypt a PIN block from one key
to another. Running on ICSF, such applications can ensure that PINs never appear
in the clear and that the PIN-encrypting keys are isolated on their own networks.

Working with Europay–MasterCard–Visa smart cards
There are several services you can use in secure communications with EMV smart
cards. The processing capabilities are consistent with the specifications provided in
these documents:
v EMV 2000 Integrated Circuit Card Specification for Payment Systems Version 4.0

(EMV4.0) Book 2

v Design Visa Integrated Circuit Card Specification Manual

v Integrated Circuit Card Specification (VIS) 1.4.0 Corrections

EMV smart cards include the following processing capabilities:
v The diversified key generate (CSNBDKG and CSNEDKG) callable service with

rule-array options TDES-XOR, TDESEMV2, and TDESEMV4 enables you to
derive a key used to cipher and authenticate messages, and more particularly
message parts, for exchange with an EMV smart card. You use the derived key
with services such as encipher, decipher, MAC generate, MAC verify, secure
messaging for keys, and secure messaging for PINs. These message parts can be
combined with message parts created using the secure messaging for keys and
secure messaging for PINs services.

v The secure messaging for keys (CSNBSKY and CSNESKY) service enables you to
securely incorporate a key into a message part (generally the value portion of a
TLV component of a secure message for a card). Similarly, the secure messaging
for PINs (CSNBSPN and CSNESPN) service enables secure incorporation of a
PIN block into a message part.

v The PIN change/unblock (CSNBPCU and CSNEPCU) service enables you to
encrypt a new PIN to send to a new EMV card, or to update the PIN value on
an initialized EMV card. This verb generates both the required session key (from
the master encryption key) and the required authentication code (from the
master authentication key).

3. The VISA CVV and the MasterCard CVC refer to the same value. CVV is used here to mean both CVV and CVC.

448 z/OS ICSF Application Programmer's Guide

v The ZERO-PAD option of the PKA encrypt (CSNDPKE) service enables you to
validate a digital signature created according to ISO 9796-2 standard by
encrypting information you format, including a hash value of the message to be
validated. You compare the resulting enciphered data to the digital signature
accompanying the message to be validated.

v The MAC generate and MAC verify services post-pad a X'80'...X'00' string to a
message as required for authenticating messages exchanged with EMV smart
cards.

PIN Callable Services
You use the PIN callable services to generate, verify, and translate PINs. This topic
discusses the PIN callable services, as well as the various PIN algorithms and PIN
block formats supported by ICSF. It also explains the use of PIN-encrypting keys.

Generating a PIN
To generate personal identification numbers, call the Clear PIN Generate or
Encrypted PIN Generate callable service. Using a PIN generation algorithm, data
used in the algorithm, and the PIN generation key, the Clear PIN generate callable
service generates a clear PIN and a PIN verification value, or offset. The Clear PIN
Generate callable service can only execute in special secure mode. For a description
of this mode, see “Special Secure Mode” on page 10. Using a PIN generation
algorithm, data used in the algorithm, the PIN generation key, and an outbound
PIN encrypting key, the encrypted PIN generate callable service generates and
formats a PIN and encrypts the PIN block.

Encrypting a PIN
To format a PIN into a supported PIN block format and encrypt the PIN block, call
the Clear PIN encrypt callable service.

Generating a PIN Validation Value from an Encrypted PIN
Block

To generate a clear VISA PIN validation value (PVV) from an encrypted PIN block,
call the clear PIN generate alternate callable service. The PIN block can be encrypted
under an input PIN-encrypting key (IPINENC) or an output PIN encrypting key
(OPINENC).

Verifying a PIN
To verify a supplied PIN, call the Encrypted PIN verify callable service. You supply
the enciphered PIN, the PIN-encrypting key that enciphers the PIN, and other
data. You must also specify the PIN verification key and PIN verification
algorithm. The callable service generates a verification PIN. The service compares
the two personal identification numbers and if they are the same, it verifies the
supplied PIN.

Translating a PIN
To translate a PIN block format from one PIN-encrypting key to another or from
one PIN block format to another, call the Encrypted PIN translate callable service.
You must identify the input PIN-encrypting key that originally enciphered the PIN.
You also need to specify the output PIN-encrypting key that you want the callable
service to use to encipher the PIN. If you want to change the PIN block format,
specify a different output PIN block format from the input PIN block format.

Chapter 8. Financial Services 449

|
|
|
|

Algorithms for Generating and Verifying a PIN

ICSF supports these algorithms for generating and verifying personal identification
numbers:
v IBM 3624 institution-assigned PIN
v IBM 3624 customer-selected PIN (through a PIN offset)
v IBM German Bank Pool PIN (verify through an institution key)
v VISA PIN through a VISA PIN validation value
v Interbank PIN

The algorithms are discussed in detail in “PIN Formats and Algorithms” on page
893.

Using PINs on Different Systems
ICSF allows you to translate different PIN block formats, which lets you use
personal identification numbers on different systems. ICSF supports these formats:
v IBM 3624
v IBM 3621 (same as IBM 5906)
v IBM 4704 encrypting PINPAD format
v ISO 0 (same as ANSI 9.8, VISA 1, and ECI 1)
v ISO 1 (same as ECI 4)
v ISO 2
v ISO 3
v VISA 2
v VISA 3
v VISA 4
v ECI 2
v ECI 3

The formats are discussed in “PIN Formats and Algorithms” on page 893.

PIN-Encrypting Keys
A unique master key variant enciphers each type of key. For further key
separation, an installation can choose to have each PIN block format enciphered
under a different PIN-encrypting key. The PIN-encrypting keys can have a 16-byte
PIN block variant constant exclusive ORed on them prior to using to translate or
verify PIN blocks. This is specified in the format control field in the Encrypted PIN
translate and Encrypted PIN verify callable services.

You should only use PIN block variant constants when you are communicating
with another host processor with the Integrated Cryptographic Service Facility.

Derived Unique Key Per Transaction Algorithms
ICSF supports ANSI X9.24 derived unique key per transaction algorithms to
generate PIN-encrypting keys from user data. ICSF supports both single- and
double-length key generation. Keywords for single- and double-length key
generation can not be mixed.

Encrypted PIN Translate
The UKPTIPIN, IPKTOPIN and UKPTBOTH keywords will cause the service to
generate single-length keys. DUKPT-IP, DKPT-OP and DUKPT-BH are the

450 z/OS ICSF Application Programmer's Guide

|

|

|

|

|

|
|
|
|

respective keywords to generate double-length keys. The input_PIN_profile and
output_PIN_profile must supply the current key serial number when these
keywords are specified.

Encrypted PIN Verify
The UKPTIPIN keyword will cause the service to generate single-length keys.
DUKPT-IP is the keyword for double-length key generation. The input_PIN_profile
must supply the current key serial number when these keywords are specified.

For more information
For more information about PIN-encrypting keys, see z/OS Cryptographic Services
ICSF Administrator's Guide.

ANSI X9.8 PIN Restrictions
Access control points (ACP) in the domain role control PIN block processing
restrictions from the X9.8 standard. These access control points are available on the
z196 and z114 with the CEX3C, or the IBM zEnterprise EC12 with the CEX3C or
CEX4C. These callable services are affected by these access control points. These
access control points are disabled by default in the domain role. A TKE
Workstation is required to enable these ACPs.
v Clear PIN Generate Alternate (CSNBCPA and CSNECPA)
v Encrypted PIN Generate (CSNBEPG and CSNEEPG)
v Encrypted PIN Translate (CSNBPTR and CSNEPTR)
v Encrypted PIN Verify (CSNBPVR and CSNEPVR)
v Secure Messaging for PINs (CSNBSPN and CSNESPN)

There are four access control points:
v ANSI X9.8 PIN - Enforce PIN block restrictions
v ANSI X9.8 PIN - Allow modification of PAN
v ANSI X9.8 PIN - Allow only ANSI PIN blocks
v ANSI X9.8 PIN – Use stored decimalization tables only

PIN decimalization tables can be stored in the CEX3C or CEX4C for use by callable
services. Only tables that have been activated can be used. A TKE Workstation is
required to manage the tables in the coprocessors.

Note: ICSF routes work to all active coprocessors based on work load. All
coprocessors must have the same set of active decimalization tables for the ANSI
X9.8 PIN – Use stored decimalization tables only access control point to be
effective.

ANSI X9.8 PIN - Enforce PIN block restrictions
When ANSI X9.8 PIN - Enforce PIN block restrictions access control point is
enable, the following restrictions will be enforced.
v CSNBPTR and CSNBSPN will not accept IBM 3624 PIN format in the output

profile parameter when the input profile parameter is not IBM 3624.
v CSNBPTR will not accept ISO-0 or ISO-3 formats in the input PIN profile unless

ISO-0 or ISO-3 is in the output PIN profile.
v CSNBPTR and CSNBSPN will not accept ISO-1 or ISO-2 formats in the output

profile parameter when the input profile parameter contains ISO-0, ISO-3, or
VISA4

Chapter 8. Financial Services 451

|

|
|

v When the input profile parameter of CSNBPTR or CSNBSPN contains either
ISO-0 or ISO-3 formats, the decrypted PIN block will be examined to ensure that
the PAN within the PIN block is the same as the PAN which was supplied as
the input PAN parameter, and that this is the same as the PAN which was
supplied as the output PAN parameter.

v The input PAN and output PAN parameters of CSNBPTR or CSNBSPN must be
equivalent.

v When the rule array for CSNBCPA contains VISA-PVV, the input PIN profile
must contain ISO-0 or ISO-3 formats.

ANSI X9.8 PIN - Allow modification of PAN
In order to enable the ANSI X9.8 PIN - Allow modification of PAN access control
point, the ANSI X9.8 PIN - Enforce PIN block restrictions must also be enabled.
The ANSI X9.8 PIN - Allow modification of PAN access control point cannot be
enabled by itself.

When the ANSI X9.8 PIN - Allow modification of PAN access control point is
enabled, the input PAN and output PAN parameters will be tested in CSNBPTR or
CSNBSPN. The input PAN will be compared to the portions of the PAN which are
recoverable from the decrypted PIN block. If the PANs compare, then the account
number will be changed in the output PIN block.

ANSI X9.8 PIN - Allow only ANSI PIN blocks
In order to enable the ANSI X9.8 PIN - Allow only ANSI PIN blocks access
control point, the ANSI X9.8 PIN - Enforce PIN block restrictions must also be
enabled. The ANSI X9.8 PIN - Allow only ANSI PIN blocks access control point
cannot be enabled by itself.

When this access control point is enable, CSNBPTR will allow reformatting of the
PIN block as shown in the following table.

Table 173. ANSI X9.8 PIN - Allow only ANSI PIN blocks

Reformat To: ISO Format 0 ISO Format 1 ISO Format 3

From:

ISO Format 0 Reformat permitted

Change of PAN not permitted

Not permitted Reformat permitted

Change of PAN not permitted

ISO Format 1 Reformat permitted Reformat permitted Reformat permitted

ISO Format 3 Reformat permitted

Change of PAN not permitted

Not permitted Reformat permitted

Change of PAN not permitted

ANSI X9.8 PIN – Use stored decimalization tables only
The ANSI X9.8 PIN – Use stored decimalization tables only access control point
may be enabled by itself.

When this access control point is enabled, CSNBPGN, CSNBCPA, CSNBEPG, and
CSNBPVR services must supply a decimalization table that matches the active
decimalization tables stored in the coprocessors. The decimalization table in the
data_array parameter will be compared against the active decimalization tables in

452 z/OS ICSF Application Programmer's Guide

the coprocessor and if the supplied table matches a stored table, the request will be
processed. If the supplied table doesn’t match any of the stored tables or there are
no stored tables, the request will fail.

PIN decimalization tables can be stored in the CEX3C or later coprocessors for use
by callable services. Only tables that have been activated can be used. A TKE
Workstation is required to manage the tables in the coprocessors.

Note: ICSF routes work to all active coprocessors based on work load. All
coprocessors must have the same set of decimalization tables for the decimalization
table access control point to be effective.

The PIN Profile
The PIN profile consists of:
v PIN block format (see “PIN Block Format”)
v Format control (see “Format Control” on page 456)
v Pad digit (see “Pad Digit” on page 456)
v Current Key Serial Number (for UKPT and DUKPT – see “Current Key Serial

Number” on page 457)

Table 174 shows the format of a PIN profile.

Table 174. Format of a PIN Profile

Bytes Description

0–7 PIN block format

8–15 Format control

16–23 Pad digit

24–47 Current Key Serial Number (for UKPT and DUKPT)

PIN Block Format
This keyword specifies the format of the PIN block. The 8-byte value must be
left-justified and padded with blanks. Refer to Table 175 for a list of valid values.

Table 175. Format Values of PIN Blocks

Format Value Description

ECI-2 Eurocheque International format 2

ECI-3 Eurocheque International format 3

ISO-0 ISO format 0, ANSI X9.8, VISA 1, and ECI 1

ISO-1 ISO format 1 and ECI 4

ISO-2 ISO format 2

ISO-3 ISO format 3

VISA-2 VISA format 2

VISA-3 VISA format 3

VISA-4 VISA format 4

3621 IBM 3621 and 5906

3624 IBM 3624

4704-EPP IBM 4704 with encrypting PIN pad

Chapter 8. Financial Services 453

|
|
|

|
|
|

PIN Block Format and PIN Extraction Method Keywords
In the Clear PIN Generate Alternate, Encrypted PIN Translate and Encrypted PIN
Verify callable services, you may specify a PIN extraction keyword for a given PIN
block format. In this table, the allowable PIN extraction methods are listed for each
PIN block format. The first PIN extraction method keyword listed for a PIN block
format is the default.

Table 176. PIN Block Format and PIN Extraction Method Keywords

PIN Block Format
PIN Extraction Method
Keywords Description

ECI-2 PINLEN04 The PIN extraction method
keywords specify a PIN
extraction method for a
PINLEN04 format.

ECI-3 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

ISO-0 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

ISO-1 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

ISO-2 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

ISO-3 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

VISA-2 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

VISA-3 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

VISA-4 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

454 z/OS ICSF Application Programmer's Guide

|
|
|
|
|

Table 176. PIN Block Format and PIN Extraction Method Keywords (continued)

PIN Block Format
PIN Extraction Method
Keywords Description

3621 PADDIGIT, HEXDIGIT,
PINLEN04 to PINLEN12,
PADEXIST

The PIN extraction method
keywords specify a PIN
extraction method for an
IBM 3621 PIN block format.
The first keyword,
PADDIGIT, is the default
PIN extraction method for
the PIN block format.

3624 PADDIGIT, HEXDIGIT,
PINLEN04 to PINLEN16,
PADEXIST

The PIN extraction method
keywords specify a PIN
extraction method for an
IBM 3624 PIN block format.
The first keyword,
PADDIGIT, is the default
PIN extraction method for
the PIN block format.

4704-EPP PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

The PIN extraction methods operate as follows:

PINBLOCK
Specifies that the service use one of these:
v the PIN length, if the PIN block contains a PIN length field
v the PIN delimiter character, if the PIN block contains a PIN delimiter

character.

PADDIGIT
Specifies that the service use the pad value in the PIN profile to identify
the end of the PIN.

HEXDIGIT
Specifies that the service use the first occurrence of a digit in the range
from X'A' to X'F' as the pad value to determine the PIN length.

PINLENxx
Specifies that the service use the length specified in the keyword, where xx
can range from 4 to 16 digits, to identify the PIN.

PADEXIST
Specifies that the service use the character in the 16th position of the PIN
block as the value of the pad value.

Enhanced PIN Security Mode
An Enhanced PIN Security Mode is available. This optional mode is selected by
enabling the PTR Enhanced PIN Security access control point in coprocessor
domain role. When active, this control point affects all PIN callable services that
extract or format a PIN using a PIN-block format of 3621 or 3624 with a
PIN-extraction method of PADDIGIT.

Chapter 8. Financial Services 455

|
|
|

Table 177 summarizes the callable services affected by the Enhanced PIN Security
Mode and describes the effect that the mode has when the access control point is
enabled.

Table 177. Callable Services Affected by Enhanced PIN Security Mode

PIN-block format
and PIN-extraction
method

Callable Services Affected PIN processing changes when
Enhanced PIN Security Mode
enabled

ECI-2, 3621, or 3624
formats AND
PINLENxx

PIN-block format and
PIN-extraction method

Clear_PIN_Generate_Alternate

Encrypted_PIN_Translate

Encrypted_PIN_Verify

The PINLENxx keyword in
rule_array parameter for PIN
extraction method is not allowed
if the Enhanced PIN Security
Mode is enabled.
Note: The services will fail with
return code 8 reason code '7E0'x.

3621 or 3624 format
and PADDIGIT

Clear_PIN_Generate_Alternate

Encrypted_PIN_Translate

Encrypted_PIN_Verify

PIN Change/Unblock

PIN extraction determines the
PIN length by scanning from
right to left until a digit, not
equal to the pad digit, is found.
The minimum PIN length is set
at four digits, so scanning ceases
one digit past the position of the
4th PIN digit in the block.

3621 or 3624 format
and PADDIGIT

Clear_PIN_Encrypt

Encrypted_PIN_Generate

Encrypted_PIN_Translate

PIN formatting does not
examine the PIN, in the output
PIN block, to see if it contains
the pad digit.

3621 or 3624 format
and PADDIGIT

Encrypted_PIN_Translate Restricted to non-decimal digit
for PAD digit.

Format Control
This keyword specifies whether there is any control on the user-supplied PIN
format. The 8-byte value must be left-justified and padded with blanks. None is
the only supported format control.

NONE
No format control.

Pad Digit
Some PIN formats require this parameter. If the PIN format does not need a pad
digit, the callable service ignores this parameter. Table 178 shows the format of a
pad digit. The PIN profile pad digit must be specified in upper case.

Table 178. Format of a Pad Digit

Bytes Description

16–22 Seven space characters

23 Character representation of a hexadecimal pad digit or a space
if a pad digit is not needed. Characters must be one of these:
0–9, A–F, or a blank.

Each PIN format supports only a pad digit in a certain range. This table lists the
valid pad digits for each PIN block format.

456 z/OS ICSF Application Programmer's Guide

|

|
|
|

|
|

Table 179. Pad Digits for PIN Block Formats

PIN Block Format Output PIN Profile Input PIN Profile

ECI-2 Pad digit is not used Pad digit is not used

ECI-3 Pad digit is not used Pad digit is not used

ISO-0 F Pad digit is not used

ISO-1 Pad digit is not used Pad digit is not used

ISO-2 Pad digit is not used Pad digit is not used

ISO-3 Pad digit is not used Pad digit is not used

VISA-2 0 through 9 Pad digit is not used

VISA-3 0 through F Pad digit is not used

VISA-4 F Pad digit is not used

3621 0 through F 0 through F

3624 0 through F 0 through F

4704-EPP F Pad digit is not used

The callable service returns an error indicating that the PAD digit is not valid if all
of these conditions are met:

1. The PTR Enhanced Security access control point is enabled in the active
role

2. The output PIN profile specifies 3621 or 3624 as the PIN-block format
3. The output PIN profile specifies a decimal digit (0-9) as the PAD digit

Recommendations for the Pad Digit
IBM recommends that you use a nondecimal pad digit in the range of A through F
when processing IBM 3624 and IBM 3621 PIN blocks. If you use a decimal pad
digit, the creator of the PIN block must ensure that the calculated PIN does not
contain the pad digit, or unpredictable results may occur.

For example, you can exclude a specific decimal digit from being in any calculated
PIN by using the IBM 3624 calculation procedure and by specifying a
decimalization table that does not contain the desired decimal pad digit.

Current Key Serial Number
The current key serial number is the concatenation of the initial key serial number
(a 59-bit value) and the encryption counter (a 21-bit value). The concatenation is an
80-bit (10-byte) value. Table 180 shows the format of the current key serial number.

When UKPT or DUKPT is specified, the PIN profile parameter is extended to a
48-byte field and must contain the current key serial number.

Table 180. Format of the Current Key Serial Number Field

Bytes Description

24–47 Character representation of the current key serial number used
to derive the initial PIN encrypting key. It is left justified and
padded with 4 blanks.

Chapter 8. Financial Services 457

Decimalization Tables
Decimalization tables can be loaded in the coprocessors to restrict attacks using
modified tables. The management of the tables requires a TKE Workstation.

Clear PIN Generate (CSNBPGN and CSNEPGN), Clear PIN Generate Alternate
(CSNBCPA and CSNECPA), Encrypted PIN Generate (CSNBEPG and CSNEEPG),
and Encrypted PIN Verify (CSNBPVR and CSNEPVR) callable services will make
use of the stored decimalization tables.

The ANSI X9.8 PIN – Use stored decimalization tables only access control point
is used to restrict the use of tables. When the access control point is enabled, the
table supplied by the callable service will be compared against the active tables
stored in the coprocessor. If the supplied table doesn’t match any of the active
tables, the request will fail.

A TKE workstation (Version 7.1 or later) is required to manage the PIN
decimalization tables. The tables must be loaded and then activated. Only active
tables are checked when the access control point is enabled.

Note: ICSF routes work to all active coprocessors based on work load. All
coprocessors must have the same set of decimalization tables for the decimalization
table access control point to be effective.

Clear PIN Encrypt (CSNBCPE and CSNECPE)
The Clear PIN Encrypt callable service formats a PIN into one of these PIN block
formats and encrypts the results. You can use this service to create an encrypted
PIN block for transmission. With the RANDOM keyword, you can have the service
generate random PIN numbers.

Note: A clear PIN is a sensitive piece of information. Ensure that your application
program and system design provide adequate protection for any clear PIN value.
v IBM 3621 format
v IBM 3624 format
v ISO-0 format (same as the ANSI X9.8, VISA-1, and ECI formats)
v ISO-1 format (same as the ECI-4 format)
v ISO-2 format
v ISO-3 format
v IBM 4704 encrypting PINPAD (4704-EPP) format
v VISA 2 format
v VISA 3 format
v VISA 4 format
v ECI2 format
v ECI3 format

An enhanced PIN security mode is available for formatting an encrypted PIN
block into IBM 3621 format or IBM 3624 format. To do this, you must enable the
PTR Enhanced PIN Security access control point in the domain role. When
activated, this mode limits checking of the PIN to decimal digits. No other PIN
block consistency checking will occur.

The callable service name for AMODE(64) invocation is CSNECPE.

458 z/OS ICSF Application Programmer's Guide

|
|
|
|
|

Format
CALL CSNBCPE(

return_code,
reason_code,
exit_data_length,
exit_data,
PIN_encrypting_key_identifier,
rule_array_count,
rule_array,
clear_PIN,
PIN_profile,
PAN_data,
sequence_number,
encrypted_PIN_block)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFFFF' (2 gigabytes). The data is defined in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

PIN_encrypting_key_identifier

Direction Type

Input/Output String

Clear PIN Encrypt

Chapter 8. Financial Services 459

The 64-byte string containing an internal key token or a key label of an
internal key token. The internal key token contains the key that encrypts the
PIN block. The control vector in the internal key token must specify an
OPINENC key type and have the CPINENC usage bit set to 1.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. Valid
values are 0 and 1.

rule_array

Direction Type

Input Character String

Keywords that provide control information to the callable service. The
keyword is left-justified in an 8-byte field, and padded on the right with
blanks. All keywords must be in contiguous storage. The rule array keywords
are shown as follows:

Table 181. Process Rules for the Clear PIN Encryption Callable Service

Process Rule Description

ENCRYPT This is the default. Use of this keyword is optional.

RANDOM Causes the service to generate a random PIN value. The
length of the PIN is based on the value in the clear_PIN
variable. Set the value of the clear PIN to zero and use as
many digits as the desired random PIN; pad the
remainder of the clear PIN variable with space characters.

clear_PIN

Direction Type

Input String

A 16-character string with the clear PIN. The value in this variable must be
left-justified and padded on the right with space characters.

PIN_profile

Direction Type

Input String

A 24-byte string containing three 8-byte elements with a PIN block format
keyword, the format control keyword, NONE, and a pad digit as required by
certain formats.See “The PIN Profile” on page 453 for additional information.

PAN_data

Direction Type

Input String

Clear PIN Encrypt

460 z/OS ICSF Application Programmer's Guide

A 12-byte PAN in character format. The service uses this parameter if the PIN
profile specifies the ISO-0 or VISA-4 keyword for the PIN block format.
Otherwise, ensure that this parameter is a 12-byte variable in application
storage. The information in this variable will be ignored, but the variable must
be specified.

Note: When using the ISO-0 keyword, use the 12 rightmost digits of the PAN
data, excluding the check digit. When using the VISA-4 keyword, use the 12
leftmost digits of the PAN data, excluding the check digit.

sequence_number

Direction Type

Input Integer

The 4-byte character integer. The service currently ignores the value in this
variable. For future compatibility, the suggested value is 99999.

encrypted_PIN_block

Direction Type

Output String

The field that receives the 8-byte encrypted PIN block.

Restrictions
The format control specified in the PIN profile must be NONE.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

SAF will be invoked to check authorization to use the Clear PIN encrypt service
and the label of the PIN_encrypting_key_identifier.

Access Control Point
The Clear PIN Encrypt access control point controls the function of this service.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 182. Clear PIN encrypt required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

ISO-3 PIN block format is not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor ISO-3 PIN block format requires the Nov.

2007 or later licensed internal code (LIC).

Clear PIN Encrypt

Chapter 8. Financial Services 461

|

Table 182. Clear PIN encrypt required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

ISO-3 PIN block format requires the Nov.
2007 or later licensed internal code (LIC).

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Clear PIN Generate (CSNBPGN and CSNEPGN)
Use the Clear PIN generate callable service to generate a clear PIN, a PIN
validation value (PVV), or an offset according to an algorithm. You supply the
algorithm or process rule using the rule_array parameter.
v IBM 3624 (IBM-PIN or IBM-PINO)
v VISA PIN validation value (VISA-PVV)
v Interbank PIN (INBK-PIN)

The callable service can execute only when ICSF is in special secure mode. This
mode is described in “Special Secure Mode” on page 10.

For guidance information about VISA, see their appropriate publications.

The callable service name for AMODE(64) invocation is CSNEPGN.

Format
CALL CSNBPGN(

return_code,
reason_code,
exit_data_length,
exit_data,
PIN_generating_key_identifier,
rule_array_count,
rule_array,
PIN_length,
PIN_check_length,
data_array,
returned_result)

Parameters
return_code

Direction Type

Output Integer

Clear PIN Encrypt

462 z/OS ICSF Application Programmer's Guide

|

|

|

|

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFFFF' (2 gigabytes). The data is defined in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

PIN_generating_key_identifier

Direction Type

Input/Output Character String

The 64-byte key label or internal key token that identifies the PIN generation
(PINGEN) key.

rule_array_count

Direction Type

Input Integer

The number of process rules specified in the rule_array parameter. The value
must be 1.

rule_array

Direction Type

Input Character String

The process rule provides control information to the callable service. Specify
one of the values in Table 183 on page 464. The keyword is left-justified in an
8-byte field, and padded on the right with blanks.

Clear PIN Generate

Chapter 8. Financial Services 463

|
|

Table 183. Process Rules for the Clear PIN Generate Callable Service

Process Rule Description

GBP-PIN The IBM German Bank Pool PIN, which uses the
institution PINGEN key to generate an institution PIN
(IPIN).

IBM-PIN The IBM 3624 PIN, which is an institution-assigned PIN. It
does not calculate the PIN offset.

IBM-PINO The IBM 3624 PIN offset, which is a customer-selected PIN
and calculates the PIN offset (the output).

INBK-PIN The Interbank PIN is generated.

VISA-PVV The VISA PIN validation value. Input is the customer PIN.

PIN_length

Direction Type

Input Integer

The length of the PIN used for the IBM algorithms only, IBM-PIN or
IBM-PINO. Otherwise, this parameter is ignored. Specify an integer from 4
through 16.

PIN_check_length

Direction Type

Input Integer

The length of the PIN offset used for the IBM-PINO process rule only.
Otherwise, this parameter is ignored. Specify an integer from 4 through 16.

Note: The PIN check length must be less than or equal to the integer specified
in the PIN_length parameter.

data_array

Direction Type

Input String

Three 16-byte data elements required by the corresponding rule_array
parameter. The data array consists of three 16-byte fields or elements whose
specification depends on the process rule. If a process rule only requires one or
two 16-byte fields, then the rest of the data array is ignored by the callable
service. Table 184 describes the array elements.

Table 184. Array Elements for the Clear PIN Generate Callable Service

Array Element Description

Clear_PIN Clear user selected PIN of 4 to 12 digits of 0 through 9.
Left-justified and padded with spaces. For IBM-PINO,
this is the clear customer PIN (CSPIN). For IBM-PIN
and GBP-PIN, this field is ignored.

Clear PIN Generate

464 z/OS ICSF Application Programmer's Guide

|
|
|

|
|
|
|

Table 184. Array Elements for the Clear PIN Generate Callable Service (continued)

Array Element Description

Decimalization_table Decimalization table for IBM and GBP only. Sixteen
digits of 0 through 9.
Note: If the ANSI X9.8 PIN – Use stored
decimalization tables only access control point is
enabled in the domain role, this table must match one
of the active decimalization tables in the coprocessors.

Trans_sec_parm For VISA only, the leftmost sixteen digits. Eleven digits
of the personal account number (PAN). One digit key
index. Four digits of customer selected PIN.

For Interbank only, sixteen digits. Eleven right-most
digits of the personal account number (PAN). A
constant of 6. One digit key selector index. Three digits
of PIN validation data.

Validation_data Validation data for IBM and IBM German Bank Pool
padded to 16 bytes. One to sixteen characters of
hexadecimal account data left-justified and padded on
the right with blanks.

Table 185 lists the data array elements required by the process rule (rule_array
parameter). The numbers refer to the process rule's position within the array.

Table 185. Array Elements Required by the Process Rule

Process Rule IBM-PIN IBM-PINO GBP-PIN VISA-PVV INBK-PIN

Decimalization_table 1 1 1

Validation_data 2 2 2

Clear_PIN 3

Trans_sec_parm 1 1

returned_result

Direction Type

Output Character String

The 16-byte generated output, left-justified and padded on the right with
blanks.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

If you are using the IBM 3624 PIN and IBM German Bank Pool PIN algorithms,
you can supply an unencrypted customer selected PIN to generate a PIN offset.

Access Control Points
This table shows the access control points in the domain role that control the
function of this service.

Clear PIN Generate

Chapter 8. Financial Services 465

||

||||||

||||||

||||||

||||||

||||||
|

Table 186. Required access control points for Clear PIN Generate

Rule array keywords Access control point

IBM-PIN
IBM-PINO

Clear PIN Generate - 3624

GBP-PIN Clear PIN Generate - GBP

VISA-PVV Clear PIN Generate - VISA PVV

INBK-PIN Clear PIN Generate - Interbank

If the ANSI X9.8 PIN – Use stored decimalization tables only access control point
is enabled in the domain role, any decimalization table specified must match one
of the active decimalization tables in the coprocessors.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 187. Clear PIN generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Related Information
PIN algorithms are shown in “PIN Formats and Algorithms” on page 893.

Clear PIN Generate Alternate (CSNBCPA and CSNECPA)
Use the clear PIN generate alternate service to generate a clear VISA PVV (PIN
validation value) from an input encrypted PIN block, or to produce a 3624 offset
from a customer-selected encrypted PIN. The PIN block can be encrypted under
either an input PIN-encrypting key (IPINENC) or an output PIN-encrypting key
(OPINENC).

Clear PIN Generate

466 z/OS ICSF Application Programmer's Guide

|

|

|

|

|

An enhanced PIN security mode is available for extracting PINs from encrypted
PIN blocks. This mode only applies when specifying a PIN-extraction method for
an IBM 3621 or an IBM 3624 PIN-block. To do this, you must enable the PTR
Enhanced PIN Security access control point in the domain role. When activated,
this mode limits checking of the PIN to decimal digits and a PIN length minimum
of 4 is enforced. No other PIN-block consistency checking will occur.

An enhanced PIN security mode on the CEX3C and later is available to implement
restrictions required by the ANSI X9.8 PIN standard. To enforce these restrictions,
you must enable the following control points in the domain role.
v ANSI X9.8 PIN - Enforce PIN block restrictions
v ANSI X9.8 PIN - Allow modification of PAN
v ANSI X9.8 PIN - Allow only ANSI PIN blocks

The callable service name for AMODE(64) invocation is CSNECPA.

Format
CALL CSNBCPA(

return_code,
reason_code,
exit_data_length,
exit_data,
PIN_encryption_key_identifier,
PIN_generation_key_identifier,
PIN_profile,
PAN_data,
encrypted_PIN_block,
rule_array_count,
rule_array,
PIN_check_length,
data_array,
returned_PVV)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF
and TSS Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

Clear PIN Generate Alternate

Chapter 8. Financial Services 467

|
|
|
|
|
|

|
|
|

|

|

|

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

PIN_encryption_key_identifier

Direction Type

Input/Output String

A 64-byte string consisting of an internal token that contains an IPINENC or
OPINENC key or the label of an IPINENC or OPINENC key that is used to
encrypt the PIN block. If you specify a label, it must resolve uniquely to either
an IPINENC or OPINENC key.

PIN_generation_key_identifier

Direction Type

Input/Output String

A 64-byte string that consists of an internal token that contains a PIN
generation (PINGEN) key or the label of a PINGEN key.

PIN_profile

Direction Type

Input Character String

The three 8-byte character elements that contain information necessary to
extract a PIN from a formatted PIN block. The pad digit is needed to extract
the PIN from a 3624 or 3621 PIN block in the clear PIN generate alternate
service. See “The PIN Profile” on page 453 for additional information.

PAN_data

Direction Type

Input String

A 12-byte field that contains 12 characters of PAN data. The personal account
number recovers the PIN from the PIN block if the PIN profile specifies ISO-0
or VISA-4 block formats. Otherwise it is ignored, but you must specify this
parameter.

For ISO-0, use the rightmost 12 digits of the PAN, excluding the check digit.
For VISA-4, use the leftmost 12 digits of the PAN, excluding the check digit.

encrypted_PIN_block

Clear PIN Generate Alternate

468 z/OS ICSF Application Programmer's Guide

|
|
|
|

|
|

Direction Type

Input String

An 8-byte field that contains the encrypted PIN that is input to the VISA PVV
generation algorithm. The service uses the IPINENC or OPINENC key that is
specified in the PIN_encryption_key_identifier parameter to encrypt the block.

rule_array_count

Direction Type

Input Integer

The number of process rules specified in the rule_array parameter. The value
may be 1, 2, or 3.

rule_array

Direction Type

Input Character String

The process rule for the PIN generation algorithm. Specify IBM-PINO or
“VISA-PVV” (the VISA PIN verification value) in an 8-byte field, left-justified,
and padded with blanks. The rule_array points to an array of one or two 8-byte
elements as follows:

Table 188. Rule Array Elements for the Clear PIN Generate Alternate Service

Rule Array Element Function of Rule Array keyword

1 PIN calculation method

2 PIN extraction method

The first element in the rule array must specify one of the keywords that
indicate the PIN calculation method as shown:

Table 189. Rule Array Keywords (First Element) for the Clear PIN Generate Alternate
Service

PIN Calculation Method
Keyword Meaning

IBM-PINO This keyword specifies use of the IBM 3624 PIN Offset
calculation method.

VISA-PVV This keyword specifies use of the VISA PVV calculation
method.

If the second element in the rule array is provided, one of the PIN extraction
method keywords shown in Table 176 on page 454 may be specified for the
given PIN block format. See “PIN Block Format and PIN Extraction Method
Keywords” on page 454 for additional information. If the default extraction
method for a PIN block format is desired, you may code the rule array count
value as 1.

The PIN extraction methods operate as follows:

PINBLOCK
Specifies that the service use one of these:
v the PIN length, if the PIN block contains a PIN length field

Clear PIN Generate Alternate

Chapter 8. Financial Services 469

v the PIN delimiter character, if the PIN block contains a PIN delimiter
character.

PADDIGIT
Specifies that the service use the pad value in the PIN profile to
identify the end of the PIN.

HEXDIGIT
Specifies that the service use the first occurrence of a digit in the range
from X'A' to X'F' as the pad value to determine the PIN length.

PINLENxx
Specifies that the service use the length specified in the keyword,
where xx can range from 4 to 16 digits, to identify the PIN.

PADEXIST
Specifies that the service use the character in the 16th position of the
PIN block as the value of the pad value.

PIN_check_length

Direction Type

Input Integer

The length of the PIN offset used for the IBM-PINO process rule only.
Otherwise, this parameter is ignored. Specify an integer from 4 through 16.

Note: The PIN check length must be less than or equal to the integer specified
in the PIN_length parameter. If the PIN_check_length variable is greater than
the PIN length, the PIN_check_length variable will be set to the PIN length.

data_array

Direction Type

Input String

Three 16-byte elements. Table 190 describes the format when IBM-PINO is
specified. Table 191 on page 471 describes the format when VISA-PVV is
specified.

Table 190. Data Array Elements for the Clear PIN Generate Alternate Service (IBM-PINO)

Array Element Description

decimalization_table This element contains the decimalization table of 16 characters
(0 to 9) that are used to convert hexadecimal digits (X'0' to
X'F') of the enciphered validation data to the decimal digits
X'0' to X'9').
Note: If the ANSI X9.8 PIN – Use stored decimalization
tables only access control point is enabled in the domain role,
this table must match one of the active decimalization tables in
the coprocessors.

validation_data This element contains one to 16 characters of account data.
The data must be left justified and padded on the right with
space characters.

Reserved-3 This field is ignored, but you must specify it.

When using the VISA-PVV keyword, identify these elements in the data array.

Clear PIN Generate Alternate

470 z/OS ICSF Application Programmer's Guide

Table 191. Data Array Elements for the Clear PIN Generate Alternate Service (VISA-PVV)

Array Element Description

Trans_sec_parm For VISA-PVV only, the leftmost twelve digits. Eleven digits of
the personal account number (PAN). One digit key index. The
rest of the field is ignored.

Reserved-2 This field is ignored, but you must specify it.

Reserved-3 This field is ignored, but you must specify it.

returned_PVV

Direction Type

Output Character

A 16-byte area that contains the 4-byte PVV left-justified and padded with
blanks.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Use of the Visa-PVV PIN-calculation method will always output four digits rather
than padding the output with binary zeros to the length of the PIN.

Access Control Points
This table shows the access control points in the domain role that control the
function of this service.

Table 192. Required access control points for Clear PIN Generate Alternate

Rule array keywords Access control point

IBM-PINO Clear PIN Generate Alternate - 3624 Offset

VISA-PVV Clear PIN Generate Alternate - VISA PVV

If the ANSI X9.8 PIN – Use stored decimalization tables only access control point
is enabled in the domain role, any decimalization table specified must match one
of the active decimalization tables in the coprocessors.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 193. Clear PIN generate alternate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Clear PIN Generate Alternate

Chapter 8. Financial Services 471

|

|
|

|
|

|

Table 193. Clear PIN generate alternate required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

CVV Key Combine (CSNBCKC and CSNECKC)
Use this callable service to combine 2 single length CCA internal key tokens into 1
double-length CCA key token containing a CVVKEY-A key type for use with the
VISA CVV Service Generate or VISA CVV Service Verify callable services. This
combined double-length key satisfies current VISA requirements and eases
translation between TR-31 and CCA formats for CVV keys.

The callable service name for AMODE(64) is CSNECKC.

Format
CALL CSNBCKC(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_a_identifier_length,
key_a_identifier,
key_b_identifier_length,
key_b_identifier,
output_key_identifier_length,
output_key_identifier)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Clear PIN Generate Alternate

472 z/OS ICSF Application Programmer's Guide

|

|

|

|

|

|
|

|
|

|

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The
rule_array_count parameter must be 0, 1, or 2.

rule_array

Direction Type

Input String

The rule_array contains keywords that provide control information to the
callable service. The keywords are 8 bytes in length and must be left-aligned
and padded on the right with space characters. The rule_array keywords for
this callable service are shown in the following table.

Table 194. Keywords for CVV Key Combine Rule Array Control Information

Keyword Meaning

Key Wrapping Method (One Optional)

USECONFG Specifies that the configuration setting for the default wrapping
method is to be used to wrap the key. This is the default.

WRAP-ENH Specifies that the new enhanced wrapping method is to be used
to wrap the key.

WRAP-ECB Specifies that the original wrapping method is to be used.

Translation Control (One Optional)

CVV Key Combine

Chapter 8. Financial Services 473

Table 194. Keywords for CVV Key Combine Rule Array Control Information (continued)

Keyword Meaning

ENH-ONLY Specify this keyword to indicate that the key once wrapped with
the enhanced method cannot be wrapped with the original
method. This restricts translation to the original method. If the
keyword is not specified translation to the original method will
be allowed. This turns on bit 56 in the control vector. This
keyword is not valid if processing a zero CV data key.
Note: If the default wrapping method is ECB mode, but the
enhanced mode and the ENH-ONLY restriction are desired for a
particular key token, combine the ENH-ONLY keyword with the
WRAP-ENH keyword. If this is not done, then an error will be
returned because ENH-ONLY will conflict with the default
wrapping mode if the default wrapping method is ECB mode.

key_a_identifier_length

Direction Type

Input Integer

This parameter specifies the length of the key_a_identifier parameter, in bytes.
The value must be 64.

key_a_identifier

Direction Type

Input String

This parameter contains a 64-byte internal key token or a label of a
single-length zero CV DATA key, a DATA key with the MAC gen and/or
verify bits on, or a CVVKEY-A key. The internal key token contains the key-A
key that encrypts information in the CVV process.

key_b_identifier_length

Direction Type

Input Integer

This parameter specifies the length of the key_b_identifier parameter, in bytes.
The value in this parameter must be 64.

key_b_identifier

Direction Type

Input String

This parameter contains a 64-byte internal key token or a label of a
single-length zero CV DATA key, a DATA key with the MAC gen and/or
verify bits on, or a CVVKEY-B key. The internal key token contains the key-B
key that decrypts information in the CVV process.

output_key_identifier_length

Direction Type

Input Integer

This parameter specifies the length of the output_key_identifier parameter, in
bytes. The value in this parameter must be 64.

CVV Key Combine

474 z/OS ICSF Application Programmer's Guide

output_key_identifier

Direction Type

Output String

This parameter contains the output key token. It is either a double-length
DATA key or a MAC key with CV bits 0-3 set to 0010 to indicate a CVVKEY-A
key.

Restrictions
None.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS.

If key-A and key-B have different CV values for either the Export bit (CV bit 17) or
the TR-31 Export bit (CV bit 57), then the keys cannot be combined and an error is
returned (8 / 39).

Both key-A and key-B must be usable in the same role for either the CVV Generate
or CVV Verify service, otherwise an error occurs.

Both key-A and key-B must be usable for the same service (CVV Generate or CVV
Verify). It is not acceptable to combine a Generate and a Verify key.

If key-A or key-B is a Generate-Only key and the pair pass all criteria to be
combined as a single output key, the resulting CV in the output token will indicate
a double-length Generate-Only key capability.

This following table shows the action taken by the service for different
combinations of input key types.

Table 195. Key type combinations for the CVV key combine callable service

Action taken based on key
types of the 2 input keys

8-byte input key provided as right-half (key-B) of 16 B CVV
key

CVVKEY-A CVVKEY-B DATA key
ANY-MAC
key

8-byte
input key
provided
as left-half
(key-A) of
16 B CVV
key

CVVKEY-A Always reject Always allow Conditional
allow*

Conditional
allow*

CVVKEY-B Always reject Always reject Always
reject

Always
reject

DATA key Always reject Conditional
allow*

Always
allow

Conditional
allow*

ANY-MAC
key

Always reject Conditional
allow*

Conditional
allow*

Always
allow

* – Requires Access Control Point “CVV Key Combine – Permit mixed key types” enabled

There are restrictions on the available wrapping methods for the output key
derived from the wrapping methods employed and CV restrictions of the input
keys. These are detailed in the following table.

CVV Key Combine

Chapter 8. Financial Services 475

Table 196. Wrapping combinations for the CVV Combine Callable Service

key-A OR key-B
uses
WRAP-ENH
wrapping
method

key-A OR key-B
has
enhanced-only
bit (CV bit 56)
set to 1 (implies
WRAP-ENH for
that token)

WRAP-ENH
keyword passed
or WRAP-ENH
is default
wrapping
method

ENH-ONLY
keyword passed

Outcome (form
of output key or
error)

no no no to both no output is ECB
wrapped

yes no no to both no error

no no yes to either no output is ENH
wrapped, bit 56
not set

yes no yes to either no output is ENH
wrapped, bit 56
not set

no no yes to either yes output is ENH
wrapped, bit 56
is set

yes no yes to either yes output is ENH
wrapped, bit 56
is set

yes yes yes to either no output is ENH
wrapped, bit 56
is set

yes yes yes to either yes output is ENH
wrapped, bit 56
is set

no no no to both yes error

yes no no to both yes error

yes yes no to both no error

yes yes no to both yes error

Access Control Points
The CVV Key Combine access control point controls the function of this service.

The key types of the key_a_identifier and key_b_identifier must be the same unless
the CVV Key Combine – Permit mixed key types access control point is enabled.
This means both key identifiers must be DATA keys or both must be MAC keys
when the access control point is disabled. When enabled, DATA keys can be used
with MAC keys.

When the WRAP-ECB or WRAP-ENH keywords are specified and default
key-wrapping method setting does not match the keyword, the CVV Key
Combine - Allow wrapping override keywords access control point must be
enabled.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

CVV Key Combine

476 z/OS ICSF Application Programmer's Guide

|

|

|

|

|

|

|

|
|
|
|
|

|
|
|
|

Table 197. TR-31 export required hardware

Server

Required
cryptographic
hardware Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

IBM System z10 EC

IBM System z10 BC

This service is not supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

This service requires the Sep. 2011 or later
LIC.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Encrypted PIN Generate (CSNBEPG and CSNEEPG)
The Encrypted PIN Generate callable service formats a PIN and encrypts the PIN
block. To generate the PIN, the service uses one of these PIN calculation methods:
v IBM 3624 PIN
v IBM German Bank Pool Institution PIN
v Interbank PIN

To format the PIN, the service uses one of these PIN block formats:
v IBM 3621 format
v IBM 3624 format
v ISO-0 format (same as the ANSI X9.8, VISA-1, and ECI-1 formats)
v ISO-1 format (same as the ECI-4 format)
v ISO-2 format
v ISO-3 format
v IBM 4704 encrypting PINPAD (4704-EPP) format
v VISA 2 format
v VISA 3 format
v VISA 4 format
v ECI-2 format
v ECI-3 format

An enhanced PIN security mode is available for formatting an encrypted PIN
block into IBM 3621 format or IBM 3624 format. To do this, you must enable the
PTR Enhanced PIN Security access control point in the domain role. When
activated, this mode limits checking of the PIN to decimal digits. No other PIN
block consistency checking will occur.

CVV Key Combine

Chapter 8. Financial Services 477

|
|
|
|
|

The callable service name for AMODE(64) invocation is CSNEEPG.

Format
CALL CSNBEPG(

return_code,
reason_code,
exit_data_length,
exit_data,
PIN_generating_key_identifier,
outbound_PIN_encrypting_key_identifier,
rule_array_count,
rule_array,
PIN_length,
data_array,
PIN_profile,
PAN_data,
sequence_number,
encrypted_PIN_block)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFFFF' (2 gigabytes). The data is defined in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

PIN_generating_key_identifier

Encrypted PIN Generate

478 z/OS ICSF Application Programmer's Guide

Direction Type

Input/Output String

The 64-byte internal key token or a key label of an internal key token in the
CKDS. The internal key token contains the PIN-generating key. The control
vector must specify the PINGEN key type and have the EPINGEN usage bit
set to 1.

outbound_PIN_encrypting_key_identifier

Direction Type

Input String

A 64-byte internal key token or a key label of an internal key token in the
CKDS. The internal key token contains the key to be used to encrypt the
formatted PIN and must contain a control vector that specifies the OPINENC
key type and has the EPINGEN usage bit set to 1.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be 1.

rule_array

Direction Type

Input Character String

Keywords that provide control information to the callable service. Each
keyword is left-justified in an 8-byte field, and padded on the right with
blanks. All keywords must be in contiguous storage. The rule array keywords
are shown as follows:

Table 198. Process Rules for the Encrypted PIN Generate Callable Service

Process Rule Description

GBP-PIN This keyword specifies the IBM German Bank Pool
Institution PIN calculation method is to be used to
generate a PIN.

IBM-PIN This keyword specifies the IBM 3624 PIN calculation
method is to be used to generate a PIN.

INBK-PIN This keyword specifies the Interbank PIN calculation
method is to be used to generate a PIN.

PIN_length

Direction Type

Input Integer

A integer defining the PIN length for those PIN calculation methods with
variable length PINs; otherwise, the variable should be set to zero.

Encrypted PIN Generate

Chapter 8. Financial Services 479

data_array

Direction Type

Input String

Three 16-byte character strings, which are equivalent to a single 48-byte string.
The values in the data array depend on the keyword for the PIN calculation
method. Each element is not always used, but you must always declare a
complete data array. The numeric characters in each 16-byte string must be
from 1 to 16 bytes in length, uppercase, left-justified, and padded on the right
with space characters. Table 199 describes the array elements.

Table 199. Array Elements for the Encrypted PIN Generate Callable Service

Array Element Description

Decimalization_table Decimalization table for IBM and GBP only. Sixteen
characters that are used to map the hexadecimal digits
(X'0' to X'F') of the encrypted validation data to
decimal digits (X'0' to X'9').
Note: If the ANSI X9.8 PIN – Use stored
decimalization tables only access control point is
enabled in the domain role, this table must match one
of the active decimalization tables in the coprocessors.

Trans_sec_parm For Interbank only, sixteen digits. Eleven right-most
digits of the personal account number (PAN). A
constant of 6. One digit key selector index. Three digits
of PIN validation data.

Validation_data Validation data for IBM and IBM German Bank Pool
padded to 16 bytes. One to sixteen characters of
hexadecimal account data left-justified and padded on
the right with blanks.

Table 200 lists the data array elements required by the process rule (rule_array
parameter). The numbers refer to the process rule's position within the array.

Table 200. Array Elements Required by the Process Rule

Process Rule IBM-PIN GBP-PIN INBK-PIN

Decimalization_table 1 1

Validation_data 2 2

Trans_sec_parm 1

PIN_profile

Direction Type

Input String array

A 24-byte string containing the PIN profile including the PIN block format. See
“The PIN Profile” on page 453 for additional information.

PAN_data

Direction Type

Input String

Encrypted PIN Generate

480 z/OS ICSF Application Programmer's Guide

A 12-byte string that contains 12 digits of Personal Account Number (PAN)
data. The service uses this parameter if the PIN profile specifies the ISO-0 or
VISA-4 keyword for the PIN block format. Otherwise, ensure that this
parameter is a 4-byte variable in application storage. The information in this
variable will be ignored, but the variable must be specified.

Note: When using the ISO-0 keyword, use the 12 rightmost digit of the PAN
data, excluding the check digit. When using the VISA-4 keyword, use the 12
leftmost digits of the PAN data, excluding the check digit.

sequence_number

Direction Type

Input Integer

The 4-byte string that contains the sequence number used by certain PIN block
formats. The service uses this parameter if the PIN profile specifies the 3621 or
4704-EPP keyword for the PIN block format. Otherwise, ensure that this
parameter is a 4-byte variable in application data storage. The information in
the variable will be ignored, but the variable must be declared. To enter a
sequence number, do this:
v Enter 99999 to use a random sequence number that the service generates.
v For the 3621 PIN block format, enter a value in the range from 0 to 65535.
v For the 4704-EPP PIN block format, enter a value in the range from 0 to 255.

encrypted_PIN_block

Direction Type

Output String

The field where the service returns the 8-byte encrypted PIN.

Restrictions
The format control specified in the PIN profile must be NONE.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

SAF will be invoked to check authorization to use the Encrypted PIN Generate
service and any key labels specified as input.

Access Control Points
This table shows the access control points in the domain role that control the
function of this service.

Table 201. Required access control points for Encrypted PIN Generate

Rule array keywords Access control point

IBM-PIN Encrypted PIN Generate - 3624

GBP-PIN Encrypted PIN Generate - GBP

INBK-PIN Encrypted PIN Generate - Interbank

Encrypted PIN Generate

Chapter 8. Financial Services 481

|

|

If the ANSI X9.8 PIN – Use stored decimalization tables only access control point
is enabled in the domain role, any decimalization table specified must match one
of the active decimalization tables in the coprocessors.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 202. Encrypted PIN generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

ISO-3 PIN block format is not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor ISO-3 PIN block format requires the Nov.

2007 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

ISO-3 PIN block format requires the Nov.
2007 or later licensed internal code (LIC).

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Encrypted PIN Translate (CSNBPTR and CSNEPTR)
Use the encrypted PIN translate callable service to reencipher a PIN block from
one PIN-encrypting key to another and, optionally, to change the PIN block format,
such as the pad digit or sequence number.

The unique-key-per-transaction key derivation for single and double-length keys is
available for the encrypted PIN translate service. This support is available for the
input_PIN_encrypting_key_identifier and the output_PIN_encrypting_key_identifier
parameters for both REFORMAT and TRANSLAT process rules. The rule_array
keyword determines which PIN key(s) are derived key(s).

The encrypted PIN translate service can be used for unique-key-per-transaction key
derivation.

An enhanced PIN security mode is available for formatting an encrypted PIN
block into IBM 3621 format or IBM 3624 format. To do this, you must enable the
PTR Enhanced PIN Security access control point in the domain role. When
activated, this mode limits checking of the PIN to decimal digits. No other PIN
block consistency checking will occur.

Encrypted PIN Generate

482 z/OS ICSF Application Programmer's Guide

|
|
|
|
|

The enhanced PIN security mode also extracts PINs from encrypted PIN blocks.
This mode only applies when specifying a PIN-extraction method for an IBM 3621
or an IBM 3624 PIN-block. You must enable the Enhanced PIN Security access
control point in the domain role. When activated, this mode limits checking of the
PIN to decimal digits and a PIN length minimum of 4 is enforced. As with
formatting an encrypted PIN block, no other PIN-block consistency checking will
occur.

An enhanced PIN security mode on the CEX3C and later is available to implement
restrictions required by the ANSI X9.8 PIN standard. To enforce these restrictions,
you must enable the following control points in the domain role.
v ANSI X9.8 PIN - Enforce PIN block restrictions
v ANSI X9.8 PIN - Allow modification of PAN
v ANSI X9.8 PIN - Allow only ANSI PIN blocks

The callable service name for AMODE(64) invocation is CSNEPTR.

Format
CALL CSNBPTR(

return_code,
reason_code,
exit_data_length,
exit_data,
input_PIN_encrypting_key_identifier,
output_PIN_encrypting_key_identifier,
input_PIN_profile,
PAN_data_in,
PIN_block_in,
rule_array_count,
rule_array,
output_PIN_profile,
PAN_data_out,
sequence_number,
PIN_block_out)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Encrypted PIN Translate

Chapter 8. Financial Services 483

|

|
|
|

|

|

|

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

input_PIN_encrypting_key_identifier

Direction Type

Input/Output String

The input PIN-encrypting key (IPINENC) for the PIN_block_in parameter
specified as a 64-byte internal key token or a key label. If keyword UKPTIPIN,
UKPTBOTH, DUKPT-IP or DUKPT-BH is specified in the rule_array, then the
input_PIN_encrypting_key_identifier must specify a key token or key label of a
KEYGENKY with the UKPT usage bit enabled.

output_PIN_encrypting_key_identifier

Direction Type

Input/Output String

The output PIN-encrypting key (OPINENC) for the PIN_block_out parameter
specified as a 64-byte internal key token or a key label. If keyword
UKPTOPIN, UKPTBOTH, DUKPT-OP or DUKPT-BH is specified in the
rule_array, then the output_PIN_encrypting_key_identifier must specify a key
token or key label of a KEYGENKY with the UKPT usage bit enabled.

input_PIN_profile

Direction Type

Input Character String

The three 8-byte character elements that contain information necessary to either
create a formatted PIN block or extract a PIN from a formatted PIN block. A
particular PIN profile can be either an input PIN profile or an output PIN
profile depending on whether the PIN block is being enciphered or deciphered
by the callable service. See “The PIN Profile” on page 453 for additional
information.

The pad digit is needed to extract the PIN from a 3624 or 3621 PIN block in
the Encrypted PIN translate callable service with a process rule (rule_array
parameter) of REFORMAT. If the process rule is TRANSLAT, the pad digit is
ignored.

PAN_data_in

Encrypted PIN Translate

484 z/OS ICSF Application Programmer's Guide

Direction Type

Input Character String

The personal account number (PAN) if the process rule (rule_array parameter)
is REFORMAT and the input PIN format is ISO-0 or VISA-4 only. Otherwise,
this parameter is ignored. Specify 12 digits of account data in character format.

For ISO-0, use the rightmost 12 digits of the PAN, excluding the check digit.

For VISA-4, use the leftmost 12 digits of the PAN, excluding the check digit.

PIN_block_in

Direction Type

Input String

The 8-byte enciphered PIN block that contains the PIN to be translated.

rule_array_count

Direction Type

Input Integer

The number of process rules specified in the rule_array parameter. The value
may be 1, 2 or 3.

rule_array

Direction Type

Input Character String

The process rule for the callable service.

Table 203. Keywords for Encrypted PIN Translate

Keyword Meaning

Processing Rules (required)

REFORMAT Changes the PIN format, the contents of the PIN block, and
the PIN-encrypting key.

TRANSLAT Changes the PIN-encrypting key only. It does not change
the PIN format and the contents of the PIN block.

PIN Block Format and PIN
Extraction Method (optional)

See “PIN Block Format and PIN Extraction Method
Keywords” on page 454 for additional information and a
list of PIN block formats and PIN extraction method
keywords.
Note: If a PIN extraction method is not specified, the first
one listed in Table 176 on page 454 for the PIN block format
will be the default.

DUKPT Keywords - Single length key derivation (optional)

UKPTIPIN The input_PIN_encrypting_key_identifier is derived as a single
length key. The input_PIN_encrypting_key_identifier must be a
KEYGENKY key with the UKPT usage bit enabled. The
input_PIN_profile must be 48 bytes and contain the key serial
number.

Encrypted PIN Translate

Chapter 8. Financial Services 485

Table 203. Keywords for Encrypted PIN Translate (continued)

Keyword Meaning

UKPTOPIN The output_PIN_encrypting_key_identifier is derived as a
single length key. The output_PIN_encrypting_key_identifier
must be a KEYGENKY key with the UKPT usage bit
enabled. The output_PIN_profile must be 48 bytes and
contain the key serial number.

UKPTBOTH Both the input_PIN_encrypting_key_identifier and the
output_PIN_encrypting_key_identifier are derived as a single
length key. Both the input_PIN_encrypting_key_identifier and
the output_PIN_encrypting_key_identifier must be
KEYGENKY keys with the UKPT usage bit enabled. Both
the input_PIN_profile and the output_PIN_profile must be 48
bytes and contain the respective key serial number.

DUKPT Keywords - double length key derivation (optional) - requires May 2004 or later
version of Licensed Internal Code (LIC)

DUKPT-IP The input_PIN_encrypting_key_identifier is derived as a
double length key. The input_PIN_encrypting_key_identifier
must be a KEYGENKY key with the UKPT usage bit
enabled. The input_PIN_profile must be 48 bytes and contain
the key serial number.

DUKPT-OP The output_PIN_encrypting_key_identifier is derived as a
double length key. The output_PIN_encrypting_key_identifier
must be a KEYGENKY key with the UKPT usage bit
enabled. The output_PIN_profile must be 48 bytes and
contain the key serial number.

DUKPT-BH Both the input_PIN_encrypting_key_identifier and the
output_PIN_encrypting_key_identifier are derived as a double
length key. Both the input_PIN_encrypting_key_identifier and
the output_PIN_encrypting_key_identifier must be
KEYGENKY keys with the UKPT usage bit enabled. Both
the input_PIN_profile and the output_PIN_profile must be 48
bytes and contain the respective key serial number.

output_PIN_profile

Direction Type

Input Character String

The three 8-byte character elements that contain information necessary to either
create a formatted PIN block or extract a PIN from a formatted PIN block. A
particular PIN profile can be either an input PIN profile or an output PIN
profile, depending on whether the PIN block is being enciphered or deciphered
by the callable service.
v If you choose the REFORMAT processing rule in the rule_array parameter,

the input PIN profile and output PIN profile can have different PIN block
formats.

v If you specify UKPTOPIN or UKPTBOTH in the rule_array parameter, then
the output_PIN_profile is extended to a 48-byte field and must contain the
current key serial number. See “The PIN Profile” on page 453 for additional
information.

Encrypted PIN Translate

486 z/OS ICSF Application Programmer's Guide

|
|
|

|
|
|
|

v If you specify DUKPT-OP or DUKPT-BH in the rule_array parameter, then
the output_PIN_profile is extended to a 48-byte field and must contain the
current key serial number. See “The PIN Profile” on page 453 for additional
information.

PAN_data_out

Direction Type

Input Character String

The personal account number (PAN) if the process rule (rule_array parameter)
is REFORMAT and the output PIN format is ISO-0 or VISA-4 only. Otherwise,
this parameter is ignored. Specify 12 digits of account data in character format.

For ISO-0, use the rightmost 12 digits of the PAN, excluding the check digit.

For VISA-4, use the leftmost 12 digits of the PAN, excluding the check digit.

sequence_number

Direction Type

Input Integer

The sequence number if the process rule (rule_array parameter) is REFORMAT
and the output PIN block format is 3621 or 4704-EPP only. Specify the integer
value 99999. Otherwise, this parameter is ignored.

PIN_block_out

Direction Type

Output String

The 8-byte output PIN block that is reenciphered.

Restrictions
PAD digit restricted to non-decimal digit when Enhanced PIN Security access
control point is enabled and if the output PIN profile specifies 3624 or 3621 as the
PIN-block format.

The format control specified in the PIN profile must be NONE.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Some PIN block formats are known by several names. This table shows the
additional names.

Table 204. Additional Names for PIN Formats

PIN Format Additional Name

ISO-0 ANSI X9.8, VISA format 1, ECI format 1

ISO-1 ECI format 4

Encrypted PIN Translate

Chapter 8. Financial Services 487

|
|
|
|

|

|

|
|

|
|

||

||

||

||
|

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Table 205. Required access control points for Encrypted PIN Translate

Processing rule Access control point

TRANSLAT Encrypted PIN Translate - Translate

REFORMAT Encrypted PIN Translate - Reformat

If any of the Unique Key per Transaction rule array keywords are specified, the
UKPT - PIN Verify, PIN Translate access control point must be enabled.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 206. Encrypted PIN translate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

ISO-3 PIN block format is not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

ISO-3 PIN block format requires the Nov.
2007 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

ISO-3 PIN block format requires the Nov.
2007 or later licensed internal code (LIC).

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Encrypted PIN Verify (CSNBPVR and CSNEPVR)
Use the Encrypted PIN verify callable service to verify that one of these customer
selected trial PINs is valid:
v IBM 3624 (IBM-PIN)
v IBM 3624 PIN offset (IBM-PINO)
v IBM German Bank Pool (GBP-PIN)
v VISA PIN validation value (VISA-PVV)
v VISA PIN validation value (VISAPVV4)
v Interbank PIN (INBK-PIN)

Encrypted PIN Translate

488 z/OS ICSF Application Programmer's Guide

|

|

|

The unique-key-par-transaction key derivation for single and double-length keys is
available for the input_PIN_encrypting_key_identifier parameter.

An enhanced PIN security mode is available for extracting PINs from encrypted
PIN blocks. This mode only applies when specifying a PIN-extraction method for
an IBM 3621 or an IBM 3624 PIN-block. To do this, you must enable the PTR
Enhanced PIN Security access control point in the domain role. When activated,
this mode limits checking of the PIN to decimal digits and a PIN length minimum
of 4 is enforced. No other PIN-block consistency checking will occur.

The callable service name for AMODE(64) invocation is CSNEPVR.

Format
CALL CSNBPVR(

return_code,
reason_code,
exit_data_length,
exit_data,
input_PIN_encrypting_key_identifier,
PIN_verifying_key_identifier,
input_PIN_profile,
PAN_data,
encrypted_PIN_block,
rule_array_count,
rule_array,
PIN_check_length,
data_array)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Encrypted PIN Verify

Chapter 8. Financial Services 489

|
|
|
|
|
|

Direction Type

Input/Output String

The data that is passed to the installation exit.

input_PIN_encrypting_key_identifier

Direction Type

Input/Output String

The 64-byte key label or internal key token containing the PIN-encrypting key
(IPINENC) that enciphers the PIN block. If keyword UKPTIPIN or DUKPT-IP
is specified in the rule_array, then the input_PIN_encrypting_key_identifier must
specify a key token or key label of a KEYGENKY with the UKPT usage bit
enabled.

PIN_verifying_key_identifier

Direction Type

Input/Output String

The 64-byte key label or internal key token that identifies the PIN verify
(PINVER) key.

input_PIN_profile

Direction Type

Input/Output Character string

The three 8-byte character elements that contain information necessary to either
create a formatted PIN block or extract a PIN from a formatted PIN block. A
particular PIN profile can be either an input PIN profile or an output PIN
profile depending on whether the PIN block is being enciphered or deciphered
by the callable service. If you specify UKPTIPIN in the rule_array parameter,
then the input_PIN_profile is extended to a 48-byte field and must contain the
current key serial number. See “The PIN Profile” on page 453 for additional
information.

If you specify DUKPT-IP in the rule_array parameter, then the input_PIN_profile
is extended to a 48-byte field and must contain the current key serial number.
See “The PIN Profile” on page 453 for additional information.

The pad digit is needed to extract the PIN from a 3624 or 3621 PIN block in
the encrypted PIN verify callable service.

PAN_data

Direction Type

Input Character String

The personal account number (PAN) is required for ISO-0 and VISA-4 only.
Otherwise, this parameter is ignored. Specify 12 digits of account data in
character format.

For ISO-0, use the rightmost 12 digits of the PAN, excluding the check digit.

For VISA-4, use the leftmost 12 digits of the PAN, excluding the check digit.

Encrypted PIN Verify

490 z/OS ICSF Application Programmer's Guide

encrypted_PIN_block

Direction Type

Input String

The 8-byte enciphered PIN block that contains the PIN to be verified.

rule_array_count

Direction Type

Input Integer

The number of process rules specified in the rule_array parameter. The value
may be 1, 2 or 3.

rule_array

Direction Type

Input Character String

The process rule for the PIN verify algorithm.

Table 207. Keywords for Encrypted PIN Verify

Keyword Meaning

Algorithm Value (required)

GBP-PIN The IBM German Bank Pool PIN. It verifies the PIN entered
by the customer and compares that PIN with the institution
generated PIN by using an institution key.

IBM-PIN The IBM 3624 PIN, which is an institution-assigned PIN. It
does not calculate the PIN offset.

IBM-PINO The IBM 3624 PIN offset, which is a customer-selected PIN
and calculates the PIN offset.

INBK-PIN The Interbank PIN verify algorithm.

VISA-PVV The VISA PIN verify value.

VISAPVV4 The VISA PIN verify value. If the length is 4 digits, normal
processing for VISA-PVV will occur. If the length is greater
than 4 digits, the service will fail.

PIN Block Format and PIN
Extraction Method (optional)

See “PIN Block Format and PIN Extraction Method
Keywords” on page 454 for additional information and a
list of PIN block formats and PIN extraction method
keywords.
Note: If a PIN extraction method is not specified, the first
one listed in Table 176 on page 454 for the PIN block format
will be the default.

DUKPT Rule (one optional)

UKPTIPIN The input_PIN_encrypting_key_identifier is derived as a single
length key. The input_PIN_encrypting_key_identifier must be a
KEYGENKY key with the UKPT usage bit enabled. The
input_PIN_profile must be 48 bytes and contain the key serial
number.

Encrypted PIN Verify

Chapter 8. Financial Services 491

|
|
|

Table 207. Keywords for Encrypted PIN Verify (continued)

Keyword Meaning

DUKPT-IP The input_PIN_encrypting_key_identifier is to be derived
using the DUKPT algorithm. The
input_PIN_encrypting_key_identifier must be a KEYGENKY
key with the DUKPT usage bit enabled. The
input_PIN_profile must be 48 bytes and contain the key serial
number.

PIN_check_length

Direction Type

Input Integer

The PIN check length for the IBM-PIN or IBM-PINO process rules only.
Otherwise, it is ignored. Specify the rightmost digits, 4 through 16, for the PIN
to be verified.

data_array

Direction Type

Input String

Three 16-byte elements required by the corresponding rule_array parameter.
The data array consists of three 16-byte fields whose specification depend on
the process rule. If a process rule only requires one or two 16-byte fields, then
the rest of the data array is ignored by the callable service. Table 208 describes
the array elements.

Table 208. Array Elements for the Encrypted PIN Verify Callable Service

Array Element Description

Decimalization_table Decimalization table for IBM and GBP only. Sixteen decimal
digits of 0 through 9.
Note: If the ANSI X9.8 PIN – Use stored decimalization
tables only access control point is enabled in the domain role,
this table must match one of the active decimalization tables in
the coprocessors.

PIN_offset Offset data for IBM-PINO. One to twelve numeric characters, 0
through 9, left-justified and padded on the right with blanks.
The PIN offset length is specified in the PIN_check_length
parameter. For IBM-PIN and GBP-PIN, the field is ignored.

trans_sec_parm For VISA, only the leftmost twelve digits of the 16-byte field
are used. These consist of the rightmost eleven digits of the
personal account number (PAN) and a one-digit key index.
The remaining four characters are ignored.

For Interbank only, all 16 bytes are used. These consist of the
rightmost eleven digits of the PAN, a constant of X'6', a
one-digit key index, and three numeric digits of PIN
validation data.

RPVV For VISA-PVV only, referenced PVV (4 bytes) that is
left-justified. The rest of the field is ignored.

Validation_data Validation data for IBM and GBP padded to 16 bytes. One to
sixteen characters of hexadecimal account data left-justified
and padded on the right with blanks.

Encrypted PIN Verify

492 z/OS ICSF Application Programmer's Guide

|
|
|
|

Table 209 lists the data array elements required by the process rule (rule_array
parameter). The numbers refer to the process rule's position within the array.

Table 209. Array Elements Required by the Process Rule

Process Rule IBM-PIN IBM-PINO GBP-PIN VISA-PVV INBK-PIN

Decimalization_table 1 1 1

Validation_data 2 2 2

PIN_offset 3 3 3

Trans_sec_parm 1 1

RPVV 2

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Access Control Points
This table shows the access control points in the domain role that control the
function of this service.

Table 210. Required access control points for Encrypted PIN Verify

Process rule Access control point

IBM-PIN
IBM-PINO

Encrypted PIN Verify - 3624

GBP-PIN
Encrypted PIN Verify - GBP

VISA-PVV Encrypted PIN Verify - VISA PVV

INBK-PIN Encrypted PIN Verify - Interbank

If any of the Unique Key per Transaction rule array keywords, the UKPT - PIN
Verify, PIN Translate access control point must be enabled.

If the ANSI X9.8 PIN – Use stored decimalization tables only access control point
is enabled in the domain role, any decimalization table specified must match one
of the active decimalization tables in the coprocessors.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 211. Encrypted PIN verify required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

ISO-3 PIN block format is not supported.

Encrypted PIN Verify

Chapter 8. Financial Services 493

||

||||||

||||||

||||||

||||||

||||||

||||||
|

|

|
|

|

|

Table 211. Encrypted PIN verify required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

ISO-3 PIN block format requires the Nov.
2007 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

ISO-3 PIN block format requires the Nov.
2007 or later licensed internal code (LIC).

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Related Information
“PIN Formats and Algorithms” on page 893 discusses the PIN algorithms in detail.

PIN Change/Unblock (CSNBPCU and CSNEPCU)
The PIN Change/Unblock callable service is used to generate a special PIN block
to change the PIN accepted by an integrated circuit card (smartcard). The special
PIN block is based on the new PIN and the card-specific diversified key and,
optionally, on the current PIN of the smartcard. The new PIN block is encrypted
with a session key. The session key is derived in a two-step process. First, the
card-specific diversified key (ICC Master Key) is derived using the TDES-ENC
algorithm of the diversified key generation callable service. The session key is then
generated according to the rule array algorithm:
v TDES-XOR - XOR ICC Master Key with the Application Transaction Counter

(ATC)
v TDESEMV2 - use the EMV2000 algorithm with a branch factor of 2
v TDESEMV4 - use the EMV2000 algorithm with a branch factor of 4

The generating DKYGENKY cannot have replicated halves. The
encryption_issuer_master_key_identifier is a DKYGENKY that permits generation of a
SMPIN key. The authentication_ issuer_master_key_identifier is also a DKYGENKY
that permits generation of a double length MAC key.

The PIN block format is specified by the VISA ICC Card specification: mutually
exclusive rule array keywords, AMEXPCU1, AMEXPCU2, VISAPCU1 and
VISAPCU2. They refer to whether the current PIN is used in the generation of the
new PIN.
v VISAPCU1 would create a new PIN for a card without a PIN in an encrypted

PIN-block in the new_reference_PIN_block variable. The contents of the five
current_reference_PIN_ variables are ignored.

Encrypted PIN Verify

494 z/OS ICSF Application Programmer's Guide

|
|

|
|

|

|

v VISAPCU2 would provide the existing PIN for a card with a current PIN in an
encrypted PIN-block in the current_reference_PIN_block variable, and supply
the new PIN-value in an encrypted PIN-block in the new_reference_PIN_block
variable.

v AMEXPCU1 would create the output PIN from the new-reference PIN, the smart
card-unique, intermediate key, and the current-reference PIN.

v AMEXPCU2 would create the output PIN from the new-reference PIN and the
smart-card-unique, intermediate key.

An enhanced PIN security mode is available for extracting PINs from encrypted
PIN blocks. This mode only applies when specifying a PIN-extraction method for
an IBM 3621 or an IBM 3624 PIN-block. To do this, you must enable the PTR
Enhanced PIN Security access control point in the domain role. When activated,
this mode limits checking of the PIN to decimal digits and a PIN length minimum
of 4 is enforced. No other PIN-block consistency checking will occur.

The callable service name for AMODE(64) invocation is CSNEPCU.

Format
CALL CSNBPCU(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
authentication_issuer_master_key_length,
authentication_issuer_master_key_identifier,
encryption_issuer_master_key_length,
encryption_issuer_master_key_identifier,
key_generation_data_length,
key_generation_data,
new_reference_PIN_key_length,
new_reference_PIN_key_identifier,
new_reference_PIN_block,
new_reference_PIN_profile,
new_reference_PIN_PAN_data,
current_reference_PIN_key_length,
current_reference_PIN_key_identifier,
current_reference_PIN_block,
current_reference_PIN_profile,
current_reference_PIN_PAN_data,
output_PIN_data_length,
output_PIN_data,
output_PIN_profile,
output_PIN_message_length,
output_PIN_message)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

PIN Change/Unblock

Chapter 8. Financial Services 495

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The
valid values are 1 and 2.

rule_array

Direction Type

Input String

Keywords that provides control information to the callable service. The
keywords are left-justified in an 8-byte field and padded on the right with
blanks. The keywords must be in contiguous storage. Specify one or two of
these options:

Table 212. Rule Array Keywords for PIN Change/Unblock

Keyword Meaning

Algorithm (optional)

TDES-XOR TDES encipher clear data to generate the intermediate
(card-unique) key, followed by XOR of the final 2 bytes of each
key with the ATC counter. This is the default.

TDESEMV2 Same processing as in the diversified key generate service.

TDESEMV4 Same processing as in the diversified key generate service.

PIN processing method (required)

VISAPCU1 Form the new PIN from the new reference PIN and the
smart-card-unique, intermediate key.

PIN Change/Unblock

496 z/OS ICSF Application Programmer's Guide

Table 212. Rule Array Keywords for PIN Change/Unblock (continued)

Keyword Meaning

VISAPCU2 Form the new PIN from the new reference PIN and the
smart-card-unique, the intermediate (card-unique) key and the
current reference PIN.

AMEXPCU1 Form the new PIN from the new reference PIN, the
smart-card-unique, intermediate key, and the current reference
PIN.

AMEXPCU2 Form the new PIN from the new reference PIN and the
smart-card-unique, intermediate key.

authentication_issuer_master_key_length

Direction Type

Input Integer

The length of the authentication_issuer_master_key_identifier parameter. The value
must be 64.

authentication_issuer_master_key_identifier

Direction Type

Input/Output String

The label name or internal token of a DKYGENKY key type that is to be used
to generate the card-unique diversified key. The control vector of this key must
be a DKYL0 key that permits the generation of a double-length MAC key
(DMAC). This DKYGENKY may not have replicated key halves.

encryption_issuer_master_key_length

Direction Type

Input Integer

The length of the encryption_issuer_master_key_identifier parameter. The value
must be 64.

encryption_issuer_master_key_identifier

Direction Type

Input/Output String

The label name or internal token of a DKYGENKY key type that is to be used
to generate the card-unique diversified key and the secure messaging session
key for the protection of the output PIN block. The control vector of this key
must be a DKYL0 key that permits the generation of a SMPIN key type. This
DKYGENKY may not have replicated key halves.

key_generation_data_length

Direction Type

Input Integer

PIN Change/Unblock

Chapter 8. Financial Services 497

The length of the key_generation_data parameter. This value must be 10, 18, 26
or 34 bytes.

key_generation_data

Direction Type

Input String

The data provided to generate the card-unique session key. For TDES-XOR,
this consists of 8 or 16 bytes of data to be processed by TDES to generate the
card-unique diversified key followed by a 16 bit ATC counter to offset the
card-unique diversified key to form the session key. For TDESEMV2 and
TDESEMV4, this may be 10, 18, 26 or 34 bytes. See “Diversified Key Generate
(CSNBDKG and CSNEDKG)” on page 113 for more information.

new_reference_PIN_key_length

Direction Type

Input Integer

The length of the new_reference_PIN_key_identifier parameter. The value must be
64.

new_reference_PIN_key_identifier

Direction Type

Input/Output String

The label name or internal token of a PIN encrypting key that is to be used to
decrypt the new_reference_PIN_block. This must be an IPINENC or OPINENC
key. If the label name is supplied, the name must be unique in the CKDS.

new_reference_PIN_block

Direction Type

Input String

This is an 8-byte field that contains the enciphered PIN block of the new PIN.

new_reference_PIN_profile

Direction Type

Input String

This is a 24-byte field that contains three 8-byte elements with a PIN block
format keyword, a format control keyword (NONE) and a pad digit as
required by certain formats.

new_reference_PIN_PAN_data

Direction Type

Input String

This is a 12-byte field containing PAN in character format. This data may be
needed to recover the new reference PIN if the format is ISO-0 or VISA-4. If
neither is used, this parameter may be blanks.

PIN Change/Unblock

498 z/OS ICSF Application Programmer's Guide

current_reference_PIN_key_length

Direction Type

Input Integer

The length of the current_reference_PIN_key_identifier parameter. The value must
be 64. If the rule_array contains VISAPCU1 or AMEXPCU2, this value must be
0.

current_reference_PIN_key_identifier

Direction Type

Input/Output String

The label name or internal token of a PIN encrypting key that is to be used to
decrypt the current_reference_PIN_block. This must be an IPINENC or
OPINENC key. If the labelname is supplied, the name must be unique on the
CKDS. If the rule_array contains VISAPCU1 or AMEXPCU2, this value is
ignored.

current_reference_PIN_block

Direction Type

Input String

This is an 8-byte field that contains the enciphered PIN block of the new PIN.
If the rule_array contains VISAPCU1 or AMEXPCU2, this value is ignored.

current_reference_PIN_profile

Direction Type

Input String

This is a 24-byte field that contains three 8-byte elements with a PIN block
format keyword, a format control keyword (NONE) and a pad digit as
required by certain formats. If the rule_array contains VISAPCU1 or
AMEXPCU2, this value is ignored.

current_reference_PIN_PAN_data

Direction Type

Input String

This is a 12-byte field containing PAN in character format. If the VISAPCU2 or
the AMEXPCU1 rule_array keyword is present and the PIN-profile specifies an
ISO-0 or ISO-3 PIN-block format, the variable contains the PAN data. PAN
data is used to recover a PIN from an ISO-0 or ISO-3 PIN block.

output_PIN_data_length

Direction Type

Input Integer

The value of this parameter should be 0.

output_PIN_data

PIN Change/Unblock

Chapter 8. Financial Services 499

Direction Type

Input String

This field is reserved.

output_PIN_profile

Direction Type

Input String

This is a 24-byte field that contains three 8-byte elements with a PIN block
format keyword (VISAPCU1, VISAPCU2, AMEXPCU1 or AMEXPCU2), a
format control keyword, NONE, (left aligned and padded on the right with
space characters) and 8 byte spaces.

output_PIN_message_length

Direction Type

Input/Output Integer

The length of the output_PIN_message field. The value must be at least 16.
VISAPCU1 and VISAPCU2 and at least 8 for AMEXPCU1 and AMEXPCU2.

output_PIN_message

Direction Type

Output String

The reformatted PIN block with the new reference PIN enciphered under the
SMPIN session key.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Table 213. Required access control points for PIN Change/Unblock

PIN-block encrypting key-type Access control point

OPINENC PIN Change/Unblock - change EMV PIN with
OPINENC

IPINENC PIN Change/Unblock - change EMV PIN with
IPINENC

When the authentication_key_identifier or encryption_key_identifier is specified with
control vector bits (19 – 22) of B'1111', the Diversified Key Generate -
DKYGENKY – DALL access control point must also be enabled.

PIN Change/Unblock

500 z/OS ICSF Application Programmer's Guide

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 214. PIN Change/Unblock hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

ISO-3 PIN block format is not supported.

AMEXPCU1 and AMEXPCU2 keywords not
supported.

IBM System z9 EC
and z9 BC

Crypto Express2
Coprocessor ISO-3 PIN block format requires the Nov.

2007 or later licensed internal code (LIC).

AMEXPCU1 and AMEXPCU2 keywords
require May, 2012 or later version of LIC.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

ISO-3 PIN block format requires the Nov.
2007 or later licensed internal code (LIC).

AMEXPCU1 and AMEXPCU2 keywords
require May, 2012 or later version of LIC for
Crypto Express2.

AMEXPCU1 and AMEXPCU2 keywords
require June, 2012 or later version of LIC
for Crypto Express3.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor AMEXPCU1 and AMEXPCU2 keywords

require June, 2012 or later version of LIC.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

AMEXPCU1 and AMEXPCU2 keywords
require June, 2012 or later version of LIC
for Crypto Express3.

AMEXPCU1 and AMEXPCU2 keywords
require September, 2012 or later version of
LIC for Crypto Express4.

Recover PIN from Offset (CSNBPFO and CSNEPFO)
Use the RecoverPINfromOffset callable service to calculate the encrypted
customer-entered PIN from a PIN generating key, account information, and an
IBM-PIN0 Offset. The customer-entered PIN will be returned in a PIN block
formatted to the specifications of the PIN_profile and PAN_data, and encrypted
with the key supplied in the PIN_encryption_key_identifier.

The callable service name for AMODE(64) invocation is CSNEPFO.

Format
CALL CSNBPFO(

return_code,
reason_code,
exit_data_length,

PIN Change/Unblock

Chapter 8. Financial Services 501

|

|
|
|
|
|

|

|

|
|
|
|

exit_data,
rule_array_count,
rule_array,
PIN_encryption_key_identifier_length,
PIN_encryption_key_identifier,
PIN_generation_key_identifier_length,
PIN_generation_key_identifier,
PIN_profile,
PAN_data,
offset,
reserved_1,
data_array,
encrypted_PIN_block_length,
encrypted_PIN_block)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be 0.

Recover PIN from Offset

502 z/OS ICSF Application Programmer's Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|||

||
|

|
|

|

|||

||
|

|
|
|
|

|

|||

||
|

|
|
|

|

|||

||
|

|

|

|||

||
|

|
|

rule_array

Direction Type

Input String

This parameter is ignored by ICSF.

PIN_encryption_key_identifier_length

Direction Type

Input Integer

Length of the PIN_encryption_key_identifier field in bytes. This value must be
64.

PIN_encryption_key_identifier

Direction Type

Input/Output String

An internal key token or the label of the CKDS record containing an OPINENC
key that is used to encrypt the returned_encrypted_PIN_block.

If the token supplied was encrypted under the old master key, the token will
be returned encrypted under the current master key.

PIN_generation_key_identifier_length

Direction Type

Input Integer

Length of the PIN_generation_key_identifier field in bytes. This value must be 64.

PIN_generation_key_identifier

Direction Type

Input String

An internal key token or the label of the CKDS record containing a PINGEN
key that is used to generate the bank reference PIN.

If the token supplied was encrypted under the old master key, the token will
be returned encrypted under the current master key.

PIN_profile

Direction Type

Input String

The parameter consists of three 8-byte character elements that contain
information necessary to format a PIN block. The pad digit is needed to format
an IBM 3624 or 3621 PIN block. The format control constant must be "NONE ".
The first element of the PIN_profile (PIN Block Format) determines the format
of the output PIN block.

PAN_data

Recover PIN from Offset

Chapter 8. Financial Services 503

|

|||

||
|

|

|

|||

||
|

|
|

|

|||

||
|

|
|

|
|

|

|||

||
|

|

|

|||

||
|

|
|

|
|

|

|||

||
|

|
|
|
|
|

|
|

Direction Type

Input String

A 12-byte PAN in character format. The personal account number is used in
formatting the PIN block if the PIN profile specifies ISO-0, ISO-3, or VISA-4
block formats. Otherwise, ensure that this parameter is a 12-byte variable in
application storage. The information in this variable will be ignored, but the
variable must be specified.

offset

Direction Type

Input String

A 16 byte area that contains the 4-byte PVV left-justified and padded with
blanks. This is the value which was returned by a prior call to the Clean PIN
Generate Alternate callable service.

data_array

Direction Type

Input String

The data_array parameter is a pointer to a string variable containing three
16-byte numeric character strings, which are equivalent to a single 48-byte
string. The values in the data array depend on the keyword for the
PIN-calculation method. Each element is not always used, but you must
always declare a complete data array.

Array Element Description

decimalization_table This element contains the decimalization table of 16 characters
(0-9) that are used to convert the hexadecimal digits '0'x to 'F'x of
the enciphered validation data to the decimal digits '0'x to '9'x

validation_data This element contains 1 to 16 characters of account data, left
justified and padded on the right with spaces.

reserved_field Must be 16 bytes of blanks

reserved_1

Direction Type

Input Integer

The reserved_1 parameter must be zero.

encrypted_PIN_block_length

Direction Type

Input/Output Integer

The length of the encrypted_PIN_block parameter in bytes.

encrypted_PIN_block

Recover PIN from Offset

504 z/OS ICSF Application Programmer's Guide

|||

||
|

|
|
|
|
|

|

|||

||
|

|
|
|

|

|||

||
|

|
|
|
|
|

|||

||
|
|

||
|

||
|

|

|||

||
|

|

|

|||

||
|

|

|
|

Direction Type

Output String

his parameter is an 8-byte field that contains the encrypted customer PIN that
was originally used in the Clear PIN Generate Alternate service.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Access Control Point
The Recover PIN From Offset access control point controls the function of this
service.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 215. Recover PIN from Offset required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

This callable service is not supported.

IBM System z9 EC

IBM System z9 BC

This callable service is not supported.

IBM System z10 EC

IBM System z10 BC

This callable service is not supported.

IBM zEnterprise 196

IBM zEnterprise 114

This callable service is not supported.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Recover PIN From Offset requires the Sep.
2013 or later LIC.

Secure Messaging for Keys (CSNBSKY and CSNESKY)
The Secure Messaging for Keys callable service will encrypt a text block including
a clear key value decrypted from an internal or external DES token. The text block
is normally a "Value" field of a secure message TLV (Tag/Length/Value) element of
a secure message. TLV is defined in ISO/IEC 7816-4.

The callable service name for AMODE(64) invocation is CSNESKY.

Recover PIN from Offset

Chapter 8. Financial Services 505

|||

||
|

|
|

|

|
|

|

|
|

|

|
|

||

||
|
|

|

|
|

|
|

||

|

|

||

|

|

||

|

|

||

|

|

|
|

|
|

|
|

|

|

Format
CALL CSNBSKY(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
input_key_identifier,
key_encrypting_key_identifier,
secmsg_key_identifier,
text_length,
clear_text,
initialization_vector,
key_offset,
key_offset_field_length,
enciphered_text,
output_chaining_vector)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Secure Messaging for Keys

506 z/OS ICSF Application Programmer's Guide

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The
valid values are 0 and 1.

rule_array

Direction Type

Input Character String

Keywords that provides control information to the callable service. The
processing method is the encryption mode used to encrypt the message.

Table 216. Rule Array Keywords for Secure Messaging for Keys

Keyword Meaning

Enciphering mode (optional)

TDES-CBC Use CBC mode to encipher the message (default).

TDES-ECB Use EBC mode to encipher the message.

input_key_identifier

Direction Type

Input/Output String

The internal token, external token, or key label of an internal token of a double
length DES key. The key is recovered in the clear and placed in the text to be
encrypted. The control vector of the DES key must not prohibit export.

key_encrypting_key_identifier

Direction Type

Input/Output String

If the input_key_identifier is an external token, then this parameter is the
internal token or the key label of the internal token of IMPORTER or
EXPORTER. If it is not, it is a null token. If a key label is specified, the key
label must be unique.

secmsg_key_identifier

Direction Type

Input/Output String

The internal token or key label of a secure message key for encrypting keys.
This key is used to encrypt the updated clear_text containing the recovered
DES key.

text_length

Direction Type

Input Integer

Secure Messaging for Keys

Chapter 8. Financial Services 507

The length of the clear_text parameter that follows. Length must be a multiple
of eight. Maximum length is 4K.

clear_text

Direction Type

Input String

Clear text that contains the recovered DES key at the offset specified and is
then encrypted. Any padding or formatting of the message must be done by
the caller on input.

initialization_vector

Direction Type

Input String

The 8-byte supplied string for the TDES-CBC mode of encryption. The
initialization_vector is XORed with the first 8 bytes of clear_text prior to
encryption. This field is ignored for TDES-ECB mode.

key_offset

Direction Type

Input Integer

The offset within the clear_text parameter at key_offset where the recovered clear
input_key_identifier value is to be placed. The first byte of the clear_text field is
offset 0.

key_offset_field_length

Direction Type

Input Integer

The length of the field within clear_text parameter at key_offset where the
recovered clear input_key_identifier value is to be placed. Length must be a
multiple of eight and is equal to the key length of the recovered key. The key
must fit entirely within the clear_text.

enciphered_text

Direction Type

Output String

The field where the enciphered text is returned. The length of this field must
be at least as long as the clear_text field.

output_chaining_vector

Direction Type

Output String

This field contains the last 8 bytes of enciphered text and is used as the
initialization_vector for the next encryption call if data needs to be chained for
TDES-CBC mode. No data is returned for TDES-ECB.

Secure Messaging for Keys

508 z/OS ICSF Application Programmer's Guide

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

SAF will be invoked to check authorization to use the secure messaging for keys
service and any key labels specified as input.

Keys only appear in the clear within the secure boundary of the cryptographic
coprocessor and never in host storage.

Access Control Point
The Secure Messaging for Keys access control point controls the function of this
service.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 217. Secure messaging for keys required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Secure Messaging for PINs (CSNBSPN and CSNESPN)
The Secure Messaging for PINs callable service will encrypt a text block including
a clear PIN block recovered from an encrypted PIN block. The input PIN block
will be reformatted if the block format in the input_PIN_profile is different than the
block format n the output_PIN_profile. The clear PIN block will only be self
encrypted if the SELFENC keyword is specified in the rule_array. The text block is
normally a 'Value' field of a secure message TLV (Tag/Length/Value) element of a
secure message. TLV is defined in ISO/IEC 7816-4.

Secure Messaging for Keys

Chapter 8. Financial Services 509

An enhanced PIN security mode on the CEX3C and later is available to implement
restrictions required by the ANSI X9.8 PIN standard. To enforce these restrictions,
you must enable the following control points in the domain role.
v ANSI X9.8 PIN - Enforce PIN block restrictions
v ANSI X9.8 PIN - Allow modification of PAN
v ANSI X9.8 PIN - Allow only ANSI PIN blocks

The callable service name for AMODE(64) invocation is CSNESPN.

Format
CALL CSNBSPN(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
input_PIN_block,
PIN_encrypting_key_identifier,
input_PIN_profile,
input_PAN_data,
secmsg_key_identifier,
output_PIN_profile,
output_PAN_data,
text_length,
clear_text,
initialization_vector,
PIN_offset,
PIN_offset_field_length,
enciphered_text,
output_chaining_vector)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

Secure Messaging for PINs

510 z/OS ICSF Application Programmer's Guide

|
|
|

|

|

|

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The
valid values are 0, 1, or 2.

rule_array

Direction Type

Input Character String

Keywords that provide control information to the callable service. The
processing method is the algorithm used to create the generated key. The
keywords are left justified and padded on the right with blanks.

Table 218. Rule Array Keywords for Secure Messaging for PINs

Keyword Meaning

Enciphering mode (optional)

TDES-CBC Use CBC mode to encipher the message (default).

TDES-ECB Use EBC mode to encipher the message.

PIN encryption (optional)

CLEARPIN Recovered clear input PIN block (may be reformatted) is placed
in the clear in the message for encryption with the secure
message key (default).

SELFENC Recovered clear input PIN block (may be reformatted) is
self-encrypted and then placed in the message for encryption
with the secure message key.

input_PIN_block

Direction Type

Input String

The 8-byte input PIN block that is to be recovered in the clear and perhaps
reformatted, and then placed in the clear_text to be encrypted.

PIN_encrypting_key_identifier

Direction Type

Input/Output String

Secure Messaging for PINs

Chapter 8. Financial Services 511

The internal token or key label of the internal token of the PIN encrypting key
used in encrypting the input_PIN_block. The key must be an IPINENC key.

input_PIN_profile

Direction Type

Input Character String

The three 8-byte character elements that contain information necessary to
extract the PIN from a formatted PIN block. The valid input PIN formats are
ISO-0, ISO-1, ISO-2 and ISO-3. See “The PIN Profile” on page 453 for
additional information.

input_PAN_data

Direction Type

Input Character String

The 12 digit personal account number (PAN) if the input PIN format is ISO-0
only. Otherwise, the parameter is ignored.

secmsg_key_identifier

Direction Type

Input/Output String

The internal token or key label of an internal token of a secure message key for
encrypting PINs. This key is used to encrypt the updated clear_text.

output_PIN_profile

Direction Type

Input String

The three 8-byte character elements that contain information necessary to
create a formatted PIN block. If reformatting is not required, the
input_PIN_profile and the output_PIN_profile must specify the same PIN block
format. Output PIN block formats supported are ISO-0, ISO-1, ISO-2 and
ISO-3.

output_PAN_data

Direction Type

Input String

The 12 digit personal account number (PAN) if the output PIN format is ISO-0
only. Otherwise, this parameter is ignored.

text_length

Direction Type

Input Integer

The length of the clear_text parameter that follows. Length must be a multiple
of eight. Maximum length is 4K.

Secure Messaging for PINs

512 z/OS ICSF Application Programmer's Guide

clear_text

Direction Type

Input String

Clear text that contains the recovered and/or reformatted/encrypted PIN at
offset specified and then encrypted. Any padding or formatting of the message
must be done by the caller on input.

initialization_vector

Direction Type

Input String

The 8-byte supplied string for the TDES-CBC mode of encryption. The
initialization_vector is XORed with the first 8 bytes of clear_text prior to
encryption. This field is ignored for TDES-ECB mode.

PIN_offset

Direction Type

Input Integer

The offset within the clear_text parameter where the reformatted PIN block is
to be placed. The first byte of the clear_text field is offset 0.

PIN_offset_field_length

Direction Type

Input Integer

The length of the field within clear_text parameter at PIN_offset where the
recovered clear input_PIN_block value is to be placed. The PIN block may be
self-encrypted if requested by the rule array. Length must be eight. The PIN
block must fit entirely within the clear_text.

enciphered_text

Direction Type

Output String

The field where the enciphered text is returned. The length of this field must
be at least as long as the clear_text field.

output_chaining_vector

Direction Type

Output String

This field contains the last 8 bytes of enciphered text and is used as the
initialization_vector for the next encryption call if data needs to be chained for
TDES-CBC mode. No data is returned for TDES-ECB.

Secure Messaging for PINs

Chapter 8. Financial Services 513

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

SAF will be invoked to check authorization to use the secure messaging for PINs
service and any key labels specified as input.

Keys only appear in the clear within the secure boundary of the cryptographic
coprocessors and never in host storage.

Access Control Point
The Secure Messaging for PINs access control point controls the function of this
service.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 219. Secure messaging for PINs required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

ISO-3 PIN block format is not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor ISO-3 PIN block format requires the Nov.

2007 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

ISO-3 PIN block format requires the Nov.
2007 or later licensed internal code (LIC).

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

SET Block Compose (CSNDSBC and CSNFSBC)
The SET Block Compose callable service performs DES-encryption of data,
OAEP-formatting through a series of SHA-1 hashing operations, and the
RSA-encryption of the Optimal Asymmetric Encryption Padding (OAEP) block.

The callable service name for AMODE(64) invocation is CSNFSBC.

Secure Messaging for PINs

514 z/OS ICSF Application Programmer's Guide

Format
CALL CSNDSBC(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
block_contents_identifier,
XData_string_length,
XData_string,
data_to_encrypt_length,
data_to_encrypt,
data_to_hash_length,
data_to_hash,
initialization_vector,
RSA_public_key_identifier_length,
RSA_public_key_identifier,
DES_key_block_length,
DES_key_block,
RSA_OAEP_block_length,
RSA_OAEP_block,
chaining_vector,
DES_encrypted_data_block)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

SET Block Compose

Chapter 8. Financial Services 515

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be 1 or 2.

rule_array

Direction Type

Input Character String

Keywords that provides control information to the callable service. The
keyword must be in 8 bytes of contiguous storage, left-justified and padded on
the right with blanks.

Table 220. Keywords for SET Block Compose Control Information

Keyword Meaning

Block Type (required)

SET1.00 The structure of the RSA-OAEP encrypted block is defined by
SET protocol.

Formatting Information (optional)

DES-ONLY DES encryption only is to be performed; no RSA-OAEP
formatting will be performed. (See Usage Notes.)

block_contents_identifier

Direction Type

Input String

A one-byte string, containing a binary value that will be copied into the Block
Contents (BC) field of the SET DB data block (indicates what data is carried in
the Actual Data Block, ADB, and the format of any extra data (XData_string)).
This parameter is ignored if DES-ONLY is specified in the rule-array.

XData_string_length

Direction Type

Input Integer

The length in bytes of the data contained within XData_string. The maximum
length is 94 bytes. This parameter is ignored if DES-ONLY is specified in the
rule-array.

XData_string

Direction Type

Input String

Extra-encrypted data contained within the OAEP-processed and
RSA-encrypted block. The format is indicated by block_contents_identifier. For a

SET Block Compose

516 z/OS ICSF Application Programmer's Guide

XData_string_length value of zero, XData_string must still be specified, but will
be ignored by ICSF. The string is treated as a string of hexadecimal digits. This
parameter is ignored if DES-ONLY is specified in the rule-array.

data_to_encrypt_length

Direction Type

Input/Output Integer

The length in bytes of data that is to be DES-encrypted. The length has a
maximum value of 32 MB minus 8 bytes to allow for up to 8 bytes of padding.
The data is identified in the data_to_encrypt parameter. On output, this value is
updated with the length of the encrypted data in the DES_encrypted_data_block.

data_to_encrypt

Direction Type

Input String

The data that is to be DES-encrypted (with a 64-bit DES key generated by this
service). The data will be padded by this service according to the PKCS #5
padding rules.

data_to_hash_length

Direction Type

Input Integer

The length in bytes of the data to be hashed. The hash is an optional part of
the OAEP block. If the data_to_hash_length is 0, no hash will be included in the
OAEP block. This parameter is ignored if DES-ONLY is specified in the
rule_array parameter.

data_to_hash

Direction Type

Input String

The data that is to be hashed and included in the OAEP block. No hash is
computed or inserted in the OAEP block if the data_to_hash_length is 0. This
parameter is ignored if DES-ONLY is specified in the rule_array parameter.

initialization_vector

Direction Type

Input String

An 8-byte string containing the initialization vector to be used for the cipher
block chaining for the DES encryption of the data in the data_to_encrypt
parameter. The same initialization vector must be used to perform the DES
decryption of the data.

RSA_public_key_identifier_length

Direction Type

Input Integer

SET Block Compose

Chapter 8. Financial Services 517

The length of the RSA_public_key_identifier field. The maximum size is 2500
bytes. This parameter is ignored if DES-ONLY is specified in the rule-array.

RSA_public_key_identifier

Direction Type

Input String

A string containing either the key label of the RSA public key or the RSA
public key token to be used to perform the RSA encryption of the OAEP block.
The modulus bit length of the key must be 1024 bytes. This parameter is
ignored if DES-ONLY is specified in the rule-array.

DES_key_block_length

Direction Type

Input/Output Integer

The length of the DES_key_block. The current length of this field is defined to
be exactly 64 bytes.

DES_key_block

Direction Type

Input/Output String

The DES key information returned from a previous SET Block Compose
service. The contents of the DES_key_block is the 64-byte DES internal key
token (containing the DES key enciphered under the host master key). Your
application program must not change the data in this string.

RSA_OAEP_block_length

Direction Type

Input/Output Integer

The length of a block of storage to hold the RSA-OAEP_block. The length must
be at least 128 bytes on input. The length value will be updated on exit with
the actual length of the RSA-OAEP_block, which is exactly 128 bytes. This
parameter is ignored if DES-ONLY is specified in the rule-array.

RSA_OAEP_block

Direction Type

Output String

The OAEP-formatted data block, encrypted under the RSA public key passed
as RSA_public_key_identifier. When the OAEP-formatted data block is returned,
it is left justified within the RSA-OAEP_block field if the input field length
(RSA-OAEP_block_length) was greater than 128 bytes. This parameter is ignored
if DES-ONLY is specified in the rule-array.

chaining_vector

SET Block Compose

518 z/OS ICSF Application Programmer's Guide

Direction Type

Input/Output String

An 18-byte field that ICSF uses as a system work area. Your application
program must not change the data in this string. This field is ignored by this
service, but must be specified.

DES_encrypted_data_block

Direction Type

Output String

The DES-encrypted data block (data passed in as data_to_encrypt). The length
of the encrypted data is returned in data_to_encrypt_length. The
DES_encrypted_data_block may be 8 bytes longer than the length of the
data_to_encrypt because of padding added by this service.

Restrictions
Not all CCA implementations support a key label as input in the
RSA_public_key_identifier parameter. Some implementations may only support a key
token.

The data_to_encrypt and the DES_encrypted_data_block cannot overlap.

The maximum data block that can be supplied for DES encryption is the limit as
expressed by the Encipher callable service.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

The first time the SET Block Compose service is invoked to form an RSA-OAEP
block and DES-encrypt data for communication between a specific source and
destination (for example, between the merchant and payment gateway), do not
specify the DES-ONLY keyword. A DES key will be generated by the service and
returned in the key token contained in the DES_key_block. On subsequent calls to
the Compose SET Block service for communication between the same source and
destination, the DES key can be re-used. The caller of the service must supply the
DES_key_block, the DES_key_block_length, the data_to_encrypt, the
data_to_encrypt_length, and the rule-array keywords SET1.00 and DES-ONLY. You
do not need to supply the block contents identifier, XDATA string and length,
RSA-OAEP block and length, and RSA public key information, although you must
still specify the parameters. For this invocation, the RSA-OAEP formatting is
bypassed and only DES encryption is performed, using the supplied DES key.

Access Control Point
The SET Block Compose access control point controls the function of this service.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

SET Block Compose

Chapter 8. Financial Services 519

|

|
|
|

|

|
|

Table 221. SET block compose required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

SET Block Decompose (CSNDSBD and CSNFSBD)
Decomposes the RSA-OAEP block and the DES-encrypted data block of the SET
protocol to provide unencrypted data back to the caller.

The callable service name for AMODE(64) invocation is CSNFSBD.

Format
CALL CSNDSBD(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
RSA_OAEP_block_length,
RSA_OAEP_block,
DES_encrypted_data_block_length,
DES_encrypted_data_block,
initialization_vector,
RSA_private_key_identifier_length,
RSA_private_key_identifier,
DES_key_block_length,
DES_key_block,
block_contents_identifier,
XData_string_length,
XData_string,
chaining_vector,
data_block,
hash_block_length,
hash_block)

SET Block Compose

520 z/OS ICSF Application Programmer's Guide

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be 1 or 2.

rule_array

Direction Type

Input String

One keyword that provides control information to the callable service. The
keyword indicates the block type. The keyword must be in 8 bytes of
contiguous storage, left-justified and padded on the right with blanks.

SET Block Decompose

Chapter 8. Financial Services 521

Table 222. Keywords for SET Block Compose Control Information

Keyword Meaning

Block Type (required)

SET1.00 The structure of the RSA-OAEP encrypted block is defined by
SET protocol.

Formatting Information (optional)

DES-ONLY DES decryption only is to be performed; no RSA-OAEP block
decryption will be performed. (See Usage Notes.)

PINBLOCK Specifies that the OAEP block will contain PIN information in
the XDATA field, including an ISO-0 format PIN block. The
DES_key_block must be 128 bytes in length and contain a
IPINENC or OPINENC key. The PIN block will be encrypted
under the PIN encrypting key. The PIN information and the
encrypted PIN block are returned in the XDATA_string
parameter.

RSA_OAEP_block_length

Direction Type

Input Integer

The length of RSA-OAEP_block must be 128 bytes. This parameter is ignored if
DES-ONLY is specified in the rule-array.

RSA_OAEP_block

Direction Type

Input String

The RSA-encrypted OAEP-formatted data block. This parameter is ignored if
DES-ONLY is specified in the rule-array.

DES_encrypted_data_block_length

Direction Type

Input/Output Integer

The length in bytes of the DES-encrypted data block. The input length must be
a multiple of 8 bytes. Updated on return to the length of the decrypted data
returned in data_block. The maximum value of DES_encrypted_data_block_length
is 32MB bytes.

DES_encrypted_data_block

Direction Type

Input String

The DES-encrypted data block. The data will be decrypted and passed back as
data_block.

initialization_vector

Direction Type

Input String

SET Block Decompose

522 z/OS ICSF Application Programmer's Guide

An 8-byte string containing the initialization vector to be used for the cipher
block chaining for the DES decryption of the data in the
DES_encrypted_data_block parameter. You must use the same initialization
vector that was used to perform the DES encryption of the data.

RSA_private_key_identifier_length

Direction Type

Input Integer

The length of the RSA_private_key_identifier field. The maximum size is 2500
bytes. This parameter is ignored if DES-ONLY is specified in the rule-array.

RSA_private_key_identifier

Direction Type

Input String

A key label of the RSA private key or an internal token of the RSA private key
to be used to decipher the RSA-OAEP block passed in RSA-OAEP_block. The
modulus bit length of the key must be 1024. This parameter is ignored if
DES-ONLY is specified in the rule-array.

DES_key_block_length

Direction Type

Input/Output Integer

The length of the DES_key_block. The current length of this field may be 64 or
128 bytes. If rule array keyword PINBLOCK is specified, the length must be
128 bytes.

DES_key_block

Direction Type

Input/Output String

The DES_key_block contains either one or two DES internal key tokens. If only
one token is specified on input, it contains either a null DES token (or binary
zeros) or (if DES-ONLY is specified) the DES key information returned from a
previous SET Block Decompose service invocation. This is the 64-byte DES
internal key token formed with the DES key which was retrieved from the
RSA-OAEP block and enciphered under the host master key. Your application
must not change this DES key information. If two tokens are specified in the
DES_key_block, the first 64 bytes contain the DES token described previously.
The second 64 bytes, used when PINBLOCK is specified in the rule array,
contains the DES internal token or the CKDS key label of the IPINENC or
OPINENC key used to encrypt the PIN block returned to the caller in the
XDATA_string parameter. If a key label is specified, it must be left-justified and
padded on the right with blanks.

block_contents_identifier

Direction Type

Output String

SET Block Decompose

Chapter 8. Financial Services 523

A one-byte string, containing the binary value from the block contents (BC)
field of the SET data block (DB). It indicates what data is carried in the actual
data block (ADB) and the format of any extra data (XData_string). This
parameter is ignored if DES-ONLY is specified in the rule-array.

XData_string_length

Direction Type

Input/Output Integer

The length of a string where the data contained within XData_string will be
returned. The string must be at least 94 bytes in length. The value will be
updated upon exit with the actual length of the returned XData_string. This
parameter is ignored if DES-ONLY is specified in the rule-array.

XData_string

Direction Type

Output String

Extra-encrypted data contained within the OAEP-processed and
RSA-encrypted block. The format is indicated by block_contents_identifier. The
string is treated by ICSF as a string of hexadecimal digits. The service will
always return the data from the beginning of the XDataString to the end of the
SET DB block, a maximum of 94 bytes of data. The caller must examine the
value returned in block_contents_identifier to determine the actual length of the
XDataString. This parameter is ignored if DES-ONLY is specified in the
rule-array.

chaining_vector

Direction Type

Input/Output String

An 18-byte field that ICSF uses as a system work area. Your application
program must not change the data in this string. This field is ignored by this
service, but must be specified.

data_block

Direction Type

Output String

The data that was decrypted (passed in as DES_encrypted_data_block). Any
padding characters are removed.

hash_block_length

Direction Type

Input/Output Integer

The length in bytes of the SHA-1 hash returned in hash_block. On input, this
parameter must be set to the length of the hash_block field. The length must be
at least 20 bytes. On output, this field is updated to reflect the length of the

SET Block Decompose

524 z/OS ICSF Application Programmer's Guide

SHA-1 hash returned in the hash_block field (exactly 20 bytes). This parameter
is ignored if DES-ONLY is specified in the rule_array parameter.

hash_block

Direction Type

Output String

The SHA-1 hash extracted from the RSA-OAEP block. This parameter is
ignored if DES-ONLY is specified in the rule_array parameter.

Restrictions
Not all CCA implementations support a key label as input in the
RSA_private_key_identifier parameter. Some implementations may only support a
key token.

The data_block and the DES_encrypted_data_block cannot overlap.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

When the SET Block Decompose service is invoked without the DES-ONLY
keyword, the DES key is retrieved from the RSA-OAEP block and returned in the
key token contained in the DES_key_block. On subsequent calls to the SET Block
Decompose service, a caller can re-use the DES key. The caller of the service must
supply the DES_key_block, the DES_key_block_length, the DES_encrypted_data_block,
the DES_encrypted_data_block_length, the initialization and chaining vectors, and the
rule_array keywords SET1.00 and DES-ONLY. The RSA private key information,
RSA-OAEP block and length, XData string and length, and hash block and length
need not be supplied (although the parameters must still be specified). For this
invocation, the decryption of the RSA-OAEP block is bypassed; only DES
decryption is performed, using the supplied DES key.

When the SET Block Decompose service is invoked with the PINBLOCK keyword,
DES-ONLY may not also be specified. If both of these rule array keywords are
specified, the service will fail. If PINBLOCK is specified and the
DES_key_block_length field is not 128, the service will fail.

Access Control Points
The SET Block Decompose access control point controls the function of this
service. If a PIN-block encrypting key is supplied in the DES_key_block, the access
control point matching the key type of the key must be enabled in the domain role.

Table 223. Required access control points for PIN-block encrypting key

PIN-block encrypting key-type Access control point

OPINENC SET Block Decompose - PIN Extension OPINENC

IPINENC SET Block Decompose - PIN Extension IPINENC

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

SET Block Decompose

Chapter 8. Financial Services 525

|

|
|
|

|

Table 224. SET block decompose required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Transaction Validation (CSNBTRV and CSNETRV)
The transaction validation callable service supports the generation and validation
of American Express card security codes (CSC). This service generates and verifies
transaction values based on information from the transaction and a cryptographic
key. You select the algorithm, validation method, and either the generate or verify
mode, through rule-array keywords.

For the American Express process, the control vector supplied with the
cryptographic key must indicate a MAC or MACVER class key. The key may be
single or double length. DATAM and DATAMV keys are not supported. The MAC
generate control vector bit must be on (bit 20) if you request CSC generation and
MAC verify bit (bit 21) must be on if you request verification.

The callable service name for AMODE(64) invocation is CSNETRV.

Format
CALL CSNBTRV(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
transaction_key_identifier_length,
transaction_key_identifier,
transaction_info_length,
transaction_info,
validation_values_length,
validation_values)

SET Block Decompose

526 z/OS ICSF Application Programmer's Guide

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The
valid values are 1 or 2.

rule_array

Direction Type

Input Character String

Keywords that provides control information to the callable service. The
keywords are left-justified in an 8-byte field and padded on the right with
blanks. The keywords must be in contiguous storage. Specify one, two or three
of the values inTable 225 on page 528.

Transaction Validation

Chapter 8. Financial Services 527

Table 225. Rule Array Keywords for Transaction Validation

Keyword Meaning

American Express card security codes (required)

CSC-3 3-digit card security code (CSC) located on the signature panel.
VERIFY implied.

CSC-4 4-digit card security code (CSC) located on the signature panel.
VERIFY implied.

CSC-5 5-digit card security code (CSC) located on the signature panel.
VERIFY implied.

CSC-345 Generate 5-byte, 4-byte, 3-byte values when given an account
number an an expiration date, GENERATE implied.

Operation (optional)

VERIFY Specifies verification of the value presented in the validation
values variable.

GENERATE Specifies generation of the value presented in the validation
values variable.

Card Security Code Algorithm (One, optional)

CSC-V1 Specifies use of CSC version 1.0 algorithm for generating or
verifying the validation values.

CSC-V2 Specifies use of CSC version 2.0 algorithm for generating or
verifying the validation values.

transaction_key_identifier_length

Direction Type

Input Integer

The length of the transaction_key_identifier parameter.

transaction_key_identifier

Direction Type

Input String

The labelname or internal token of a MAC or MACVER class key. Key may be
single or double length. When the CSC-V2 keyword is specified, the key must
be a double-length key.

transaction_info_length

Direction Type

Input Integer

The length of the transaction_info parameter. For American Express CSC codes,
this length must be 19 if the algorithm for CSC v1.0 is specified and it must be
22 if the algorithm for CSC v2.0 is specified.

transaction_info

Direction Type

Input String

Transaction Validation

528 z/OS ICSF Application Programmer's Guide

Account information in character format. For American Express CSC-V1, this is
a 19-byte field containing the concatenation of the 4-byte expiration data (in
the format YYMM) and the 15-byte American Express account number. For
CSC-V2, the string variable will contain the concatenation of the 4-byte
expiration date in the format of (YYMM), the 15-byte American Express
account number and the 3-byte service code.

validation_values_length

Direction Type

Input/Output Integer

The length of the validation_values parameter. Maximum value for this field is
64.

validation_values

Direction Type

Input String

This variable contains American Express CSC values. The data is output for
GENERATE and input for VERIFY.

Table 226. Output description for validation values

Operation Element Description

GENERATE and
CSC-345

5555544444333 where:

55555 = CSC 5 value
4444 = CSC 4 value
333 = CSC 3 value

VERIFY and CSC-3 333 = CSC 3 value

VERIFY and CSC-4 4444 = CSC 4 value

VERIFY and CSC-5 55555 = CSC 5 value

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Table 227. Required access control points for Transaction Validation

Operation keyword Security code keyword Access control point

GENERATE CSC-345 Transaction Validation - Generate

VERIFY CSC-3 Transaction Validation - Verify
CSC-3

VERIFY CSC-4 Transaction Validation - Verify
CSC-4

VERIFY CSC-5 Transaction Validation - Verify
CSC-5

Transaction Validation

Chapter 8. Financial Services 529

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 228. Transaction validation required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Requires May 2004 or later version of
Licensed Internal Code (LIC)

CSC-V1 and CSC-V2 keywords not
supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor CSC-V1 and CSC-V2 keywords require May,

2012 or later version of LIC.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

CSC-V1 and CSC-V2 keywords require May,
2012 or later version of LIC for Crypto
Express2.

CSC-V1 and CSC-V2 keywords require
June, 2012 or later version of LIC for
Crypto Express3.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor CSC-V1 and CSC-V2 keywords require

June, 2012 or later version of LIC.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

CSC-V1 and CSC-V2 keywords require
June, 2012 or later version of LIC for
Crypto Express3.

CSC-V1 and CSC-V2 keywords require
September, 2012 or later version of LIC for
Crypto Express4.

VISA CVV Service Generate (CSNBCSG and CSNECSG)
Use the VISA CVV Service Generate callable service to generate a:
v VISA Card Verification Value (CVV)
v MasterCard Card Verification Code (CVC)
v Diner’s Club Card Verification Value (CVV)

as defined for track 2.

This service generates a CVV that is based upon the information that the PAN_data,
the expiration_date, and the service_code parameters provide.

The service uses the Key-A and the Key-B keys to cryptographically process this
information. Key-A and Key-B can be single-length DATA or MAC keys or a
combined Key-A, Key-B double length DATA or MAC key. If the requested CVV is
shorter than 5 characters, the CVV is padded on the right by space characters. The
CVV is returned in the 5-byte variable that the CVV_value parameter identifies.
When you verify a CVV, compare the result to the value that the CVV_value
supplies.

Transaction Validation

530 z/OS ICSF Application Programmer's Guide

The callable service name for AMODE(64) invocation is CSNECSG.

Format
CALL CSNBCSG(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PAN_data,
expiration_date,
service_code,
CVV_key_A_Identifier,
CVV_key_B_Identifier,
CVV_value)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

VISA CVV Service Generate

Chapter 8. Financial Services 531

The number of keywords you are supplying in the rule_array parameter. The
parameter rule_array_count must be 0, 1, or 2.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. Each
keyword is left-justified in 8-byte fields, and padded on the right with blanks.
All keywords must be in contiguous storage.

Table 229. CVV Generate Rule Array Keywords

Keyword Meaning

PAN data length (optional)

PAN-13 Specifies that the length of the PAN data is 13 bytes. PAN-13
is the default value.

PAN-14 Specifies that the length of the PAN data is 14 bytes.

PAN-15 Specifies that the length of the PAN data is 15 bytes.

PAN-16 Specifies that the length of the PAN data is 16 bytes.

PAN-17 Specifies that the length of the PAN data is 17 bytes.

PAN-18 Specifies that the length of the PAN data is 18 bytes.

PAN-19 Specifies that the length of the PAN data is 19 bytes. Requires
z990, z890, z9 EC or z9 BC with Jan. 2005 or higher version of
Licensed Internal Code (LIC).

CVV length (optional)

CVV-1 Specifies that the CVV is to be computed as one byte,
followed by 4 blanks. CVV-1 is the default value.

CVV-2 Specifies that the CVV is to be computed as 2 bytes, followed
by 3 blanks.

CVV-3 Specifies that the CVV is to be computed as 3 bytes, followed
by 2 blanks.

CVV-4 Specifies that the CVV is to be computed as 4 bytes, followed
by 1 blank.

CVV-5 Specifies that the CVV is to be computed as 5 bytes.

PAN_data

Direction Type

Input String

The PAN_data parameter specifies an address that points to the place in
application data storage that contains personal account number (PAN)
information in character form. The PAN is the account number as defined for
the track-2 magnetic-stripe standards.
v If the PAN-13 keyword is specified in the rule array, 13 characters are

processed.
v If the PAN-14 keyword is specified in the rule array, 14 characters are

processed.

VISA CVV Service Generate

532 z/OS ICSF Application Programmer's Guide

v If the PAN-15 keyword is specified in the rule array, 15 characters are
processed.

v If the PAN-16 keyword is specified in the rule array, 16 characters are
processed.

v If the PAN-17 keyword is specified in the rule array, 17 characters are
processed.

v If the PAN-18 keyword is specified in the rule array, 18 characters are
processed.

v If the PAN-19 keyword is specified in the rule array, 19 characters are
processed.

Even if you specify the PAN-13, PAN-14 or PAN-15 keywords, the server
might copy 16 bytes to a work area. Therefore ensure that the callable service
can address 16 bytes of storage.

expiration_date

Direction Type

Input String

The expiration_date parameter specifies an address that points to the place in
application data storage that contains the card expiration date in numeric
character form in a 4-byte field. The application programmer must determine
whether the CVV will be calculated with the date form of YYMM or MMYY.

service_code

Direction Type

Input String

The service_code parameter specifies an address that points to the place in
application data storage that contains the service code in numeric character
form in a 3-byte field. The service code is the number that the track-2
magnetic-stripe standards define. The service code of '000' is supported.

CVV_key_A_Identifier

Direction Type

Input/Output String

A 64-byte string that is the internal key token containing a single- or
double-length DATA or MAC key or the label of a CKDS record containing a
single- or double-length DATA or MAC key. MACVER keys are not supported.

When this key is a double-length key, CVV_key_B_identifier must be 64 byte of
binary zero. When a double-length MAC key is used, the CV bits 0-3 must
indicate a CVVKEY-A key (0010).

A single-length key contains the key-A key that encrypts information in the
CVV process. The left half of a double-length key contains the key-A key that
encrypts information in the CVV process and the right half contains the key-B
key that decrypts information.

CVV_key_B_Identifier

VISA CVV Service Generate

Chapter 8. Financial Services 533

|
|
|

Direction Type

Input/Output String

A 64-byte string that is the internal key token containing a single-length DATA
or MAC key or the label of a CKDS record containing a single-length DATA or
MAC key. MACVER keys are not supported. When CVV_key_A_identifier a
double-length key, this parameter must be 64 byte of binary zero. The key
contains the key-B key that decrypts information in the CVV process.

CVV_value

Direction Type

Output String

The CVV_value parameter specifies an address that points to the place in
application data storage that will be used to store the computed 5-byte
character output value.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Access Control Point
The VISA CVV Generate access control point controls the function of this service.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 230. VISA CVV service generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Combined CVV keys are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Combined CVV keys are not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Combined CVV keys are not supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

Combined CVV keys require the Sep. 2011
or later licensed internal code (LIC).

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

VISA CVV Service Generate

534 z/OS ICSF Application Programmer's Guide

|
|
|
|
|

|
|

|

|

|

|
|

|

VISA CVV Service Verify (CSNBCSV and CSNECSV)
Use the VISA CVV Service Verify callable service to verify a:
v VISA Card Verification Value (CVV)
v MasterCard Card Verification Code (CVC)
v Diner’s Club Card Verification Value (CVV)

as defined for track 2.

This service verifies a CVV that is based upon the information that the PAN_data,
the expiration_date, and the service_code parameters provide.

The service uses the Key-A and the Key-B keys to cryptographically process this
information. If the requested CVV is shorter than 5 characters, the CVV is padded
on the right by space characters. The generated CVV is then compared to the value
that the CVV_value supplies for verification.

The callable service name for AMODE(64) invocation is CSNECSV.

Format
CALL CSNBCSV(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PAN_data,
expiration_date,
service_code,
CVV_key_A_Identifier,
CVV_key_B_Identifier,
CVV_value)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

VISA CVV Service Generate

Chapter 8. Financial Services 535

|
|
|
|

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The
parameter rule_array_count must be 0, 1, or 2.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. Each
keyword is left-justified in 8-byte fields, and padded on the right with blanks.
All keywords must be in contiguous storage.

Table 231. CVV Verify Rule Array Keywords

Keyword Meaning

PAN data length (optional)

PAN-13 Specifies that the length of the PAN data is 13 bytes. PAN-13
is the default value.

PAN-14 Specifies that the length of the PAN data is 14 bytes.

PAN-15 Specifies that the length of the PAN data is 15 bytes.

PAN-16 Specifies that the length of the PAN data is 16 bytes.

PAN-17 Specifies that the length of the PAN data is 17 bytes.

PAN-18 Specifies that the length of the PAN data is 18 bytes.

PAN-19 Specifies that the length of the PAN data is 19 bytes. Requires
z990, z890, z9 EC or z9 BC with Jan. 2005 or higher version of
Licensed Internal Code (LIC).

CVV length (optional)

CVV-1 Specifies that the CVV is to be computed as one byte,
followed by 4 blanks. CVV-1 is the default value.

CVV-2 Specifies that the CVV is to be computed as 2 bytes, followed
by 3 blanks.

CVV-3 Specifies that the CVV is to be computed as 3 bytes, followed
by 2 blanks.

VISA CVV Service Verify

536 z/OS ICSF Application Programmer's Guide

Table 231. CVV Verify Rule Array Keywords (continued)

Keyword Meaning

CVV-4 Specifies that the CVV is to be computed as 4 bytes, followed
by 1 blank.

CVV-5 Specifies that the CVV is to be computed as 5 bytes.

PAN_data

Direction Type

Input String

The PAN_data parameter specifies an address that points to the place in
application data storage that contains personal account number (PAN)
information in character form. The PAN is the account number as defined for
the track-2 magnetic-stripe standards.
v If the PAN-13 keyword is specified in the rule array, 13 characters are

processed.
v If the PAN-14 keyword is specified in the rule array, 14 characters are

processed.
v If the PAN-15 keyword is specified in the rule array, 15 characters are

processed.
v If the PAN-16 keyword is specified in the rule array, 16 characters are

processed.
v If the PAN-17 keyword is specified in the rule array, 17 characters are

processed.
v If the PAN-18 keyword is specified in the rule array, 18 characters are

processed.
v If the PAN-19 keyword is specified in the rule array, 19 characters are

processed.

Even if you specify the PAN-13, PAN-14 or PAN-15 keywords, the server
might copy 16 bytes to a work area. Therefore ensure that the callable service
can address 16 bytes of storage.

expiration_date

Direction Type

Input String

The expiration_date parameter specifies an address that points to the place in
application data storage that contains the card expiration date in numeric
character form in a 4-byte field. The application programmer must determine
whether the CVV will be calculated with the date form of YYMM or MMYY.

service_code

Direction Type

Input String

The service_code parameter specifies an address that points to the place in
application data storage that contains the service code in numeric character
form in a 3-byte field. The service code is the number that the track-2
magnetic-stripe standards define. The service code of '000' is supported.

VISA CVV Service Verify

Chapter 8. Financial Services 537

CVV_key_A_Identifier

Direction Type

Input/Output String

A 64-byte string that is the internal key token containing a single- or
double-length DATA or MAC key or the label of a CKDS record containing a
single- or double-length DATA or MAC key.

When this key is a double-length key, CVV_key_B_identifier must be 64 byte of
binary zero. When a double-length MAC key is used, the CV bits 0-3 must
indicate a CVVKEY-A key (0010).

A single-length key contains the key-A key that encrypts information in the
CVV process. The left half of a double-length key contains the key-A key that
encrypts information in the CVV process and the right half contains the key-B
key that decrypts information.

CVV_key_B_Identifier

Direction Type

Input/Output String

A 64-byte string that is the internal key token containing a single-length DATA
or MAC key or the label of a CKDS record containing a single-length DATA or
MAC key. When CVV_key_A_identifier a double-length key, this parameter
must be 64 byte of binary zero. The key contains the key-B key that decrypts
information in the CVV process.

CVV_value

Direction Type

Input String

The CVV_value parameter specifies an address that contains the CVV value
which will be compared to the computed CVV value. This is a 5-byte field.

On an IBM zSeries 900, the user must pad out the CVV_value parameter with
blanks if the supplied CVV is less than 5 characters.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Access Control Points
The VISA CVV Verify access control point controls the function of this service.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

VISA CVV Service Verify

538 z/OS ICSF Application Programmer's Guide

Table 232. VISA CVV service verify required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Combined CVV keys are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Combined CVV keys are not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Combined CVV keys are not supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor Combined CVV keys require the Sep. 2011

or later licensed internal code (LIC).

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Authentication Parameter Generate (CSNBAPG and CSNEAPG)
The Authentication Parameter Generate callable services generates an
authentication parameter (AP) and returns it encrypted using the key supplied in
the with the AP_encrypting_key_identifier parameter.

The callable service name for AMODE(64) is CSNEAPG.

Format
CALL CSNBAPG(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
inbound_PIN_encrypting_key_identifier_length,
inbound_PIN_encrypting_key_identifier,
encrypted_PIN_block,
issuer_domestic_code,,
card_secure_code,
PAN_data,
AP_encrypting_key_identifier_length,
AP_encrypting_key_identifier,
AP_value))

VISA CVV Service Verify

Chapter 8. Financial Services 539

|

|

|

|

|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be 0, 1, or 2.

rule_array

Direction Type

Input String

The keywords that provide control information to the callable service. The
following table provides a list. The keywords must be 8 bytes of contiguous
storage with the keyword left-justified in its 8-byte location and padded on the
right with blanks.

Authentication Parameter Generate

540 z/OS ICSF Application Programmer's Guide

|

|

|||

||
|

|
|

|

|||

||
|

|
|
|
|

|

|||

||
|

|
|
|

|

|||

||
|

|

|

|||

||
|

|
|

|

|||

||
|

|
|
|
|

Table 233. Authentication Parameter Generate Rule Array Keywords

Keyword Meaning

AP Protection Method (One, optional)

ENCRYPT Specifies the AP value should be returned encrypted under the
AP_encrypting_key_identifier parameter. This is the default.

CLEAR Specifies the AP value should be returned in the clear.

AP Value Format (One, optional)

BCD Specifies the output format of the AP as binary coded decimal. This is the
default.

inbound_PIN_encrypting_key_identifier_length

Direction Type

Input Integer

Length of the inbound_PIN_encrypting_key_identifier field in bytes. This value
must be 64.

inbound_PIN_encrypting_key_identifier

Direction Type

Input String

An operational key token or the label of the CKDS record containing a double
length IPINENC key that decrypts the PIN block.

If the token supplied was encrypted under the old master key, the token will
be returned encrypted under the current master key.

encrypted_PIN_block

Direction Type

Input String

The ISO-0 PIN block encrypted with the
inbound_PIN_encrypting_key_identifier. The PIN within the PIN block must
be a 5 digit value.

issuer_domestic_code

Direction Type

Input Alphanumeric Character String

A 5 byte alphanumeric character string.

card_secure_code

Direction Type

Input String

An 8 byte string of digits grouped into two 4 byte sections. The 4 digits in a
section cannot all be zero, e.g. the value “0000” is invalid.

PAN_data

Authentication Parameter Generate

Chapter 8. Financial Services 541

||

||

|

||
|

||

|

||
|
|

|

|||

||
|

|
|

|

|||

||
|

|
|

|
|

|

|||

||
|

|
|
|

|

|||

||
|

|

|

|||

||
|

|
|

|
|

Direction Type

Input String

The personal account number (PAN). Must be 12 characters long.

AP_encrypting_key_identifier_length

Direction Type

Input Integer

The length of the AP_encrypting_key_identifier field in bytes. This value is 64
when a label is supplied. When the key identifier is a key token, the value is
the length of the token. The maximum value is 725. The value may be 0 when
the “CLEAR” rule array option is specified.

AP_encrypting_key_identifier

Direction Type

Input String

An internal key token or the label of the CKDS record containing a double
length DATA key used to encrypt the AP_value. If the AP Protection Method
was specified as CLEAR in the rule_array parameter, this parameter is ignored.

If the token supplied was encrypted under the old master key, the token will
be returned encrypted under the current master key.

AP_value

Direction Type

Output String

An 8 byte character string containing the generated authentication parameter.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Access Control Points
The following table shows the access control points in the domain role that control
the function of this service.

Table 234. Access Control Points for Authentication Parameter Generate (CSNBAPG and
CSNEAPG)

Access control point Restrictions

Authentication Parameter Generate None

Authentication Parameter Generate - Clear Allow AP value to be returned in the clear

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Authentication Parameter Generate

542 z/OS ICSF Application Programmer's Guide

|||

||
|

|

|

|||

||
|

|
|
|
|

|

|||

||
|

|
|
|

|
|

|

|||

||
|

|

|

|
|

|

|
|

||
|

||

||

||
|

|

|
|

Table 235. Authentication Parameter Generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

IBM System z9 EC

IBM System z9 BC

IBM System z10 EC

IBM System z10 BC

IBM zEnterprise 196

IBM zEnterprise 114

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Recover PIN From Offset requires the Sep.
2013 or later LIC.

Authentication Parameter Generate

Chapter 8. Financial Services 543

||

||
|
|

|

|
|

|
|

||

|

|

||

|

|

||

|

|

||

|

|

|
|

|
|

|
|

|
|

Authentication Parameter Generate

544 z/OS ICSF Application Programmer's Guide

Chapter 9. Using Digital Signatures

This topic describes the PKA callable services that support using digital signatures
to authenticate messages.
v “Digital Signature Generate (CSNDDSG and CSNFDSG)”
v “Digital Signature Verify (CSNDDSV and CSNFDSV)” on page 551

Digital Signature Generate (CSNDDSG and CSNFDSG)
Use the digital signature generate callable service to generate a digital signature
using a PKA private key, or, for some limited functions, a secure PKCS #11 private
key. The digital signature generate callable service may use an RSA or ECC private
key, depending on the algorithm you are using.

Private keys must be valid for signature usage. This service supports these
methods:
v ANSI X9.30 (ECDSA)
v ANSI X9.31 (RSA)
v ISO 9796-1 (RSA)
v RSA DSI PKCS 1.0 and 1.1 (RSA)
v Padding on the left with zeros (RSA)

Note:

1. The maximum signature length is 512 bytes (4096 bits).
2. For secure PKCS #11 private keys, the only supported services are ANSI X9.30

(ECDSA) and RSA PKCS 1.1.

The input text should have been previously hashed using either the one-way hash
generate callable service or the MDC generation callable service. If the signature
formatting algorithm specifies ANSI X9.31, you must specify the hash algorithm
used to hash the text (SHA-1 or RPMD-160). See “Formatting Hashes and Keys in
Public-Key Cryptography” on page 913.

If the private_key_identifier specifies an RSA private key, you select the method of
formatting the text through the rule_array parameter. If the private_key_identifier
specifies an ECC private key, the ECC signature is generated according to ANSI
X9.30.

For secure PKCS #11 keys, if the private_key_identifier specifies an RSA private key,
you must select the PKCS-1.1 method of formatting the text through the rule_array
parameter. If the private_key_identifier specifies an ECC private key, the ECC
signature is generated according to ANSI X9.30.

Note: For RSA PKCS 1.0 or 1.1, the message digest and the message-digest
algorithm identifier are combined into an ASN.1 value of type DigestInfo, which is
BER-encoded to give an octet string D (see Table 236 on page 547). D is the text
string supplied in the hash variable.

The callable service name for AMODE(64) invocation is CSNFDSG.

© Copyright IBM Corp. 1997, 2013 545

|
|
|
|

|
|
|
|

Format
CALL CSNDDSG(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
private_key_identifier_length,
private_key_identifier,
hash_length,
hash,
signature_field_length,
signature_bit_length,
signature_field)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

Digital Signature Generate

546 z/OS ICSF Application Programmer's Guide

The number of keywords you are supplying in the rule_array parameter. The
value may be 0 1, 2, or 3.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. One
keyword specifies the method for calculating the digital signature. Another
keyword specifies formatting of the hash value for RSA digital signature
generation. A third keyword specifies the hash method used to prepare the
hash value for RSA digital signature generation. Table 236 lists the keywords.
Each keyword is left-justified in an 8-byte field and padded on the right with
blanks. All keywords must be in contiguous storage.

Table 236. Keywords for Digital Signature Generate Control Information

Keyword Meaning

Digital Signature Formatting Method (optional, valid for RSA digital signature generation
only)

ISO-9796 Calculate the digital signature on the hash according to
ISO-9796-1. Any hash method is allowed. This is the
default.

PKCS-1.0 Calculate the digital signature on the BER-encoded ASN.1
value of the type DigestInfo containing the hash
according to the RSA Data Security, Inc. Public Key
Cryptography Standards #1 block type 00. The text must
have been hashed prior to inputting to this service.

PKCS-1.1 Calculate the digital signature on the BER-encoded ASN.1
value of the type DigestInfo containing the hash
according to the RSA Data Security, Inc. Public Key
Cryptography Standards #1 block type 01. The text must
have been hashed prior to inputting to this service.

ZERO-PAD Format the hash by padding it on the left with binary
zeros to the length of the RSA key modulus. Any
supported hash function is allowed.

X9.31 Format according to the ANSI X9.31 standard. The input
text must have been previously hashed with one of these
hash algorithms:

Hash Method Specification: Required with X9.31

RPMD-160 Hash the input text using the RIPEMD-160 hash method.

SHA-1 Hash the input text using the SHA-1 hash method.

Signature algorithm (optional, supported on the CEX3C or later coprocessor)

RSA RSA processing is to occur.

ECDSA The elliptic curve digital signature algorithm is to be
used. When specified, this is the only keyword permitted
in the Rule Array.

private_key_identifier_length

Direction Type

Input Integer

Digital Signature Generate

Chapter 9. Using Digital Signatures 547

|

|

The length of the private_key_identifier field. The maximum size is 3500 bytes.

private_key_identifier

Direction Type

Input String

This is an internal token or label of an RSA or ECC private key or Retained
key. If the signature format is X9.31, the modulus of the RSA key must have a
length of at least 1024 bits.

For secure PKCS #11 keys, this is the 44-byte handle of the private key,
prefixed with an EBCDIC equal sign character (‘=’ or x’7E’), and padded on
the right with spaces for a total length of 64 bytes.

hash_length

Direction Type

Input Integer

The length of the hash parameter in bytes. It must be the exact length of the
text to sign. The maximum size is bytes. If you specify ZERO-PAD in the
rule_array parameter, the length is restricted to 36 bytes unless the RSA key is a
signature only key, then the maximum length is 512 bytes.

The hash length limit is controlled by an access control point. Only RSA key
management keys are affected by this access control point. The limit for RSA
signature use only keys is 512 bytes. This access control point is always
disabled by default in the domain role. You must have a TKE workstation to
enable it.

hash

Direction Type

Input String

The application-supplied text on which to generate the signature. The input
text must have been previously hashed, and for PKCS formatting, it must be
BER-encoded as previously described. For X9.31, the hash algorithms must
have been either SHA-1 or RIPEMD-160. See the rule_array parameter for more
information.

signature_field_length

Direction Type

Input/Output Integer

The length in bytes of the signature_field to contain the generated digital
signature. Upon return, this field contains the actual length of the generated
signature. The maximum size is 512 bytes.

Note: For RSA, this must be at least the RSA modulus size (rounded up to a
multiple of 32 bytes for the X9.31 signature format, or one byte for all other
signature formats).

For RSA, this field is updated with the minimum byte length of the digital
signature.

Digital Signature Generate

548 z/OS ICSF Application Programmer's Guide

|
|
|

|
|
|
|
|

|
|

For ECDSA, signature algorithm R concatenated with S is the digital signature.
The maximum output value will be 1042 bits (131 bytes). The size of the
signature is determined by the size of P. Both R and S will have size P. For
prime curves, the maximum is 2 * 521 bits. For brain pool curves, the
maximum size is 2 * 512 bits.

signature_bit_length

Direction Type

Output Integer

The bit length of the digital signature generated. For ISO-9796 this is 1 less
than the modulus length. For other RSA processing methods, this is the
modulus length.

signature_field

Direction Type

Output String

The digital signature generated is returned in this field. The digital signature is
in the low-order bits (right-justified) of a string whose length is the minimum
number of bytes that can contain the digital signature. This string is
left-justified within the signature_field. Any unused bytes to the right are
undefined.

Restrictions
Although ISO-9796 does not require the input hash to be an integral number of
bytes in length, this service requires you to specify the hash_length in bytes.

X9.31 requires the RSA token to have a modulus bit length of at least 1024 bits and
the length must also be a multiple of 256 bits (or 32 bytes).

The length of the hash parameter in bytes. It must be the exact length of the text to
sign. The maximum size is 512 bytes. If you specify ZERO-PAD in the rule_array
parameter, the length is restricted to 36 bytes unless the RSA key is a signature
only key, then the maximum length is 512 bytes.

For CCA RSA keys, the hash length limit is controlled by the DSG ZERO-PAD
unrestricted hash length access access control point. If enabled, the maximum
hash length limit for ZERO-PAD is the modulus length of the PKA private key. If
disabled, the maximum hash length limit for ZERO-PAD is 36 bytes. Only RSA key
management keys are affected by this access control point. The limit for RSA
signature use only keys is 512 bytes. This access control point is disabled in the
domain role. You must have a TKE workstation to enable it.

Authorization
To use this service with a secure PKCS #11 private key that is a public object, the
caller must have SO (READ) authority or USER (READ) authority (any access) to
the containing PKCS #11 token.

To use this service with a secure PKCS #11 private key that is a private object, the
caller must have USER (READ) authority (user access) to the containing PKCS #11
token.

Digital Signature Generate

Chapter 9. Using Digital Signatures 549

|
|
|

|
|
|
|
|
|
|

See z/OS Cryptographic Services ICSF Writing PKCS #11 Applications for more
information on the SO and User PKCS #11 roles.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS, PKDS, or
TKDS.

For secure PKCS #11 private keys, the Sign with private keys access control point
controls the function of this service. For more information on the access control
points of the Enterprise PKCS #11 coprocessor, see PKCS #11 Access Control Points
inz/OS Cryptographic Services ICSF Writing PKCS #11 Applications.

Access Control Points
For PKA private keys, the Digital Signature Generate access control point controls
the function of this service.

The length of the hash for ZERO-PAD is restricted to 36 bytes. If the DSG
ZERO-PAD unrestricted hash length access control point is enabled in the domain
role, the length of the hash is not restricted. This access control is disabled by
default.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 237. Digital signature generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

ECC not supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor ECC not supported.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor ECC not supported.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Crypto Express3
Coprocessor ECC support requires the Sep. 2010 licensed

internal code (LIC).

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

Digital Signature Generate

550 z/OS ICSF Application Programmer's Guide

|

|
|
|

|
|
|
|

|

|
|

|
|
|
|

|

|
|

|

|
|
|

|

|
|
|

|
|

|

Table 237. Digital signature generate required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4 CCA
Coprocessor

Crypto Express4
Enterprise PKCS #11
coprocessor

Required to use a secure PKCS #11 private
key

Digital Signature Verify (CSNDDSV and CSNFDSV)
Use the digital signature verify callable service to verify a digital signature using a
PKA public key.
v The digital signature verify callable service can use the RSA or ECC public key,

depending on the digital signature algorithm used to generate the signature.
v The digital signature verify callable service can also use the public keys that are

contained in trusted blocks regardless of whether the block also contains rules to
govern its use when generating or exporting keys with the RKX service. If the
TPK-ONLY keyword is used in the rule_array, an error will occur if the
PKA_public_key_identifier does not contain a trusted block.

This service supports these methods:
v ANSI X9.30 (ECC)
v ANSI X9.31 (RSA)
v ISO 9796 (RSA)
v RSA DSI PKCS 1.0 and 1.1 (RSA)
v Padding on the left with zeros (RSA)

Input text should have been previously hashed. You can use either the one-way
hash generate callable service or the MDC generation callable service. See also
“Formatting Hashes and Keys in Public-Key Cryptography” on page 913.

Note: The maximum signature length is 512 bytes.

The callable service name for AMODE(64) invocation is CSNFDSV.

Format
CALL CSNDDSV(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PKA_public_key_identifier_length,
PKA_public_key_identifier,
hash_length,
hash,
signature_field_length,
signature_field)

Digital Signature Generate

Chapter 9. Using Digital Signatures 551

|

|
|

|

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be 0, 1, or 2.

rule_array

Direction Type

Input String

Contains an array of keywords that provide control information to the callable
service. One keyword specifies the method to use to verify the RSA digital
signature. Another keyword specifies the input token is a Trusted Block. A
third keyword specifies the algorithm used to validate the signature. Table 238
on page 553 lists the keywords. Each keyword is left-justified in an 8-byte field
and padded on the right with blanks. All keywords must be in contiguous
storage.

Digital Signature Verify

552 z/OS ICSF Application Programmer's Guide

Table 238. Keywords for Digital Signature Verify Control Information

Keyword Meaning

Digital Signature Formatting Method (optional, RSA only)

X9.31 Format according to the ANSI X9.31 standard.

ISO-9796 Calculate the digital signature on the hash according to ISO 9796-1.
Any hash method is allowed. This is the default.

PKCS-1.0 Calculate the digital signature on the BER-encoded ASN.1 value of
the type DigestInfo containing the hash according to the RSA Data
Security, Inc., Public Key Cryptography Standards #1 block type 00 and
compare to the digital signature. The text must have been hashed
prior to inputting to this service.

PKCS-1.1 Calculate the digital signature on the BER-encoded ASN.1 value of
the type DigestInfo containing the hash according to the RSA Data
Security, Inc., Public Key Cryptography Standards #1 block type 01 and
compare to the digital signature. The text must have been hashed
prior to inputting to this service.

ZERO-PAD Format the hash by padding it on the left with binary zeros to the
length of the PKA key modulus. Any supported hash function is
allowed.

PKA public key token type (one, optional)

TPK-ONLY The PKA_public_key_identifier must be a trusted block that
contains, at a minimum, two sections:

1. Trusted Block Information section 0x14 which is required for all
trusted blocks and

2. Trusted Public Key section 0x11 which contains the trusted
public key and usage rules that indicate whether or not the
trusted public key can be used in digital signature operations.

Signature Algorithm (optional, supported on the CEX3C or later coprocessor)

RSA RSA processing is to occur. This is the default value.

ECDSA The elliptic curve digital signature algorithm is to be used. When
specified, this is the only keyword permitted in the Rule Array.

PKA_public_key_identifier_length

Direction Type

Input Integer

The length of the PKA_public_key_identifier parameter containing the public key
token or label. The maximum size is 3500 bytes.

PKA_public_key_identifier

Direction Type

Input String

A token or label of the RSA or ECC public key or internal trusted block. If this
parameter contains a token or the label of an Internal Trusted Block, the
rule_array parameter must specify TPK-ONLY.

hash_length

Digital Signature Verify

Chapter 9. Using Digital Signatures 553

|

|
|
|

Direction Type

Input Integer

The length of the hash parameter in bytes. It must be the exact length of the
text that was signed. The maximum size is 512 bytes.

hash

Direction Type

Input String

The application-supplied text on which the supplied signature was generated.
The text must have been previously hashed and, for PKCS formatting,
BER-encoded as previously described.

signature_field_length

Direction Type

Input Integer

The length in bytes of the signature_field parameter. The maximum size is 512
bytes.

signature_field

Direction Type

Input String

This field contains the digital signature to verify. The digital signature is in the
low-order bits (right-justified) of a string whose length is the minimum
number of bytes that can contain the digital signature. This string is
left-justified within the signature_field.

Restrictions
The ability to recover a message from a signature (which ISO-9796 allows but does
not require) is not supported.

The exponent of the RSA public key must be odd.

Although ISO-9796 does not require the input hash to be an integral number of
bytes in length, this service requires you to specify the hash_length in bytes.

X9.31 requires the RSA token to have a modulus bit length of at least 1024 bits and
the length must also be a multiple of 256 bits (or 32 bytes).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Access Control Point
The Digital Signature Verify access control point controls the function of this
service.

Digital Signature Verify

554 z/OS ICSF Application Programmer's Guide

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 239. Digital signature verify required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

PCI Cryptographic
Accelerator

ECC not supported.

Trusted key block not supported.

TPK-ONLY keyword not supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Crypto Express2
Accelerator

ECC not supported.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express2
Accelerator

ECC not supported.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Crypto Express3
Coprocessor

Crypto Express3
Accelerator

ECC support requires the Sep. 2010 licensed
internal code (LIC).

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

Crypto Express3
Accelerator

RSA clear key support with moduli within
the range 2048-bit and 4096-bit requires the
Sep. 2011 or later licensed internal code
(LIC).

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express3
Accelerator

Crypto Express4
Coprocessor

Crypto Express4
Accelerator

Digital Signature Verify

Chapter 9. Using Digital Signatures 555

|

|

|

|
|

|

|
|
|

|

|
|
|

|
|

|
|
|
|

|

Digital Signature Verify

556 z/OS ICSF Application Programmer's Guide

Chapter 10. Managing PKA Cryptographic Keys

This topic describes the callable services that generate and manage PKA keys.
v “PKA Key Generate (CSNDPKG and CSNFPKG)”
v “PKA Key Import (CSNDPKI and CSNFPKI)” on page 563
v “PKA Key Token Build (CSNDPKB and CSNFPKB)” on page 567
v “PKA Key Token Change (CSNDKTC and CSNFKTC)” on page 578
v “PKA Key Translate (CSNDPKT and CSNFPKT)” on page 581
v “PKA Public Key Extract (CSNDPKX and CSNFPKX)” on page 586
v “Retained Key Delete (CSNDRKD and CSNFRKD)” on page 589
v “Retained Key List (CSNDRKL and CSNFRKL)” on page 591

PKA Key Generate (CSNDPKG and CSNFPKG)
Use the PKA key generate callable service to generate RSA or ECC key pairs

Input to the PKA key generate callable service is either a skeleton key token that
has been built by the PKA key token build service or a valid internal RSA token.
PKG will generate a key with the same modulus length and the same exponent. In
the case of a valid internal ECC token, PKG will generate a key based on the curve
type and size. Internal tokens with a X'09' section are not supported.

RSA key generation requires this information in the input skeleton token:
v Size of the modulus in bits. The modulus for modulus-exponent form keys is

between 512 and 1024. The CRT modulus is between 512 and 4096. The modulus
for the variable-length-modulus-exponent form is between 512 and 4096.

RSA key generation has these restrictions: For modulus-exponent, there are
restrictions on modulus, public exponent, and private exponent. For CRT, there are
restrictions on dp, dq, U, and public exponent. See the Key value structure in
“PKA Key Token Build (CSNDPKB and CSNFPKB)” on page 567 for a summary of
restrictions.

ECC key generation requires this information in the skeleton token:
v The key type: ECC
v The type of curve: Prime or Brainpool
v The size of P in bits: 192, 224, 256, 384 or 521 for Prime curves and 160, 192, 224,

256, 320, 384, or 512 for Brainpool curves
v Key usage information
v Optionally, application associated data

The generated ECC private key will be returned in one of the following forms:
v Clear key
v Encrypted key enciphered under the ECC master key
v Encrypted key enciphered by an AES transport key

The callable service name for AMODE(64) invocation is CSNFPKG.

© Copyright IBM Corp. 1997, 2013 557

Format
CALL CSNDPKG(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
regeneration_data_length,
regeneration_data,
skeleton_key_identifier_length,
skeleton_key_identifier,
transport_key_identifier,
generated_key_token_length,
generated_key_token)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

PKA Key Generate

558 z/OS ICSF Application Programmer's Guide

The number of keywords you supplied in the rule_array parameter. Value may
be 1 or 2.

rule_array

Direction Type

Input String

A keyword that provides control information to the callable service. See
Table 240 for a list. A keyword is left-justified in an 8-byte field and padded on
the right with blanks.

Table 240. Keywords for PKA Key Generate Rule Array

Keyword Meaning

Private Key Encryption (required)

CLEAR Return the private key in clear text. The private key in clear
text is an external token.

MASTER Encipher the private key under the master key. The keyword is
not supported if a skeleton token with a X'09' section is
provided.

RETAIN Retain the private key within a cryptographic coprocessor for
additional security. This is only valid for RSA signature keys.
Because of this, the RETAIN keyword is not supported for:

v a skeleton token with a X'09', X'30', or X'31' section provided.

v an ECC token.

XPORT Encipher the private key under the transport_key_identifier.

Options (optional)

CLONE Mark a generated and retained private key as usable in
cryptographic engine cloning process. This keyword is
supported only if RETAIN is also specified. Only valid for RSA
keys. The keyword is not supported for:

v a skeleton token with a X'09' section is provided.

v an ECC token.

Processing Controls (Optional when regeneration_data_length is non-zero)

ITER-38 When regeneration_data is specified, this keyword will cause the
service to generate key values that are FIPS and ANSI X9.31
compliant.

Transport Key Type (one optional)

OKEK-DES The transport key identifier identifies a DES KEK token. This is
the default value.

OKEK-AES The transport key identifier identifies an AES KEK token.

regeneration_data_length

Direction Type

Input Integer

The value must be 0 for ECC tokens. For RSA tokens, the
regeneration_data_length can be non-zero. If it is non-zero, it must be between
8 and 512 bytes inclusive.

regeneration_data

PKA Key Generate

Chapter 10. Managing PKA Cryptographic Keys 559

|
|

|

|
|
|

Direction Type

Input String

This field points to a string variable containing a string used as the basis for
creating a particular public-private key pair in a repeatable manner.

skeleton_key_identifier_length

Direction Type

Input Integer

The length of the skeleton_key_identifier parameter in bytes. The maximum
allowed value is 3500 bytes.

skeleton_key_identifier

Direction Type

Input String

The application-supplied skeleton key token generated by PKA key token build
or label of the token that contains the required curve type and bit length for
ECC key generation, or the required modulus length and public exponent for
RSA key generation. If RETAIN was specified and the skeleton_key_identifier is a
label, the label must match the private key name of the key.

For RSA keys, the skeleton_key_identifier parameter must contain a token
which specifies a modulus length in the range 512 – 4096 bits.

transport_key_identifier

Direction Type

Input String

A variable-length field containing an AES or DES key identifier used to encrypt
the generated key. For RSA keys, this may be an AES or DES transport key.
When there is an RSA private key section X'30' or X'31' in the skeleton token,
an AES transport key must be specified. The key-usage field in the AES key
must allow the key to wrap an RSA key. For all other RSA private key sections,
a DES transport key must be specified. For ECC keys, this must be an AES
transport key which is able to wrap an ECC key.

If the XPORT Rule is not specified, this parameter must be 64 bytes of binary
zeros.

For XPORT rule, this is an IMPORTER or EXPORTER key or the label of an
IMPORTER or EXPORTER key. If you specify a label, it must resolve uniquely
to either an IMPORTER or EXPORTER key. This parameter is a:
v 64-byte label of a CKDS record that contains the transport key.
v 64-byte DES internal key token containing the transport key.
v a variable-length AES internal key token containing the transport key.

generated_key_token_length

Direction Type

Input/Output Integer

PKA Key Generate

560 z/OS ICSF Application Programmer's Guide

|
|
|
|
|

|
|

|
|

The length of the generated key token. The field is checked to ensure it is at
least equal to the token being returned. The maximum size is 3500 bytes. On
output, this field is updated with the actual token length.

generated_key_token

Direction Type

Input/Output String

The internal token or label of the generated ECC or RSA key. The label can be
that of a retained key for most RSA key tokens.

Checks are made to ensure that:
v An ECC Token in the PKDS will only be overlayed if an ECC token is

specified in the skeleton_key_identifier

v A retained key is not overlayed in PKDS. If the label is that of a retained
key, the private name in the token must match the label name. If a label is
specified in the generated_key_token field, the generated_key_token_length
returned to the application will be the same as the input length. If RETAIN
was specified, but the generated_key_token was not specified as a label, the
generated key length returned to the application will be zero (the key was
retained in the cryptographic coprocessor). If the record already exists in the
PKDS with the same label as the one specified as the generated_key_token, the
record will be overwritten with the newly generated key token (unless the
PKDS record is an existing retained private key, in which case it cannot be
overwritten). If there is no existing PKDS record with this label in the case of
generating a retained key, a record will be created. For generation of a
non-retained key, if a label is specified in the generated_key_token field, a
record must already exist in the PKDS with this same label or the service
will fail.

Restrictions
2048-bit RSA keys may have a public exponent in the range of 1-256 bytes. 2049- to
4096-bit RSA key public exponents are restricted to the values 3 and 65537.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Access Control Points
The PKA Key Generate access control point controls the function of this service.
Additional access control points control the use of rule array keys.

Table 241. Required access control points for PKA Key Generate rule array keys

Key algorithm Rule array keyword Access control point

RSA CLEAR PKA Key Generate – Clear RSA
keys

ECC CLEAR PKA Key Generate – Clear ECC
keys

RSA CLONE PKA Key Generate - Clone

To generate keys based on the value supplied in the regeneration_data variable, you
must enable at least one of these access control points:

PKA Key Generate

Chapter 10. Managing PKA Cryptographic Keys 561

v When not using the RETAIN keyword, PKA Key Generate - Permit
Regeneration Data

v When using the RETAIN keyword, PKA Key Generate - Permit Regeneration
Data Retain

For ECC keys, when an transport key is specified, the Prohibit weak wrapping -
Transport keys access control point can be enabled in the active role to prevent
stronger keys from being wrapped by weaker keys.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 242. PKA key generate required hardware

Server Required
Cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

ECC not supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor ECC not supported.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor ECC not supported.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Crypto Express3
Coprocessor ECC support requires the Sep. 2010 licensed

internal code (LIC).

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor ECC Clear Key and Internal token support

requires the Sep. 2010 licensed internal code
(LIC).

ECC External token and Diffie-Hellman
support requires the Sep. 2011 or later
licensed internal code (LIC).

Wrapping of RSA keys with the ECC master
key or AES transport keys is not supported.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

PKA Key Generate

562 z/OS ICSF Application Programmer's Guide

|

|
|

|

|
|
|

|

|
|
|

|
|

|
|
|

|
|
|

|
|

|

PKA Key Import (CSNDPKI and CSNFPKI)
Use this service to import an external PKA private key token. (The private key
must consist of a PKA private key and public key.) The secret values of the key
may be:
v Clear
v Encrypted under a limited-authority DES importer key or an AES importer key

if the source_key_identifier is an RSA token
v Encrypted under an AES Key Encryption Key if the source_key_identifier is an

ECC token

This service can also import a clear PKA key. The PKA key token build service
creates a clear PKA key token.

This service can also import an external trusted block token for use with the
remote key export callable service.

Output of this service is an ICSF internal token of the RSA or ECC private key or
trusted block.

The callable service name for AMODE(64) invocation is CSNFPKI.

Format
CALL CSNDPKI(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
source_key_identifier_length,
source_key_identifier,
importer_key_identifier,
target_key_identifier_length,
target_key_identifier)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

PKA Key Import

Chapter 10. Managing PKA Cryptographic Keys 563

|
|

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. This may
be 0 or 1.

rule_array

Direction Type

Input Character String

The rule_array parameter is an array of keywords. The keywords must be 8
bytes of contiguous storage with the keyword left-justified in its 8-byte location
and padded on the right with blanks. The rule_array keywords are:

Table 243. Keywords for PKA Key Import

Keyword Meaning

Token Type (optional)

RSA Specifies that the key token is for an RSA key. This is the
default.

ECC Specifies that the key token is for an ECC key.

Transport key type (optional)

IKEK-AES The importer_key_identifier is a AES key.

IKEK-DES The importer_key_identifier is a DES key. This is the default.

source_key_identifier_length

Direction Type

Input Integer

The length of the source_key_identifier parameter. The maximum size is 3500
bytes.

source_key_identifier

PKA Key Import

564 z/OS ICSF Application Programmer's Guide

Direction Type

Input String

Contains an external token or label of a PKA private key, without section
identifier 0x14 (Trusted Block Information), or the trusted block in external
form as produced by the Trusted Block Create (CSNDTBC and CSNETBC)
service with the ACTIVATE keyword.

If a PKA private key without the section identifier 0x14 is passed in:
v There are no qualifiers. A retained key can not be used.
v The key token must contain both public-key and private-key information.

The private key can be in cleartext or it can be enciphered.
v This is the output of the PKA key generate (CSNDPKG) callable service or

the PKA key token build (CSNDPKB) callable service.
v If encrypted, it was created on another platform.

If a PKA key token with section 0x14 is passed in:
v This service will be used to encipher the MAC key within the trusted block

under the PKA master key instead of the IMP-PKA key-encrypting key.
v The importer_key_identifier must contain an IMP-PKA KEK in this case.

importer_key_identifier

Direction Type

Input/Output String

A variable-length field containing an AES or DES key identifier used to wrap
the imported key. For RSA keys, this is either a DES limited authority transport
key (IMP-PKA) or an AES transport key. For trusted blocks, this must be a DES
limited authority transport key (IMP-PKA). For ECC keys, this must be an AES
transport key.

This parameter contains one of the following:
v 64-byte label of a CKDS record that contains the transport key.
v 64-byte DES internal key token containing the transport key.
v a variable-length AES internal key token containing the transport key.

This parameter is ignored for clear tokens.

target_key_identifier_length

Direction Type

Input/Output Integer

The length of the target_key_identifier parameter. The maximum size is 3500
bytes. On output, and if the size is of sufficient length, the variable is updated
with the actual length of the target_key_identifier field.

target_key_identifier

Direction Type

Input/Output String

This field contains the internal token or label of the imported PKA private key
or a Trusted Block. If a label is specified on input, a PKDS record with this

PKA Key Import

Chapter 10. Managing PKA Cryptographic Keys 565

label must exist. The PKDS record with this label will be overwritten with
imported key unless the existing record is a retained key. If the record is a
retained key, the import will fail. A retained key record cannot be overwritten.
If no label is specified on input, this field is ignored.

Restrictions
This service imports RSA keys of up to 4096 bits. However, the hardware
configuration sets the limits on the modulus size of keys for digital signatures and
key management; thus, the key may be successfully imported but fail when used if
the limits are exceeded.

The importer_key_identifier is a limited-authority key-encrypting key.

CRT form tokens with a private section ID of X'05' cannot be imported into ICSF.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

An RSA modulus-exponent form token imported results in a X'06' format.

This service imports keys of any modulus size up to 4096 bits. However, the
hardware configuration sets the limits on the modulus size of keys for digital
signatures and key management; thus, the key may be successfully imported but
fail when used if the limits are exceeded.

Access Control Points
The PKA Key Import access control point controls the function of this service. If
the source_key_token parameter points to a trusted block, the PKA Key Import -
Import an External Trusted Block access control point must also be enabled.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 244. PKA key import required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

RSA keys with moduli greater than 2048-bit
length are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

PKA Key Import

566 z/OS ICSF Application Programmer's Guide

|

|
|

|
|
|

|
|
|

Table 244. PKA key import required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

ECC External token and Diffie-Hellman
support requires the Sep. 2011 or later
licensed internal code (LIC).

Importing RSA keys wrapped with an AES
transport key is not supported.

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

PKA Key Token Build (CSNDPKB and CSNFPKB)
This callable service can be used create PKA key tokens. Specifically, it can be used
to:
v build external PKA key tokens containing unencrypted private key for ECC or

RSA keys. You can use this token as input to the PKA Key Import service to
obtain an operational internal token containing an enciphered private key.

v build external RSA key tokens with the private key for use with the PKA Key
Translate service.

v build a skeleton token for ECC and RSA keys that you can use as input to the
PKA Key Generate service.

v build a public key token containing a clear unencrypted public key for an ECC
or RSA keys and return the public key in a token format that other PKA services
can use directly.

ECC key generation requires this information in the skeleton token:
v The key type: ECC
v The type of curve: Prime or Brainpool
v The size of P in bits: 192, 224, 256, 384 or 521 for Prime curves and 160, 192, 224,

256, 320, 384, or 521 for Brainpool curves
v Key usage information
v Optionally, application associated data

RSA key generation requires this information in the skeleton token:
v In modulus-exponent form:

– the length of the modulus n in bits (512-4096)
– the length of the public exponent e (optional). There are restrictions on the

value and length of the public exponent when the length of the modulus is
greater than 2048

– the length of the private exponent d (optional)
– the pubic exponent e (optional)

v In Chinese Remainder Theorem form:
– the length of the modulus n in bits (512-4096)
– the length of the public exponent e (optional)
– the pubic exponent e (optional)

PKA Key Import

Chapter 10. Managing PKA Cryptographic Keys 567

|
|
|

|
|

|

|
|
|

|
|

|
|
|

– other optional lengths

The callable service name for AMODE(64) invocation is CSNFPKB.

Format
CALL CSNDPKB(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_value_structure_length,
key_value_structure,
private_key_name_length,
private_key_name,
user_definable_associated_data_length,
user_definable_associated_data,
reserved_2_length,
reserved_2,
reserved_3_length,
reserved_3,
reserved_4_length,
reserved_4,
reserved_5_length,
reserved_5,
key_token_length,
key_token)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

PKA Key Token Build

568 z/OS ICSF Application Programmer's Guide

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. Value must
be 1, 2 or 3.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. Table 245
lists the keywords. The keywords must be in contiguous storage with each of
the keywords left-justified in its own 8-byte location and padded on the right
with blanks.

Table 245. Keywords for PKA Key Token Build Control Information

Keyword Meaning

Key Type (required)

RSA-CRT This keyword indicates building a token containing an RSA
private key in the optimized Chinese Remainder Theorem
(CRT) form. The parameter key_value_structure identifies the
input key values, if supplied.

RSA-PRIV This keyword indicates building a token containing both public
and private RSA key information. The parameter
key_value_structure identifies the input key values, if supplied.

RSA-PUBL This keyword indicates building a token containing public RSA
key information. The parameter key_value_structure identifies the
input values, if supplied.

RSAMEVAR This keyword is for creating a key token for an RSA public and
private key pair in modulus-exponent form whose modulus is
512 bits or greater.

RSA-AESM This keyword is for creating a key token for an RSA public and
private key in modulus-exponent format. The object protection
key is an AES key. The private key section id is X'30'

RSA-AESC This keyword is for creating a key token for an RSA public and
private key in Chinese-Remainder Theorem format. The object
protection key is an AES key. The private key section id is X'31.

ECC-PAIR This keyword indicates building a token containing both public
and private ECC key information. The parameter
key_value_structure identifies the input key values, if supplied.

ECC-PUBL This keyword indicates building a token containing public ECC
key information. The parameter key_value_structure identifies the
input values, if supplied.

Key Usage Control (optional)

PKA Key Token Build

Chapter 10. Managing PKA Cryptographic Keys 569

Table 245. Keywords for PKA Key Token Build Control Information (continued)

Keyword Meaning

KEY-MGMT Indicates that a private key can be used in both the symmetric
key import and the digital signature generate callable services.

KM-ONLY Indicates that a private key can be used only in symmetric key
distribution.

SIG-ONLY Indicates that a private key cannot be used in symmetric key
distribution. This is the default.

Translate Control (optional, only allowed with key types RSA-AESM, RSA-AESC,
RSA-PRIV, RSAMEVAR, RSA-CRT, and ECC-PAIR and is valid with all key usage rules.)

XLATE-OK Specifies that the private key material can be translated.

NO-XLATE Indicates key translation is not allowed. This is the default.

key_value_structure_length

Direction Type

Input Integer

This is a segment of contiguous storage containing a variable number of input
clear key values. The length depends on the key type parameter in the rule
array and on the actual values input. The length is in bytes.

Table 246. Key Value Structure Length Maximum Values for Key Types

Key Type Key Value Structure Maximum Value

RSA-CRT 3500

RSAMEVAR 3500

RSA-AESC 3500

RSA-AESM 3500

RSA-PRIV 648

RSA-PUBL 520

ECC-PAIR 207

ECC-PUBL 139

key_value_structure

Direction Type

Input String

This is a segment of contiguous storage containing a variable number of input
clear key values and the lengths of these values in bits or bytes, as specified.
The structure elements are ordered, of variable length, and the input key
values must be right-justified within their respective structure elements and
padded on the left with binary zeros. If the leading bits of the modulus are
zero's, don't count them in the length. Table 247 on page 571 defines the
structure and contents as a function of key type.

PKA Key Token Build

570 z/OS ICSF Application Programmer's Guide

|
|

|
|

|
|

Table 247. Key Value Structure Elements for PKA Key Token Build

Offset Length (bytes) Description

Key Value Structure: Optimized RSA, Chinese Remainder Theorem form (RSA-CRT,
RSA-AESC)

000 002 Modulus length in bits (512 to 4096).
This is required.

002 002 Modulus field length in bytes,
“nnn.” This value can be zero if the
key token is used as a
skeleton_key_token in the PKA key
generate callable service. This value
must not exceed 512.

004 002 Public exponent field length in
bytes, “eee.” This value can be zero
if the key token is used as a
skeleton_key_token in the PKA key
generate callable service.

006 002 Reserved, binary zero.

008 002 Length of the prime number, p, in
bytes, “ppp.” This value can be zero
if the key token is used as a
skeleton_key_token in the PKA key
generate callable service. Maximum
size of p + q is 512 bytes.

010 002 Length of the prime number, q, in
bytes, “qqq.” This value can be zero
if the key token is used as a
skeleton_key_token in the PKA key
generate callable service. Maximum
size of p + q is 512 bytes.

012 002 Length of dp, in bytes, “rrr.” This
value can be zero if the key token is
used as a skeleton_key_token in the
PKA key generate callable service.
Maximum size of dp + dq is 512
bytes.

014 002 Length of dq, in bytes, “sss.” This
value can be zero if the key token is
used as a skeleton_key_token in the
PKA key generate callable service.
Maximum size of dp + dq is 512
bytes.

016 002 Length of U, in bytes, “uuu.” This
value can be zero if the key token is
used as a skeleton_key_token in the
PKA key generate callable service.
Maximum size of U is 512 bytes.

018 nnn Modulus, n.

PKA Key Token Build

Chapter 10. Managing PKA Cryptographic Keys 571

||

|||

|
|

|||
|

|||
|
|
|
|
|

|||
|
|
|
|

|||

|||
|
|
|
|
|

|||
|
|
|
|
|

|||
|
|
|
|
|

|||
|
|
|
|
|

|||
|
|
|
|

|||

Table 247. Key Value Structure Elements for PKA Key Token Build (continued)

Offset Length (bytes) Description

018 + nnn eee Public exponent, e. This is an integer
such that 1<e<n. e must be odd.
When you are building a
skeleton_key_token to control the
generation of an RSA key pair, the
public key exponent can be one of
these values: 3, 65537 (216 + 1), or 0
to indicate that a full random
exponent should be generated. The
exponent field can be a null-length
field if the exponent value is 0.

018 + nnn + eee ppp Prime number, p.

018 + nnn + eee + ppp qqq Prime number, q.

018 + nnn + eee + ppp + qqq rrr dp = d mod(p-1).

018 + nnn + eee + ppp + qqq
+ rrr

sss dq = d mod(q-1).

018 + nnn + eee + ppp + qqq
+ rrr + sss

uuu U = q–1mod(p).

Key Value Structure: RSA Modulus-Exponent form (RSA-PRIV, RSA-PUBL, RSAMEVAR,
RSA-AESM)

000 002 Modulus length in bits. This is
required. When building a skeleton
token, the modulus length in bits
must be greater than or equal to 512
bits.

002 002 Modulus field length in bytes,
“XXX”. TThis value must not exceed
512 when the RSA-PUBL,
RSA-AESM, or RSAMEVAR
keyword is used, and must not
exceed 128 when the RSA-PRIV
keyword is used.

This service can build a key token
for a public RSA key with a 4096-bit
modulus length, or it can build a
key token for a 1024-bit modulus
length private key.

004 002 Public exponent field length in
bytes, “YYY”. This value must not
exceed 512 when either the
RSA-PUBL, RSA-AESM, or
RSAMEVAR keyword is used, and
must not exceed 128 when the
RSA-PRIV keyword is used. This
value can be zero if you are using
the key token as a skeleton token in
the PKA key generate verb. In this
case, a random exponent is
generated. To obtain a fixed,
predetermined public key exponent,
you can supply this field and the
public exponent as input to the PKA
key generate verb.

PKA Key Token Build

572 z/OS ICSF Application Programmer's Guide

|

|||

|||
|
|
|
|
|
|
|
|
|
|

|||

|||

|||

|
|
||

|
|
||

|
|

|||
|
|
|
|

|||
|
|
|
|
|
|

|
|
|
|
|

|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 247. Key Value Structure Elements for PKA Key Token Build (continued)

Offset Length (bytes) Description

006 002 Private exponent field length in
bytes, “ZZZ”. This field can be zero,
indicating that private key
information is not provided. This
value must not exceed 128 bytes.
This value can be zero if you are
using the key token as a skeleton
token in the PKA key generate verb.

008 XXX Modulus, n. This is an integer such
that 1 < n <2**2048.The n is the
product of p and q for primes p and
q.

008 + XXX YYY RSA public exponent, e. This is an
integer such that 1<e<n. e must be
odd. When you are building a
skeleton_key_token to control the
generation of an RSA key pair, the
public key exponent can be one of
these values: 3, 65537 (216 + 1), or 0
to indicate that a full random
exponent should be generated. The
exponent field can be a null-length
field if the exponent value is 0.

008 + XXX + YYY ZZZ RSA secret exponent d. This is an
integer such that 1<d<n. The value
of d is e-1 mod(p-1)(q-1). e**-1
mod(p-1)(q-1); the product of e and
d is 1 mod(p-1)(q-1). This can be a
null-length field if you are using the
key token as a skeleton token in the
PKA key generate verb.

Key Value Structure: ECC Private/public key pair form (ECC-PAIR)

000 001 Curve type

x'00' Prime Curve

x'01' Brainpool Curve

001 001 Reserved x'00'

PKA Key Token Build

Chapter 10. Managing PKA Cryptographic Keys 573

|

|||

|||
|
|
|
|
|
|
|

|||
|
|
|

|||
|
|
|
|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|

|

|||

||

||

|||

Table 247. Key Value Structure Elements for PKA Key Token Build (continued)

Offset Length (bytes) Description

002 002 Length of p in bits

0x'00C0'
Prime P-192

0x'00E0'
Prime P-224

0x'0100'
Prime P-256

0x'0180'
Prime P-384

0x'0209'
Prime P-521

0x'00A0'
Brain Pool P-160

0x'00C0'
Brain Pool P-192

0x'00E0'
Brain Pool P-224

0x'0100'
Brain Pool P-256

0x'0140'
Brain Pool P-320

0x'0180'
Brain Pool P-384

0x'0200'
Brain Pool P512.

004 002 ddd, This field is the length of the
private key d value in bytes, This
value can be zero if the key token is
used as a skeleton key token in the
PKA Key Generate callable service.
The maximum value could be up to
66 bytes.

006 002 xxx, This field is the length of the
public key Q value in bytes. This
value can be zero if the key token is
used as a skeleton key token in the
PKA Key Generate callable service.
The maximum value could be up to
133 bytes which includes one byte to
indicate if the value is compressed.

008 ddd Private key d

008 + ddd xxx Public Key value Q

Key value Structure: ECC Public form (ECC_PUBL)

000 001 Curve type:

0x'00' Prime Curve

0x'01' Brain Pool Curve

000 001 Reserved x'00'

PKA Key Token Build

574 z/OS ICSF Application Programmer's Guide

|

|||

|||

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|||
|
|
|
|
|
|

|||
|
|
|
|
|
|
|

|||

|||

|

|||

||

||

|||

Table 247. Key Value Structure Elements for PKA Key Token Build (continued)

Offset Length (bytes) Description

002 002 Length of p in bits

0x'00C0'
Prime P-192

0x'00E0'
Prime P-224

0x'0100'
Prime P-256

0x'0180'
Prime P-384

0x'0209'
Prime P-521

0x'00A0'
Brain Pool P-160

0x'00C0'
Brain Pool P-192

0x'00E0'
Brain Pool P-224

0x'0100'
Brain Pool P-256

0x'0140'
Brain Pool P-320

0x'0180'
Brain Pool P-384

0x'0200'
Brain Pool P512.

004 002 xxx, This field is the length of the
public key Q value in bytes. This
value can be zero if the key token is
used as a skeleton key token in the
PKA Key Generate callable service.
The maximum value could be up to
133 bytes which includes a one byte
value indicating compressed or
uncompressed key value.

006 xxx Public key value Q

Note:

1. All length fields are in binary.
2. All binary fields (exponent, lengths, modulus, and so on) are stored with

the high-order byte field first. This integer number is right-justified within
the key structure element field.

3. You must supply all values in the structure to create a token containing an
RSA private key for input to the PKA key import service.

private_key_name_length

Direction Type

Input Integer

PKA Key Token Build

Chapter 10. Managing PKA Cryptographic Keys 575

|

|||

|||

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|||
|
|
|
|
|
|
|
|

|||
|

|
|

The length can be 0 or 64.

private_key_name

Direction Type

Input EBCDIC character

This field contains the name of a private key. The name must conform to ICSF
label syntax rules. That is, allowed characters are alphanumeric, national
(@,#,$) or period (.). The first character must be alphabetic or national. The
name is folded to upper case and converted to ASCII characters. ASCII is the
permanent form of the name because the name should be independent of the
platform. The name is then cryptographically coupled with clear private key
data prior to its encryption of the private key. Because of this coupling, the
name can never change when the key token is already imported. The
parameter is not valid with key type RSA-PUBL.

user_definable_associated_data_length

Direction Type

Input Integer

The length of the user_definable_associated_data parameter.

Valid for Rule Array Key Type of ECC-PAIR with a maximum value of 100 and
must be set to 0 for all other Rule Array Key Types.

user_definable_associated_data

Direction Type

Input String

The user_definable_associated_data parameter is a pointer to a string variable
containing the associated data that will be placed following the IBM associated
data in the token. The associated data is data whose integrity but not
confidentiality is protected by a key wrap mechanism. It can be used to bind
usage control information.

Valid for Rule Array Key Type of ECC-PAIR and is ignored for all others.

reserved_2_length

Direction Type

Input Integer

Length in bytes of a reserved parameter. You must set this variable to 0.

reserved_2

Direction Type

Input String

The reserved_2 parameter identifies a string that is reserved. The service ignores
it.

reserved_3_length

PKA Key Token Build

576 z/OS ICSF Application Programmer's Guide

|
|

Direction Type

Input Integer

Length in bytes of a reserved parameter. You must set this variable to 0.

reserved_3

Direction Type

Input String

The reserved_3 parameter identifies a string that is reserved. The service ignores
it.

reserved_4_length

Direction Type

Input Integer

Length in bytes of a reserved parameter. You must set this variable to 0.

reserved_4

Direction Type

Input String

The reserved_4 parameter identifies a string that is reserved. The service ignores
it.

reserved_5_length

Direction Type

Input Integer

Length in bytes of a reserved parameter. You must set this variable to 0.

reserved_5

Direction Type

Input String

The reserved_5 parameter identifies a string that is reserved. The service ignores
it.

key_token_length

Direction Type

Input/Output Integer

Length of the returned key token. The service checks the field to ensure it is at
least equal to the size of the token to return. On return from this service, this
field is updated with the exact length of the key_token created. On input, a size
of 3500 bytes is sufficient to contain the largest key_token created.

key_token

PKA Key Token Build

Chapter 10. Managing PKA Cryptographic Keys 577

Direction Type

Output String

The returned key token containing an unenciphered private or public key. The
private key is in an external form that can be exchanged with different
Common Cryptographic Architecture (CCA) PKA systems. You can use the
public key token directly in appropriate ICSF signature verification or key
management services.

Usage Notes
If you are building a skeleton for use in a PKA Key Generate request to generate a
retained PKA private key, you must build a private key name section in the
skeleton token.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 248. PKA key token build required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

IBM zEnterprise 196

IBM zEnterprise 114

None.

IBM zEnterprise EC12

IBM zEnterprise BC12

None.

PKA Key Token Change (CSNDKTC and CSNFKTC)
The PKA Key Token Change callable service changes PKA key tokens (RSA, DSS,
and ECC) or trusted block key tokens, from encipherment under the cryptographic
coprocessor's old RSA master key or ECC master key to encipherment under the
current cryptographic coprocessor's RSA master key or ECC master key.
v For RSA and DSS key tokens - Key tokens must be private internal PKA key

tokens to be changed by this service.
v For trusted block key tokens - Trusted block key tokens must be internal.
v For ECC key tokens - key tokens must be private internal ECC key tokens

encrypted under the ECC master key.

The callable service name for AMODE(64) invocation is CSNFKTC.

PKA Key Token Build

578 z/OS ICSF Application Programmer's Guide

|
|

Format
CALL CSNDKTC(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be 1 or 2.

rule_array

PKA Key Token Change

Chapter 10. Managing PKA Cryptographic Keys 579

Direction Type

Input String

The process rules for the callable service. The keywords must be 8 bytes of
contiguous storage with the keyword left-justitfied in its 8-byte location and
padded on the right with blanks.

Table 249. Rule Array Keywords for PKA Key Token Change

Keyword Meaning

Algorithm (optional)

RSA Specifies that the key token is for a RSA or DSS key or trusted
block token. This is the default.

ECC Specifies that the key token is for an ECC key.

Reencipherment method (required)

RTCMK If the key_identifier is an RSA key token, the service will change
an RSA private key from encipherment with the old RSA master
key to encipherment with the current RSA master key.

If the key_identifier is a trusted block token, the service will
change the trusted block's embedded MAC key from
encipherment with the old RSA master key to encipherment with
the current RSA master key.

If the key_identifier is an ECC key token, the service will change
an ECC private key from encipherment with the old ECC master
key to encipherment with the current ECC master key.

key_identifier_length

Direction Type

Input Integer

The length of the key_identifier parameter. The maximum size is 3500 bytes.

key_identifier

Direction Type

Input/Output String

Contains an internal key token of an internal RSA, DSS, ECC, or trusted block
key.

If the key token is an RSA key token, the private key within the token is
securely reenciphered under the current RSA or ECC master key.

If the key token is a Trusted Block key token, the MAC key within the token is
securely reenciphered under the current RSA master key.

If the key token is an ECC key token, the private key within the token is
securely reenciphered under the current ECC master key.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

PKA Key Token Change

580 z/OS ICSF Application Programmer's Guide

To use this service, PKA callable services must be enabled for all RSA and DSS
token types. For systems with CEX3C or CEX4C coprocessors, there is no PKA
callable services control. The RSA master key must be valid to use this service.

While DSS tokens can be processed by this service, they are not useable by any
other callable services.

To use this service for ECC tokens, the ECC master key must be valid.

Access Control Points
The PKA Key Token Change RTCMK access control point controls the function of
this service.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 250. PKA key token change required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

ECC not supported.

Trusted key blocks are not supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor ECC not supported.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor ECC not supported.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Crypto Express3
Coprocessor ECC support requires the Sep. 2010 licensed

internal code (LIC).

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

PKA Key Translate (CSNDPKT and CSNFPKT)
The PKA key translate callable service is used to do the following:
v Translate a CCA RSA key token into an external smart card key token.

PKA Key Token Change

Chapter 10. Managing PKA Cryptographic Keys 581

|
|

The source CCA RSA key token must be wrapped with a transport
key-encrypting key (KEK). The XLATE bit must also be turned on in the key
usage byte of the source token. The source token is unwrapped using the
specified source transport KEK. The target key token will be wrapped with the
specified target transport KEK. Existing information in the target token is
overwritten. There are restrictions on which type key can be used for the source
and target transport key tokens. These restrictions are enforced by access control
points.

v Convert the object protection key (OPK) in an CCA RSA private key token from
a DES key to an AES key.
The service will convert an existing internal or external RSA private key token.
The modulus-exponent and Chinese Remainder Theorem forms are supported.
Private key section identifiers 0x06, 0x08, and 0x09 can be converted.

The callable service name for AMODE(64) invocation is CSNFPKT.

Format
CALL CSNDPKT(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
source_key_identifier_length,
source_key_identifier,
source_transport_key_identifier_length,
source_transport_key_identifier,
target_transport_key_identifier_length,
target_transport_key_identifier,
target_key_token_length,
target_key_token)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

PKA Key Translate

582 z/OS ICSF Application Programmer's Guide

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. Value must
be 1.

rule_array

Direction Type

Input String

A keyword that provides control information to the callable service. See
Table 251 for a list. A keyword is left-justified in an 8-byte field and padded on
the right with blanks.

Table 251. Keywords for PKA Key Generate Rule Array

Keyword Meaning

Smartcard Format (required)

INTDWAKW Specifies that the source key is an internal DES wrapped
token to be converted to an AESKW wrapped token.

EXTDWAKW Specifies that the source key is an external DES wrapped
token to be converted to an AESKW wrapped token.

SCVISA This keyword indicates translating the key into the smart
card Visa proprietary format.

SCCOMME This keyword indicates translating the key into the smart
card Modulus-Exponent format.

SCCOMCRT This keyword indicates translating the key into the smart
card Chinese Remainder Theorem format.

source_key_identifier_length

Direction Type

Input Integer

Length in bytes of the source_key_identifier variable. The maximum length is
3500 bytes.

source_key_identifier

PKA Key Translate

Chapter 10. Managing PKA Cryptographic Keys 583

Direction Type

Input String

This field contains either a key label identifying an RSA private key token or
an RSA public-private key token. For smart card processing, the key must be in
an external key token. For OPK conversion, the token may be internal or
external. External tokens are wrapped with a DES key encrypting key. When
an internal token is specified, the transport keys are not used.

source_transport_key_identifier_length

Direction Type

Input Integer

Length in bytes of the source_transport_key_identifier parameter. This value must
be 64. For format rule INTDWAKW, the length must be zero.

source_transport_key_identifier

Direction Type

Input/Output String

This field contains an internal token or label of a DES key-encrypting key. This
key is used to unwrap the input RSA key token specified with parameter
source_key_identifier. See “Access Control Points” on page 585 for details on the
type of transport key that can be used

target_transport_key_identifier_length

Direction Type

Input Integer

Length in bytes of the target_transport_key_identifier parameter. When a DES
key-encrypting is used, this value must be 64. When an AES key-encrypting
key is used, this value is the length of the token. The maximum length is 725.
For INTDWAKW, the length must be zero.

target_transport_key_identifier

Direction Type

Input/Output String

This field contains an internal token or label of a DES key-encrypting key. This
key is used to wrap the output RSA key returned with parameter
target_key_token. See “Access Control Points” on page 585 for details on the
type of transport key that can be used.

target_key_token_length

Direction Type

Input/Output Integer

Length in bytes of the target_key_token parameter. On output, the value in this
variable is updated to contain the actual length of the target_key_token
produced by the callable service. The maximum length is 3500 bytes.

PKA Key Translate

584 z/OS ICSF Application Programmer's Guide

target_key_token

Direction Type

Output String

This field contains the RSA key in the smartcard format specified in the rule
array and is protected by the key-encrypting key specified in the
target_transport_key parameter. This is not a CCA token, and cannot be stored
in the PKDS.

Restrictions
CCA RSA ME tokens will not be translated to the SCCOMCRT format. CCA RSA
CRT tokens will not be translated to the SCCOMME format. SCVISA only supports
Modulus-Exponent (ME) keys.

Access Control Points
There are access control points that control use of the format rule array keywords
and the type of transport keys that can be used.

Table 252. Required access control points for PKA Key Translate

Rule array keyword Access control point

INTDWAKW PKA Key Translate – Translate internal key token

EXTDWAKW PKA Key Translate – Translate external key token

SCVISA PKA Key Translate - from CCA RSA to SC Visa
Format

SCCOMME PKA Key Translate - from CCA RSA to SC ME Format

SCCOMCRT PKA Key Translate - from CCA RSA to SC CRT
Format

These access control points control the key type combination shown in this table.
One of these access control points must be enabled.

Table 253. Required access control points for source/target transport key combinations

Source transport key
type Target transport key type Access control point

EXPORTER EXPORTER PKA Key Translate - from source
EXP KEK to target EXP KEK

IMPORTER EXPORTER PKA Key Translate - from source
IMP KEK to target EXP KEK

IMPORTER IMPORTER PKA Key Translate - from source
IMP KEK to target IMP KEK

EXPORTER IMPORTER (Not allowed)

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

PKA Key Translate

Chapter 10. Managing PKA Cryptographic Keys 585

Table 254. PKA key translate required hardware

Server Required
Cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

This callable service is not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor Requires the Apr. 2009 or later licensed

internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Requires the Apr. 2009 or later licensed
internal code (LIC).

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

PKA Public Key Extract (CSNDPKX and CSNFPKX)
Use the PKA public key extract callable service to extract a PKA public key token
from a supplied PKA internal or external private key token. This service performs
no cryptographic verification of the PKA private token. You can verify the private
token by using it in a service such as digital signature generate.

The callable service name for AMODE(64) invocation is CSNFPKX.

Format
CALL CSNDPKX(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
source_key_identifier_length,
source_key_identifier,
target_public_key_token_length,
target_public_key_token)

Parameters
return_code

Direction Type

Output Integer

PKA Key Translate

586 z/OS ICSF Application Programmer's Guide

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be 0.

rule_array

Direction Type

Input String

Reserved field. This field is not used, but you must specify it.

source_key_identifier_length

Direction Type

Input Integer

The length of the source_key_identifier parameter. The maximum size is 3500
bytes. When the source_key_identifier parameter is a key label, this field specifies
the length of the label.

source_key_identifier

PKA Public Key Extract

Chapter 10. Managing PKA Cryptographic Keys 587

Direction Type

Input/Output String

The internal or external token of a PKA private key or the label of a PKA
private key. This can be the input or output from PKA key import or from
PKA key generate.

This service supports:
v RSA private key token formats. If the source_key_identifier specifies a label for

a private key that has been retained within a cryptographic coprocessor, this
service extracts only the public key section of the token.

v ECC private key token formats supported on the CEX3C and later.

target_public_key_token_length

Direction Type

Input/Output Integer

The length of the target_public_key_token parameter. The maximum size is 3500
bytes. On output, this field will be updated with the actual byte length of the
target_public_key_token.

target_public_key_token

Direction Type

Output String

This field contains the token of the extracted PKA public key.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the PKDS.

This service extracts the public key from the internal or external form of a private
key. However, it does not check the cryptographic validity of the private token.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 255. PKA public key extract build required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None

IBM System z9 EC

IBM System z9 BC

None

PKA Public Key Extract

588 z/OS ICSF Application Programmer's Guide

|
|
|

|

Table 255. PKA public key extract build required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z10 EC

IBM System z10 BC

None

IBM zEnterprise 196

IBM zEnterprise 114

None

IBM zEnterprise EC12

IBM zEnterprise BC12

None

Retained Key Delete (CSNDRKD and CSNFRKD)
Use the retained key delete callable service to delete a key that has been retained
within cryptographic coprocessor. This service also deletes the record that contains
the associated key token from the PKDS. It also allows the deletion of a retained
key in the coprocessor even if there isn't a PKDS record, or deletion of a PKDS
record for a retained key even if the coprocessor holding the retained key is not
online. Use the rule_array parameter specifying the FORCE keyword and serial
number of the coprocessor that contains the retained key to be deleted. If a PKDS
record exists for the same label, but the serial number doesn't match the serial
number in rule_array, the service will fail. If any applications still need the public
key, use public key extract to create a public key token prior to deletion of the
retained key.

The callable service name for AMODE(64) invocation is CSNFRKD.

Format
CALL CSNDRKD(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

PKA Public Key Extract

Chapter 10. Managing PKA Cryptographic Keys 589

|
|
|
|
|
|
|
|
|
|
|

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords supplied in the rule_array parameter. The value may
be 0 or 1.

rule_array

Direction Type

Input Character String

This parameter may be FORCE and the coprocessor serial number.

key_label

Direction Type

Input String

A 64-byte label of a key that has been retained in a coprocessor.

Usage Notes
ICSF calls the Security Server (RACF) to check authorization to use the Retained
Key Delete service and the label of the key specified in key_label.

Retained private keys are domain-specific. Only the LPAR domain that created a
Retained private key can delete the key via the Retained Key Delete service.

When a Retained key is deleted using the Retained Key Delete service, ICSF
records this event in a type 82 SMF record with a subtype of 15.

If the Retained key does not exist in the coprocessor and the PKDS record exists
and the domain that created the retained key matches the domain of the requestor,
ICSF deletes the PKDS record. This situation may occur if the coprocessor has been
zeroized through TKE or the service processor.

Retained Key Delete

590 z/OS ICSF Application Programmer's Guide

|
|

|||

||
|

|||

||
|

|
|
|
|

If a PKDS record containing the retained key exists but the coprocessor holding the
retained key is not online, ICSF deletes the PKDS record if the FORCE keyword is
specified. The serial number specified in the rule array must be the serial number
of the coprocessor where the Retained key was created. The key token in the PKDS
record contains this serial number, and the serial number is used to verify that the
PKDS record can be deleted.

If the retained key exists on the coprocessor but there is no corresponding PKDS
record, ICSF deletes the retained key from the coprocessor if the FORCE keyword
is specified.

Access Control Point
The Retained Key Delete access control point controls the function of this service.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 256. Retained key delete required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Retained Key List (CSNDRKL and CSNFRKL)
Use the retained key list callable service to list the key labels of those keys that
have been retained within all current active coprocessor.

The callable service name for AMODE(64) invocation is CSNFRKL.

Format
CALL CSNDRKL(

return_code,
reason_code,

Retained Key Delete

Chapter 10. Managing PKA Cryptographic Keys 591

|
|
|
|
|
|

|
|
|

|
|

exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label_mask,
retained_keys_count,
key_labels_count,
key_labels)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords supplied in the rule_array parameter. The value must
be 0.

rule_array

Direction Type

Input Character String

Retained Key List

592 z/OS ICSF Application Programmer's Guide

This parameter is ignored by ICSF.

key_label_mask

Direction Type

Input String

A 64-byte key label mask that is used to filter the list of key names returned by
the verb. You can use a wild card (*) to identify multiple keys retained within
the coprocessor.

Note: If an asterisk (*) is used, it must be the last character in key_label_mask.
There can only be one *.

retained_keys_count

Direction Type

Output Integer

An integer variable to receive the number of retained keys stored within all
active coprocessor.

key_labels_count

Direction Type

Input/Output Integer

On input this variable defines the maximum number of key labels to be
returned. On output this variable defines the total number of key labels
returned. The maximum value for this field is 100. The value returned in the
retained_keys_count variable can be larger if you have not provided for the
return of a sufficiently large number of key labels in the key_labels_count field.

key_labels

Direction Type

Output String

A string variable where the key label information will be returned. This field
must be at least 64 times the key label count value. The key label information
is a string of zero or more 64-byte entries. The first 64-byte entry contains a
coprocessor serial number, and is followed by one or more 64-byte entries that
each contain a key label of a key retained within that coprocessor. The format
of the first 64-byte entry is as follows:
/nnnnnnnnbbbbb...bbb
where
"/" is the character "/" (EBCDIC: X’61’)
"nnnnnnnn" is the 8-byte cryptographic coprocessor serial number
"bbbbb...bbb" is 55 bytes of blank pad characters

(EBCDIC: X’40’)

This information (64-byte card serial number entry followed by one or more
64-byte label entries) is repeated for each active coprocessor that contains
retained keys that match the key_label_mask. All data returned is EBCDIC
characters. The number of bytes of information returned is governed by the

Retained Key List

Chapter 10. Managing PKA Cryptographic Keys 593

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

value specified in the key_labels_count field. The key_labels field must be large
enough to hold the number of 64-byte labels specified in the key_labels_count
field plus one 64-byte entry for each active coprocessor (a maximum of 64
coprocessors).

Usage Notes
Not all platforms support multiple coprocessors. In the case where only one card is
supported, the key_labels field will contain one or more 64-byte entries that each
contain a key label of a key retained within the coprocessor. There will be no
64-byte entry or entries containing a coprocessor serial number.

ICSF calls RACF to check authorization to use the Retained Key List service.

ICSF caller must be authorized to the key_label_mask name including the *.

Retained private keys are domain-specific. ICSF lists only those keys that were
created by the LPAR domain that issues the Retained Key List request.

Access Control Points
The Retained Key List access control point controls the function of this service.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 257. Retained key list required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express3
Coprocessor

Crypto Express4
Coprocessor

Retained Key List

594 z/OS ICSF Application Programmer's Guide

|
|
|
|

|
|
|
|

Chapter 11. Key Data Set Management

ICSF provides key stores for symmetric and asymmetric operational key tokens.
Symmetric key tokens (AES, DES and HMAC) are stored in the Cryptographic Key
Data Set (CKDS). Asymmetric key tokens (DSS, RSA, and ECC) and trusted blocks
are stored in the PKA Key Data Set (PKDS).

This topic describes the callable services that manage key tokens in the key stores.
v “CKDS Key Record Create (CSNBKRC and CSNEKRC)”
v “CKDS Key Record Create2 (CSNBKRC2 and CSNEKRC2)” on page 597
v “CKDS Key Record Delete (CSNBKRD and CSNEKRD)” on page 599
v “CKDS Key Record Read (CSNBKRR and CSNEKRR)” on page 602
v “CKDS Key Record Read2 (CSNBKRR2 and CSNEKRR2)” on page 604
v “CKDS Key Record Write (CSNBKRW and CSNEKRW)” on page 606
v “CKDS Key Record Write2 (CSNBKRW2 and CSNEKRW2)” on page 608
v “Coordinated KDS Administration (CSFCRC and CSFCRC6)” on page 611
v “PKDS Key Record Create (CSNDKRC and CSNFKRC)” on page 615
v “PKDS Key Record Delete (CSNDKRD and CSNFKRD)” on page 618
v “PKDS Key Record Read (CSNDKRR and CSNFKRR)” on page 620
v “PKDS Key Record Write (CSNDKRW and CSNFKRW)” on page 622

CKDS Key Record Create (CSNBKRC and CSNEKRC)

Use the CKDS key record create callable service to add a key record to the CKDS
that will be used to store AES and DES tokens. The record contains a key token set
to binary zeros and is identified by the label passed in the key_label parameter. This
service updates both the DASD copy of the CKDS currently in use by ICSF and the
in-storage copy of the CKDS.

The callable service name for AMODE(64) invocation is CSNEKRC).

Format
CALL CSNBKRC(

return_code,
reason_code,
exit_data_length,
exit_data,
key_label)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

© Copyright IBM Corp. 1997, 2013 595

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

key_label

Direction Type

Input Character String

The 64-byte label of a record in the CKDS that is the target of this service. The
created record contains a key token set to binary zeros and has a key type of
NULL.

Restrictions
The record must have a unique label. Therefore, there cannot be another record in
the CKDS with the same label and a different key type.

This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
The CKDS key record create callable service checks the syntax of the label
provided in the key_label parameter to ensure that it follows the KGUP rules. To
bypass label syntax checking, use a preprocessing exit to turn on the bypass parse
bit in the Exit Parameter Control Block (EXPB). For more information about
preprocessing exits and the EXPB, refer to the z/OS Cryptographic Services ICSF
System Programmer's Guide.

You must use either the CKDS key record create callable service or KGUP to create
an initial record in the CKDS prior to using the CKDS key record write service to
update the record with a valid key token. Your applications perform better if you
use KGUP to create the initial records and REFRESH the entire in-storage copy of
the CKDS, rather than using CKDS key record create to create the initial NULL key
entries. This is particularly true if you are creating a large number of key records.

CKDS Key Record Create

596 z/OS ICSF Application Programmer's Guide

CKDS key record create adds a record to a portion of the CKDS that is searched
sequentially during key retrieval. Using KGUP followed by a REFRESH puts the
null key records in the portion of the CKDS that is ordered in key-label/type
sequence. A binary search of the key-label/type sequenced part of the CKDS is
more efficient than searching the sequentially ordered section.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 258. CKDS record create required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

IBM zEnterprise 196

IBM zEnterprise 114

None.

IBM zEnterprise EC12

IBM zEnterprise BC12

None.

CKDS Key Record Create2 (CSNBKRC2 and CSNEKRC2)
Use this service to add a key record to the CKDS. The record will contain a null
key token or the key token supplied in the key_token parameter. The record is
identified by the label passed in the key_label parameter.

The callable service name for AMODE(64) is CSNEKRC2.

Format
CALL CSNBKRC2(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label,
key_token_length,
key_token)

CKDS Key Record Create

Chapter 11. Key Data Set Management 597

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value
must be 0.

rule_array

Direction Type

Input String

This parameter is ignored by ICSF.

key_label

Direction Type

Input String

CKDS Key Record Create2

598 z/OS ICSF Application Programmer's Guide

The 64-byte label of a record in the CKDS to be created.

key_token_length

Direction Type

Input Integer

The length of the field containing the token to be written to the CKDS. If zero
is specified, a null token will be added to the CKDS. The maximum value is
725.

key_token

Direction Type

Input/Output String

A symmetric internal token to be written to the CKDS if key_token_length is
non-zero. If the token supplied was encrypted under the old master key, the
token will be returned encrypted under the current master key.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 259. CKDS Key Record Create2 required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

IBM zEnterprise 196

IBM zEnterprise 114

None.

IBM zEnterprise EC12

IBM zEnterprise BC12

None.

CKDS Key Record Delete (CSNBKRD and CSNEKRD)
Use the CKDS key record delete callable service to delete a key record containing a
DES or AES token from both the DASD copy of the CKDS and the in-storage copy.

The callable service name for AMODE(64) invocation is CSNEKRD.

CKDS Key Record Create2

Chapter 11. Key Data Set Management 599

Format

CALL CSNBKRD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords supplied in the rule_array parameter. This number
must always be 1.

rule_array

CKDS Key Record Delete

600 z/OS ICSF Application Programmer's Guide

Direction Type

Input Character String

The 8 byte keyword that defines the action to be performed. The keyword
must be LABEL-DL.

key_label

Direction Type

Input Character String

The 64-byte label of a record in the CKDS that is the target of this service. The
record can contain an AES or a DES key token. The record pointed to by this
label is deleted.

Restrictions
The record defined by the key_label must be unique. If more than one record per
label is found, the service fails.

This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
Secure key tokens cannot be processed when the master key is not loaded.

Clear AES and DES tokens can be processed on a system without a cryptographic
coprocessor or accelerator.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 260. CKDS record delete required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

IBM zEnterprise 196

IBM zEnterprise 114

None.

IBM zEnterprise EC12

IBM zEnterprise BC12

None

CKDS Key Record Delete

Chapter 11. Key Data Set Management 601

CKDS Key Record Read (CSNBKRR and CSNEKRR)
Use the CKDS key record read callable service to copy an internal AES or DES key
token from the in-storage CKDS to application storage. Other cryptographic
services can then use the copied key token directly. The key token can also be used
as input to the token copying functions of key generate, key import, or secure key
import services to create additional keys.

The callable service name for AMODE(64) invocation is CSNEKRR.

Format
CALL CSNBKRR(

return_code,
reason_code,
exit_data_length,
exit_data,
key_label,
key_token)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it indicating specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

key_label

CKDS Key Record Read

602 z/OS ICSF Application Programmer's Guide

|

Direction Type

Input Character String

The 64-byte label of a record containing an AES or DES token in the in-storage
CKDS. The internal key token in this record is returned to the caller.

key_token

Direction Type

Output String

The 64-byte internal key token retrieved from the in-storage CKDS.

Restrictions
The record defined by the key_label parameter must be unique and must already
exist in the CKDS.

If the internal key token is a clear key token, the token is not returned to the caller
unless the caller is in supervisor state or system key.

This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
Clear AES and DES tokens can be processed on a system without a cryptographic
coprocessor or accelerator.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 261. CKDS record read required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

IBM zEnterprise 196

IBM zEnterprise 114

None.

IBM zEnterprise EC12

IBM zEnterprise BC12

None

CKDS Key Record Read

Chapter 11. Key Data Set Management 603

CKDS Key Record Read2 (CSNBKRR2 and CSNEKRR2)
Use this callable service to copy a key token from the in-storage CKDS to
application storage. Other cryptographic services can then use the copied key
token directly.

The callable service name for AMODE(64) is CSNEKRR2.

Format
CALL CSNBKRR2(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label,
key_token_length,
key_token)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

CKDS Key Record Read2

604 z/OS ICSF Application Programmer's Guide

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value
must be 0.

rule_array

Direction Type

Input String

This parameter is ignored by ICSF.

key_label

Direction Type

Input String

The 64-byte label of a record in the CKDS to be retrieved.

key_token_length

Direction Type

Input/Output Integer

The length of the buffer for the output token. On input, the length of the
buffer. The minimum length is 64 bytes and the maximum length is 725 bytes.
On output, this parameter will be updated with the length of the token
returned in the key_token parameter.

key_token

Direction Type

Output String

The buffer into which the return key token is written.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 262. CKDS key record read2 required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

CKDS Key Record Read2

Chapter 11. Key Data Set Management 605

|
|

Table 262. CKDS key record read2 required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z10 EC

IBM System z10 BC

None.

IBM zEnterprise 196

IBM zEnterprise 114

None.

IBM zEnterprise EC12

IBM zEnterprise BC12

None

CKDS Key Record Write (CSNBKRW and CSNEKRW)
Use the CKDS key record write callable service to write an internal AES or DES
key token to the CKDS record specified by the key_label parameter.

This service updates both the DASD copy of the CKDS currently in use by ICSF
and the in-storage copy. The record you are updating must be unique and must
already exist in both the DASD and in-storage copies of the CKDS.

This service supports writing a clear AES or DES key token with non-zero key
values to the CKDS.

The callable service name for AMODE(64) invocation is CSNEKRW.

Format
CALL CSNBKRW(

return_code,
reason_code,
exit_data_length,
exit_data,
key_token,
key_label)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned

CKDS Key Record Read2

606 z/OS ICSF Application Programmer's Guide

|
|

to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

key_token

Direction Type

Input/Output String

The 64-byte internal AES or DES key token that is written to the CKDS.

key_label

Direction Type

Input Character String

The 64-byte label of a record in the CKDS that is the target of this service. The
record is updated with the AES or DES internal key token supplied in the
key_token parameter.

Restrictions
The record defined by the key_label parameter must be unique and must already
exist in the CKDS.

This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
Secure AES tokens in the CKDS can only be overwritten by a secure AES token
encrypted under the same AES master keys. The same is true for secure DES
tokens.

DES tokens cannot be overwritten by an AES token. AES tokens cannot be
overwritten by a DES token.

Secure key tokens cannot be processed when the master key is not loaded.

Clear AES and DES tokens can be processed on a system without a cryptographic
coprocessor.

CKDS Key Record Write

Chapter 11. Key Data Set Management 607

|

|
|
|

|
|

|

|
|

You may use this service with the CKDS key record create callable service to write
an initial record to key storage. Use it following the key import and key generate
callable services to write an operational key imported or generated by these
services directly to the CKDS.

You may use the CKDS key record create2 service to create a record and write a
token in one call.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 263. CKDS record write required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
900

None.

IBM eServer zSeries
990

IBM eServer zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

IBM zEnterprise 196

IBM zEnterprise 114

None.

IBM zEnterprise EC12

IBM zEnterprise BC12

None

CKDS Key Record Write2 (CSNBKRW2 and CSNEKRW2)
Use the CKDS key record write2 callable service to write an internal symmetric key
token to the variable-length CKDS record specified by the key_label parameter. This
service updates both the DASD copy of the CKDS currently in use by ICSF and the
in-storage copy. The record you are updating must be unique and must already
exist in both the DASD and in-storage copies of the CKDS.

The callable service name for AMODE(64) is CSNEKRW2.

Format
CALL CSNBKRW2(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,

CKDS Key Record Write

608 z/OS ICSF Application Programmer's Guide

|
|
|
|

|
|

rule_array,
key_token_length,
key_token,
key_label)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. The value
must be 0.

rule_array

Direction Type

Input String

This parameter is ignored by ICSF.

key_token_length

CKDS Key Record Write2

Chapter 11. Key Data Set Management 609

|
|

Direction Type

Input Integer

The length in bytes of the token to be written to the CKDS. The maximum
value is 725.

key_token

Direction Type

Input/Output String

An internal symmetric key token to be written to the CKDS. If the token
supplied was encrypted under the old master key, the token will be returned
encrypted under the current master key.

key_label

Direction Type

Input String

The 64-byte label of a record in the CKDS to be overwritten.

Usage Notes
The Usage Notes for the CKDS Key Record Write callable service also apply to the
CKDS Key Record Write2 callable service when writing fixed-length symmetric key
tokens (versions X'00', X'01', and X'04').

A key token cannot be overwritten by another key token that doesn’t have the
exact same algorithm and key type. For example:
v a DES key token cannot be overwritten by an AES token, and an AES key token

cannot be overwritten by a DES token
v an HMAC key token cannot be overwritten by an AES key token, and an AES

token cannot be overwritten by an HMAC token.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 264. CKDS key record write2 required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

CKDS Key Record Write2

610 z/OS ICSF Application Programmer's Guide

|
|

Table 264. CKDS key record write2 required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM zEnterprise 196

IBM zEnterprise 114

None.

IBM zEnterprise EC12

IBM zEnterprise BC12

None

Coordinated KDS Administration (CSFCRC and CSFCRC6)
Use the coordinated KDS administration callable service to perform a coordinated
KDS refresh or a coordinated KDS master key change or a conversion to a KDS
capable of reference date tracking (KDSR format).

Coordinated KDS refresh is only supported for the CKDS and PKDS. Coordinated
KDS refresh is not supported for TKDS.

When used for master key change or conversion, applications can continue to run
KDS update workloads in parallel, and ICSF guarantees that any dynamic updates
will be reflected in the target data set. For coordinated KDS refresh, you should
disable KDS update workloads when refreshing to a target data set that is different
from the currently-active KDS. This is recommended, because updates occurring to
the currently-active KDS might not be reflected in the target data set. ICSF does
not enforce manual disablement of dynamic KDS updates prior to a coordinated
refresh operation, and will itself internally suspend such updates until the
coordinated refresh operation completes. Note that the recommendation to disable
KDS updates does not apply to a coordinated refresh when the target data set is
the same as the currently-active KDS. In this case, the updates to the
currently-active KDS are guaranteed to be in the resulting in-storage KDS when
the operation completes.

In a sysplex environment, this callable service enables an application to perform a
coordinated sysplex-wide KDS refresh, KDS conversion or KDS change master key
operation from a single ICSF instance.

The callable service name for AMODE(64) invocation is CSFCRC6.

Format
CALL CSFCRC (

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
function,
new_data_set_name,
data_set_type,
backup_data_set_name,
archive_data_set_name,
feedback_length,
feedback)

CKDS Key Record Write2

Chapter 11. Key Data Set Management 611

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be 0.

rule_array

Direction Type

Input String

This parameter is ignored.

function

Direction Type

Input Integer

The function to be performed by this callable service. The value must be 1 for
coordinated change master key or 2 for coordinated refresh or 3 for

Coordinated KDS Administration

612 z/OS ICSF Application Programmer's Guide

|
|

coordinated conversion. The coordinated refresh function is only available for
the CKDS and PKDS. Coordinated refresh is not supported by the TKDS.
Coordinated change master key and coordinated conversion are available for
the CKDS, PKDS, and TKDS.

new_data_set_name

Direction Type

Input String

The name of the new data set to be used by the CRC callable service. For
coordinated set master key this data set will be used to reencipher the active
KDS data set, and will become the active KDS data set. For coordinated refresh
this data set will become the active KDS dataset. For coordinated conversion
this data set will be used to convert the active KDS data set to the new KDS
format, and will become the active KDS data set. This data set name must be a
44 character string with the data set name left justified and padded with
blanks.

Note: The installation options dataset must be updated with the
new_data_set_name in order for ICSF to use it in case of a future restart.

data_set_type

Direction Type

Input Integer

The type of data set to be processed by the callable service. This value must be
1 for a CKDS, 2 for PKDS, or 3 for TKDS.

backup_data_set_name

Direction Type

Input String

The name of the backup data set to be used by this callable service when
performing a coordinated change master key. This parameter is optional. If
specified, a backup copy of the reenciphered or converted KDS will be stored
in this data set. This data set name must be a 44-character string with the data
set name left justified and padded with blanks.

archive_data_set_name

Direction Type

Input String

The name of the archive data set to be used by the CRC callable service. This
parameter is optional. If specified, the active KDS will be renamed to this data
set name after performing the coordinated change master key or coordinated
refresh or coordinated conversion to a new data set. This data set name must
be a 44-character string with the data set name left justified and padded with
blanks. The CRC service will take the suffix (usually .D or .DATA /.I or
.INDEX) from the active KDS and apply them to the archive data set name. If
the data or index name contains no suffix, or if the suffix applied to the
archive data set name exceeds 44 characters, the request will be rejected.

Coordinated KDS Administration

Chapter 11. Key Data Set Management 613

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

feedback_length

Direction Type

Input Integer

The length of the feedback field used by the callable service.

feedback

Direction Type

Output String

A field provided by the caller for the callable service to return additional
feedback in.

Usage Notes
One or more ICSF instances sharing the same active KDS in a sysplex create a KDS
sysplex cluster. All KDS sysplex cluster members must be IPLed and started in
order to perform a coordinated refresh or coordinated change master key
operation. The coordinated KDS administration functions will not be queued for
processing on inactive sysplex cluster members.

SAF will be invoked to verify the caller is authorized to use this callable service.
The CSFCRC resource in the CSFSERV class protects access to this callable service.
To access this service, callers will be required to have a UACC of READ for the
CSFCRC resource.

The coordinated refresh function is only available for the CKDS and PKDS. This
function is not supported for the TKDS. The coordinated change master key
function is supported for the CKDS, PKDS, and TKDS.

A coordinated refresh on the active KDS requires KDS updates to be suspended. A
refresh of the active KDS is only required when a utility (such as KGUP) has
altered the KDS VSAM dataset outside of ICSF. Updates must be suspended in this
case to allow the in-storage cache of the KDS VSAM data set to be rebuilt and
loaded by ICSF.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 265. Coordinated KDS administration required hardware

Server

Required cryptographic
Hardware for
Coordinated Change
Master Keye

Required
cryptographic
Hardware for
Coordinated Refresh Restrictions

IBM eServer
zSeries 990

IBM eServer
zSeries 890

PCIXCC or CEX2C None

Coordinated KDS Administration

614 z/OS ICSF Application Programmer's Guide

Table 265. Coordinated KDS administration required hardware (continued)

Server

Required cryptographic
Hardware for
Coordinated Change
Master Keye

Required
cryptographic
Hardware for
Coordinated Refresh Restrictions

IBM System
z9 EC

IBM System
z9 BC

CEX2C None

IBM System
z10 EC

IBM System
z10 BC

CEX2C or CEX3C None

IBM
zEnterprise
196

IBM
zEnterprise
114

CEX3C None

IBM
zEnterprise
EC12

IBM
zEnterprise
BC12

CEX3C CEX4C or
CEX4P

None

PKDS Key Record Create (CSNDKRC and CSNFKRC)
This callable service writes a new record to the PKDS.

The callable service name for AMODE(64) invocation is CSNFKRC.

Format
CALL CSNDKRC(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
label,
token_length,
token)

Parameters
return_code

Direction Type

Output Integer

Coordinated KDS Administration

Chapter 11. Key Data Set Management 615

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. This
parameter is ignored by ICSF.

rule_array

Direction Type

Input String

This parameter is ignored by ICSF.

label

Direction Type

Input String

The label of the record to be created. A 64 byte character string.

token_length

Direction Type

Input Integer

PKDS Key Record Create

616 z/OS ICSF Application Programmer's Guide

The length of the field containing the token to be written to the PKDS. If zero
is specified, a null token will be added to the PKDS. The maximum value of
token_length is the maximum length of a private RSA or DSS token.

token

Direction Type

Input String

Data to be written to the PKDS if token_length is non-zero. An RSA, DSS, or
ECC private token in either external or internal format, or a DSS, RSA, or ECC
public token.

Usage Notes
To use this service, PKA callable services must be enabled for all RSA and DSS
token types. For systems with CEX3C or later coprocessors, there is no PKA
callable services control. The RSA master key must be valid to use this service.

While DSS tokens can be processed by this service, they are not useable by any
other callable services.

To use this service for clear key ECC tokens, a current ECC master key is not
required.

To use this service for encrypted key ECC tokens, the ECC master key must be
valid.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 266. PKDS key record create required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

IBM zEnterprise 196

IBM zEnterprise 114

None

IBM zEnterprise EC12

IBM zEnterprise BC12

None

PKDS Key Record Create

Chapter 11. Key Data Set Management 617

|
|
|

|
|

PKDS Key Record Delete (CSNDKRD and CSNFKRD)
Use PKDS key record delete to delete a record from the PKDS.

The callable service name for AMODE(64) invocation is CSNFKRD.

Format
CALL CSNDKRD(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
label)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

PKDS Key Record Delete

618 z/OS ICSF Application Programmer's Guide

The number of keywords you are supplying in the rule_array parameter. This
value must be 0, or 1.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. Each
keyword is left-justified in 8-byte fields and padded on the right with blanks.
All keywords must be in contiguous storage.

Table 267. Keywords for PKDS Key Record Delete

Keyword Meaning

Deletion Mode (optional) specifies whether the record is to be deleted entirely or whether
only its contents are to be erased.

LABEL-DL Specifies that the record will be deleted from the PKDS
entirely. This is the default deletion mode.

TOKEN-DL Specifies that the only the contents of the record are to be
deleted. The record will still exist in the PKDS, but will
contain only binary zeroes.

label

Direction Type

Input String

The label of the record to be deleted. A 64 byte character string.

Restrictions
This service cannot delete the PKDS record for a retained key.

Usage Notes
To use this service, PKA callable services must be enabled for all RSA and DSS
token types. For systems with CEX3C or later coprocessors, there is no PKA
callable services control. The RSA master key must be valid to use this service.

While DSS tokens can be processed by this service, they are not useable by any
other callable services.

To use this service for clear key ECC tokens, a current ECC master key is not
required.

To use this service for encrypted key ECC tokens, the ECC master key must be
valid.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

PKDS Key Record Delete

Chapter 11. Key Data Set Management 619

|
|

Table 268. PKDS key record delete required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

IBM zEnterprise 196

IBM zEnterprise 114

None

IBM zEnterprise
EC12

IBM zEnterprise
BC12

None

PKDS Key Record Read (CSNDKRR and CSNFKRR)
Reads a record from the PKDS and returns the content of the record. This is true
even when the record contains a null PKA token.

The callable service name for AMODE(64) invocation is CSNFKRR.

Format
CALL CSNDKRR(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
label,
token_length,
token)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

PKDS Key Record Delete

620 z/OS ICSF Application Programmer's Guide

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. This
parameter is ignored by ICSF.

rule_array

Direction Type

Input String

This parameter is ignored by ICSF.

label

Direction Type

Input String

The label of the record to be read. A 64 byte character string.

token_length

Direction Type

Input/Output Integer

The length of the area to which the record is to be returned. On successful
completion of this service, token_length will contain the actual length of the
record returned.

PKDS Key Record Read

Chapter 11. Key Data Set Management 621

token

Direction Type

Output String

Area into which the returned record will be written. The area should be at
least as long as the record.

Usage Notes
To use this service, PKA callable services must be enabled for all RSA and DSS
token types. For systems with CEX3C or later coprocessors, there is no PKA
callable services control. The RSA master key must be valid to use this service.

While DSS tokens can be processed by this service, they are not useable by any
other callable services.

To use this service for clear key ECC tokens, a current ECC master key is not
required.

To use this service for encrypted key ECC tokens, the ECC master key must be
valid.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 269. PKDS key record read required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

IBM zEnterprise 196

IBM zEnterprise 114

None

IBM zEnterprise EC12

IBM zEnterprise BC12

None

PKDS Key Record Write (CSNDKRW and CSNFKRW)
Writes over an existing record in the PKDS.

The callable service name for AMODE(64) invocation is CSNFKRW.

PKDS Key Record Read

622 z/OS ICSF Application Programmer's Guide

|
|

Format
CALL CSNDKRW(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
label,
token_length,
token)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in the rule_array parameter. Its
value must be 0 or 1.

rule_array

PKDS Key Record Write

Chapter 11. Key Data Set Management 623

Direction Type

Input String

Keywords that provide control information to the callable service. Each
keyword is left-justified in 8-byte fields and padded on the right with blanks.
All keywords must be in contiguous storage.

Table 270. Keywords for PKDS Key Record Write

Keyword Meaning

Write Mode (optional) specifies the circumstances under which the record is to be written.

CHECK Specifies that the record will be written only if a record of
type NULL with the same label exists in the PKDS. If such a
record exists, ICSF overwrites it. This is the default
condition.

OVERLAY Specifies that the record will be overwritten regardless of the
current content of the record. If a record with the same label
exists in the PKDS, ICSF overwrites it.

label

Direction Type

Input String

The label of the record to be overwritten. A 64 byte character string.

token_length

Direction Type

Input Integer

The length of the field containing the token to be written to the PKDS.

token

Direction Type

Input String

The data to be written to the PKDS, which is a DSS, RSA, or ECC private
token in either external or internal format, or a DSS, RSA, or ECC public token.

Restrictions
This service cannot update a PKDS record for a retained key.

Usage Notes
The PKDS Key Record Write service will only overwrite NULL tokens and tokens
of the same type. For example an RSA token cannot overwrite an ECC or DSS
token.

To use this service, PKA callable services must be enabled for all RSA and DSA
token types. For systems with CEX3C or later coprocessors, there is no PKA
callable services control. The RSA master key must be valid to use this service.

PKDS Key Record Write

624 z/OS ICSF Application Programmer's Guide

While DSS tokens can be processed by this service, they are not useable by any
other callable services.

To use this service for clear key ECC tokens, a current ECC master key is not
required.

To use this service for encrypted key ECC tokens, the ECC master key must be
valid.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 271. PKDS key record write required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

IBM zEnterprise 196

IBM zEnterprise 114

None.

IBM zEnterprise EC12

IBM zEnterprise BC12

None

PKDS Key Record Write

Chapter 11. Key Data Set Management 625

|
|

PKDS Key Record Write

626 z/OS ICSF Application Programmer's Guide

Chapter 12. Utilities

This topic describes these callable services:
v “Character/Nibble Conversion (CSNBXBC and CSNBXCB)”
v “Code Conversion (CSNBXEA and CSNBXAE)” on page 629
v “ICSF Query Algorithm (CSFIQA and CSFIQA6)” on page 632
v “ICSF Query Facility (CSFIQF and CSFIQF6)” on page 636
v “ICSF Query Facility2 (CSFIQF2 and CSFIQF26)” on page 659
v “SAF ACEE Selection (CSFACEE and CSFACEE6)” on page 662
v “X9.9 Data Editing (CSNB9ED)” on page 664

Note: These services are not dependent on the hardware. They will run on any
server.

Character/Nibble Conversion (CSNBXBC and CSNBXCB)
Use these utilities to convert a binary string to a character string (CSNBXBC) or
convert a character string to a binary string (CSNBXCB).

These utilities do not support invocation in AMODE(64).

Format
CALL CSNBXBC(

return_code,
reason_code,
exit_data_length,
exit_data,
text_length,
source_text,
target_text,
code_table)

CALL CSNBXCB(
return_code,
reason_code,
exit_data_length,
exit_data,
text_length,
source_text,
target_text,
code_table)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

© Copyright IBM Corp. 1997, 2013 627

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

text_length

Direction Type

Input/Output Integer

On input, the text_length contains an integer that is the length of the
source_text. The length must be a positive nonzero value. On output, text_length
is updated with an integer that is the length of the target_text.

source_text

Direction Type

Input String

This parameter contains the string to convert.

target_text

Direction Type

Output String

The converted text that the callable service returns.

code_table

Direction Type

Input String

A 16-byte conversion table. The code table for binary to EBCDIC conversion is
X'F0F1F2F3F4F5F6F7F8F9C1C2C3C4C5C6'.

Character/Nibble Conversion

628 z/OS ICSF Application Programmer's Guide

Usage Notes
These services are structured differently from the other services. They run in the
caller's address space in the caller's key and mode.

ICSF need not be active for you to run either of these services. No pre- or
post-processing exits are enabled for these services, and no calls to RACF are
issued when you run these services.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 272. Character/Nibble conversion required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

IBM zEnterprise 196

IBM zEnterprise 114

None.

IBM zEnterprise EC12

IBM zEnterprise BC12

None

Code Conversion (CSNBXEA and CSNBXAE)
Use these utilities to convert ASCII data to EBCDIC data (CSNBXAE) or EBCDIC
data to ASCII data (CSNBXEA).

These utilities do not support invocation in AMODE(64).

Format
CALL CSNBXAE(

return_code,
reason_code,
exit_data_length,
exit_data,
text_length,
source_text,
target_text,
code_table)

CALL CSNBXEA(
return_code,
reason_code,
exit_data_length,
exit_data,

Character/Nibble Conversion

Chapter 12. Utilities 629

text_length,
source_text,
target_text,
code_table)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

text_length

Direction Type

Input Integer

The text_length contains an integer that is the length of the source_text. The
length must be a positive nonzero value.

source_text

Direction Type

Input String

This parameter contains the string to convert.

target_text

Code Conversion

630 z/OS ICSF Application Programmer's Guide

Direction Type

Output String

The converted text that the callable service returns.

code_table

Direction Type

Input String

A 256-byte conversion table. To use the default code table, you need to pass a
full word of hexadecimal zero's. See Appendix F, “EBCDIC and ASCII Default
Conversion Tables,” on page 919 for contents of the default table.

Note: The Transaction Security System code table has 2 additional 8-byte fields
that are not used in the conversion process. ICSF accepts either a 256-byte or a
272-byte code table, but uses only the first 256 bytes in the conversion.

Usage Notes
These services are structured differently than the other services. They run in the
caller's address space in the caller's key and mode. ICSF need not be active for you
to run either of these services. No pre- or post-processing exits are enabled for
these services, and no calls to RACF are issued when you run these services.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 273. Code conversion required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

IBM zEnterprise 196

IBM zEnterprise 114

None.

IBM zEnterprise EC12

IBM zEnterprise BC12

None

Code Conversion

Chapter 12. Utilities 631

ICSF Query Algorithm (CSFIQA and CSFIQA6)
Use this utility to retrieve information about the cryptographic and hash
algorithms available. You can control the amount of data that is returned by
passing in rule_array keywords. Keyword values describe the cryptographic
algorithm or hash algorithm you are interested in.

The service returns a table of information in the returned_data parameter. A row of
data consists of the algorithm name, the algorithm size, whether or not clear or
secure keys are supported and what method ICSF will use to satisfy a request -
CPU instructions, a cryptographic accelerator, a cryptographic coprocessor, or
software. The service updates the returned_data_length field with the actual length
of the output returned_data field.

The callable service name for AMODE (64) invocation is CSFIQA6.

Format
CALL CSFIQA(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
returned_data_length,
returned_data,
reserved_data_length,
reserved_data)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

ICSF Query Algorithm

632 z/OS ICSF Application Programmer's Guide

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in rule_array. Value must be 0 or
1.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. The
keywords must be 8 bytes of contiguous storage with the keyword left-justified
in its 8-byte location and padded on the right with blanks.

Table 274. Keywords for ICSF Query Algorithm

Keyword Meaning

ALGORITHM (optional)

AES Advanced Encryption Standard - symmetric key algorithm

DES Data Encryption Standard - single length symmetric key
algorithm

ECC Elliptic Curve Cryptography. All curve types.

ECC-PRIM Elliptic Curve Cryptography using NIST approved PRIME
curves

ECC-BP Elliptic Curve Cryptography using Brain Pool Curves

HMAC FIPS-198 keyed-hash message authentication code algorithm.

RSA Rivest-Shamir-Adleman - public key cryptography
algorithm, all usage types

RSA-SIG Rivest-Shamir-Adleman - public key cryptography
algorithm, signature usage.

RSA-KM Rivest-Shamir-Adleman - public key cryptography
algorithm, key management usage.

RSA-GEN Rivest-Shamir-Adleman - public key cryptography
algorithm, key generation.

SHA-1 Secure Hash Algorithm 1 - A one way hash algorithm

SHA-2 Secure Hash Algorithm 2 - A one way hash algorithm

MDC-2 Modification Detection Code 2 - MDC-2 specifies two
encipherments per 8 bytes of input text

MDC-4 Modification Detection Code 4 - MDC-4 specifies four
encipherments per 8 bytes of input text

MD5 Message Digest 5 - A one way hash algorithm

RPMD-160 RIPE MD-160 - A one way hash algorithm

ICSF Query Algorithm

Chapter 12. Utilities 633

Table 274. Keywords for ICSF Query Algorithm (continued)

Keyword Meaning

RNGL Random number generate long callable service

TDES Data Encryption Standard - double and triple length
symmetric key algorithm

returned_data_length

Direction Type

Input/Output Integer

The length of the returned_data parameter. Currently, the value must be large
enough to handle the request. Allow additional space for future enhancements.
On output, this field will contain the actual length of the data returned.

returned_data

Direction Type

Output String

This field will contain the table output from the service. Depending on the
contents of rule_array, multiple rows may be returned. One row in the table
contains:

Table 275. Output for ICSF Query Algorithm

Offset
(hex) Name Description

0 (X'0') Algorithm An 8-byte EBCDIC character string containing the
name of the cryptographic algorithm. The character
string is padded on the right with blanks. Possible
values are:

AES
DES (single length DES)
ECC-PRIM
ECC-BP (Brain Pool)
HMAC
MDC-2
MDC-4
MD5
RNGL
RPMD-160
RSA-GEN
RSA-KM
RSA-SIG
SHA-1
SHA-2
TDES (double and triple length DES)

8 (X'8') Size An 8-byte EBCDIC string representing the maximum
key, modulus, p value, or hash size. The string is
padded with blanks on the right. The size is in bits.
This is true for all algorithms except RNGL. For
RNGL, the size is in bytes.

ICSF Query Algorithm

634 z/OS ICSF Application Programmer's Guide

|
|

Table 275. Output for ICSF Query Algorithm (continued)

Offset
(hex) Name Description

16 (X'10') Key Security An 8-byte EBCDIC character string containing the
string

CLEAR
SECURE
NA

The string is padded on the right with blanks.

24(X'18') Implementation An 8-byte EBCDIC character string containing how
the algorithm is implemented. The string is padded
on the right with blanks. Possible choices are:

ACC - Cryptographic Accelerator
COP - Cryptographic Coprocessor
CPU - CPACF
SW - Software

The rows are sorted in the following order:
v Algorithm name - alphabetically A to Z
v Algorithm size - numerically highest to least
v Key security - alphabetically A to Z
v Implementation - alphabetically A to Z

reserved_data_length

Direction Type

Input Integer

The length of the reserved_data parameter. Currently, the value must be 0.

reserved_data

Direction Type

Ignored String

This field is currently not used.

Usage Notes
The rule_array keyword allows the caller to select how much information is
returned. The returned data can describe all cryptographic support on the base
system or it can be filtered by an algorithm.

For example, a rule_array_count of 0 will return information about all algorithms
and key security. A rule_array_count of 1 and a keyword of 'AES' will return
information about the AES algorithm support, both clear and secure AES keys.

Only cryptographic coprocessors in the active state are queried.

A key security of SECURE implies that both SECURE and CLEAR key versions of
the algorithm are supported by the processor or the cryptographic coprocessor.

ICSF Query Algorithm

Chapter 12. Utilities 635

|
|
|
|

|
|

This service lists an algorithm as being supported when the cryptographic
coprocessor or accelerator is capable of performing the function. It does not reflect
when an algorithm is unavailable because TKE was used to disable the function.

RNGL keyword refers to the Random Number Generate Long (CSFBRNGL)
callable service. The following is returned for implementation:
v COP - when RNGL is implemented using the RNGL verb in the cryptographic

coprocessor.
v SW - when RNGL is implemented using a software loop.

When a row of the returned_data table contains a Key Security value of SECURE
and an Implementation value of CPU, this indicates that the CSNBSYE and
CSNBSYD callable services support the use of key labels for encrypted keys stored
in the CKDS. In other words, the required functions in ICSF, CPACF and the
cryptographic coprocessor are available.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 276. ICSF Query Algorithm required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

IBM zEnterprise 196

IBM zEnterprise 114

None.

IBM zEnterprise EC12

IBM zEnterprise BC12

None

ICSF Query Facility (CSFIQF and CSFIQF6)
Use this utility to retrieve information about ICSF, the cryptographic coprocessors
and the CCA code in the coprocessors. This information includes:
v general information about ICSF
v general information about CCA code in a coprocessor
v export control information from a coprocessor
v diagnostic information from a coprocessor

Coprocessor information requests may be directed to a specific ONLINE or
ACTIVE coprocessor or any ACTIVE coprocessor.

ICSF Query Algorithm

636 z/OS ICSF Application Programmer's Guide

|

This service has an interface similar to the IBM 4758 service CSUACFQ. Instead of
the output being returned in the rule array, there is a separate output area. The
format of the data returned remains the same. This service supports a subset of the
keywords supported by CSUACFQ. For the same supported keywords, CSFIQF
and CSUACFQ return the same coprocessor-specific information. The service
returns information elements in the returned_data field and updates the
returned_data_length with the actual length of the output returned_data field.

The callable service name for AMODE(64) invocation is CSFIQF6.

Format
CALL CSFIQF(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
returned_data_length,
returned_data,
reserved_data_length,
reserved_data)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

ICSF Query Facility

Chapter 12. Utilities 637

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in rule_array. Value must be 1, 2
or 3

rule_array

Direction Type

Input String

Keywords that provide control information to callable services. The keywords
are left-justified in an 8-byte field and padded on the right with blanks. The
keywords must be in contiguous storage. Specify one or two of the values in
Table 277.

Table 277. Keywords for ICSF Query Service

Keyword Meaning

Coprocessor (optional) - parameter is ignored for ICSFSTAT, ICSFST2, and ICSFSP11

COPROCxx Specifies the specific coprocessor to execute the request. xx
may be 00 through 63 inclusive. This may be the processor
number of any coprocessor. The processor number of any
accelerator is not supported. If specified with rule STATP11,
the processor number must be that of a Enterprise PKCS #11
coprocessor. For all other rules, it must be that of a CCA
coprocessor.

ANY Process request on any ACTIVE cryptographic coprocessor.
This is the default.

nnnnnnnn Specifies the 8-byte serial number of the coprocessor to
execute the request. If specified with rule STATP11, the
processor number must be that of a Enterprise PKCS #11
coprocessor. For all other rules, it must be that of a CCA
coprocessor.

Information to return (required)

ICSFSTAT Get ICSF related status information.

ICSFST2 Get coprocessor-related basic status information.

ICSFSP11 Get ICSF-related PKCS #11 status information

NUM-DECT Get the number of bytes of storage required for the output
of a STATDECT request.

STATAES Get status information on AES enablement and the AES
master key registers.

STATCCA Get CCA-related status information.

STATCCAE Get CCA-related extended status information.

STATCARD Get coprocessor-related basic status information.

STATDECT Get the PIN decimalization tables loaded. The format of the
data is shown under the returned_data parameter. The length
of the data is 20 bytes per decimalization table. The
NUM-DECT option will return the storage required for this
option. The maximum length of the data is 2000 bytes.

STATDIAG Get coprocessor-related basic status information.

ICSF Query Facility

638 z/OS ICSF Application Programmer's Guide

|

Table 277. Keywords for ICSF Query Service (continued)

Keyword Meaning

STATAPKA Get status information on ECC enablement and the ECC
master key registers.

STATEID Get coprocessor-related basic status information.

STATEXPT Get coprocessor-related basic status information.

WRAPMTHD Get coprocessor-related default configuration setting for the
wrapping method.

STATP11 Get Enterprise PKCS #11 coprocessor-related status
information.

Additional Master Key Information (optional) - rule is only allowed with STATCCA or
STATCCAE

MOREMKS Return additional master key information

returned_data_length

Direction Type

Input/Output Integer

The length of the returned_data parameter. Currently, the value must be at least
eight times the number of elements returned for the rule_array keyword
specified. Allow additional space for future enhancements. On output, this
field will contain the actual length of the data returned.

returned_data

Direction Type

Output String/Integer

This field will contain the output from the service. The format of the output
depends on the rule_array keyword. The format of the data is defined in the
tables below, which describe the output for each keyword.

When the format is 8-byte elements that contain numbers, those numbers are
represented by numeric characters which are left-justified and padded on the
right with space characters. For example, a returned_data element which
contains the number two will contain the character string '2 '.

For option NUM-DECT, the output is a 4-byte integer.

The output returned_data for the ICSFSTAT keyword is defined in Table 278.

Table 278. Output for option ICSFSTAT

Element
Number Name Description

1 FMID 8-byte ICSF FMID

ICSF Query Facility

Chapter 12. Utilities 639

Table 278. Output for option ICSFSTAT (continued)

Element
Number Name Description

2 ICSF Status Field 1 Status of ICSF

Number
Meaning

0 ICSF started

1 ICSF initialized (CCVINIT is on)

2 SYM-MK (DES master key) valid
(CCVTMK is on)

3 PKA callable services enabled (see
“Usage Notes” on page 658)

3 ICSF Status Field 2 Status of ICSF

Number
Meaning

0 64-bit callers not supported

1 64-bit callers supported

2 64-bit callers supported, and a TKDS
has been specified for the storage of
persistent PKCS #11 objects.

4 CPACF CPACF availability

Number
Meaning

0 CPACF not available

1 SHA-1 available only

2 DES/TDES enabled

3 SHA-224 and SHA-256 are available

4 SHA-224 and SHA-256, DES and TDES
are available

5 SHA-384 and SHA-512 are available

6 SHA-384 and SHA-512, DES and TDES
are available

7 Encrypted CPACF functions available.

8 OFB, CFB, and GCM CPACF functions
are available.

5 AES AES availability for clear keys

Number
Meaning

0 AES not available

1 AES software only

2 AES-128

3 AES-192 and AES-256

ICSF Query Facility

640 z/OS ICSF Application Programmer's Guide

Table 278. Output for option ICSFSTAT (continued)

Element
Number Name Description

6 DSA DSA algorithm availability

Number
Meaning

0 DSA not available

1 DSA 1024 key size

2 DSA 2048 key size

7 RSA Signature RSA Signature key length

Number
Meaning

0 RSA not available

1 RSA 1024 key size

2 RSA 2048 key size

3 RSA 4096 key size

8 RSA Key Management RSA Key Management key length

Number
Meaning

0 RSA not available

1 RSA 1024 key size

2 RSA 2048 key size

3 RSA 4096 key size

9 RSA Key Generate RSA Key Generate

Number
Meaning

0 Service not available

1 Service available - 2048 bit modulus

2 Service available - 4096 bit modulus

10 Accelerators Availability of clear RSA key accelerators

Number
Meaning

0 Not available

1 At least one available for application
use.

ICSF Query Facility

Chapter 12. Utilities 641

Table 278. Output for option ICSFSTAT (continued)

Element
Number Name Description

11 Accelerator Key Size
Clear key size supported by Accelerators. There
must be at least one Accelerator available for
use for this field to contain valid information.

Number
Meaning

0 RSA-ME key size of 2048, CRT key
size of 2048.

1 RSA-ME key size of 4096, CRT key
size of 4096.

12 ICSF Status Field 3 An 8-byte numeric character string.

The first character in this string indicates the
current Special Secure Mode (SSM) setting.

Number
Meaning

0 SSM not allowed.

1 SSM allowed.

The output returned_data for the ICSFSP11 keyword is defined in Table 279.

Table 279. Output for option ICSFSP11

Element
Number Name Description

1 P11-MK State Status of the P11-MK

Number
Meaning

0 P11-MK not active

1 P11-MK active

2 FIPS Mode ICSF PKCS #11 FIPS mode

Number
Meaning

0 FIPS no enforcement mode

1 FIPS compatibility mode

2 FIPS mode

3-12 Future use Currently blanks

The output returned_data for the ICSFST2 keyword is defined in Table 280.

Table 280. Output for option ICSFST2

Element
Number Name Description

1 Version Version of the ICSFST2 returned_data. Initial
value is 1. It covers elements 1 through 12.

2 FMID 8–byte ICSF FMID.

ICSF Query Facility

642 z/OS ICSF Application Programmer's Guide

|||

|
|

|
|

||

||

Table 280. Output for option ICSFST2 (continued)

Element
Number Name Description

3 ICSF Status Field 1 Status of ICSF

Number
Meaning

0 PKA callable services disabled

1 PKA callable services enabled (see
“Usage Notes” on page 658)

4 ICSF Status Field 2 Status of ICSF

Number
Meaning

0 PKCS #11 is not available

1 PKCS #11 is available

5 ICSF Status Field 3 Status of ICSF

Number
Meaning

0 ICSF started

1 ICSF initialized

2 AES master key valid

6 ICSF Status Field 4 Status of ICSF

Number
Meaning

0 Secure key AES not available

1 Secure key AES is available

ICSF Query Facility

Chapter 12. Utilities 643

Table 280. Output for option ICSFST2 (continued)

Element
Number Name Description

7 ICSF Status Field 5 An 8-character numeric character string
summarizing the current Key Store Policy.

The first character in this string indicates if Key
Token Authorization Checking controls have
been enabled for the CKDS in either warning or
fail mode, and, if so, if the Default Key Label
Checking control has also been enabled. The
numbers that can appear in the first character
of this string are:

Number
Meaning

0 Key Token Authorization Checking is
not enabled for the CKDS.

1 Key Token Authorization Checking for
CKDS is enabled in FAIL mode. Key
Store Policy is active for CKDS.
Default Key Label Checking is not
enabled.

2 Key Token Authorization Checking for
CKDS is enabled in WARN mode. Key
Store Policy is active for CKDS.
Default Key Label Checking is not
enabled.

3 Key Token Authorization Checking for
CKDS is enabled in FAIL mode. Key
Store Policy is active for CKDS.
Default Key Label Checking is also
enabled.

4 Key Token Authorization Checking for
CKDS is enabled in WARN mode. Key
Store Policy is active for CKDS.
Default Key Label Checking is also
enabled.

The second character in this string indicates if
Duplicate Key Token Checking controls have
been enabled for the CKDS. The numbers that
can appear in the second character of this string
are:

Number
Meaning

0 Duplicate Key Token Checking is not
enabled for the CKDS.

1 Duplicate Key Token Checking is
enabled for the CKDS. Key Store
Policy is active for CKDS.

ICSF Query Facility

644 z/OS ICSF Application Programmer's Guide

Table 280. Output for option ICSFST2 (continued)

Element
Number Name Description

The third character in this string indicates if
Key Token Authorization Checking controls
have been enabled for the PKDS in either
warning or fail mode, and, if so, if the Default
Key Label Checking control has also been
enabled. The numbers that can appear in the
third character of this string are:

Number
Meaning

0 Key Token Authorization Checking is
not enabled for the PKDS.

1 Key Token Authorization Checking for
PKDS is enabled in FAIL mode. Key
Store Policy is active for PKDS.
Default Key Label Checking is not
enabled.

2 Key Token Authorization Checking for
PKDS is enabled in WARN mode. Key
Store Policy is active for PKDS.
Default Key Label Checking is not
enabled.

3 Key Token Authorization Checking for
PKDS is enabled in FAIL mode. Key
Store Policy is active for PKDS.
Default Key Label Checking is also
enabled.

4 Key Token Authorization Checking for
PKDS is enabled in WARN mode. Key
Store Policy is active for PKDS.
Default Key Label Checking is also
enabled.

The fourth character in this string indicates if
Duplicate Key Token Checking controls have
been enabled for the PKDS. The numbers that
can appear in the fourth character of this string
are:

Number
Meaning

0 Duplicate Key Token Checking is not
enabled for the PKDS.

1 Duplicate Key Token Checking is
enabled for the PKDS. Key Store
Policy is active for PKDS.

ICSF Query Facility

Chapter 12. Utilities 645

Table 280. Output for option ICSFST2 (continued)

Element
Number Name Description

The fifth character in this string indicates if
Granular Key Label Access controls have been
enabled in WARN or FAIL mode. The numbers
that can appear in the fifth character of this
string are:

Number
Meaning

0 Granular Key Label Access controls are
not enabled.

1 Granular Key Label Access control is
enabled in FAIL mode

2 Granular Key Label Access control is
enabled in WARN mode

The sixth character in this string indicates if
Symmetric Key Label Export controls have been
enabled for AES and/or DES keys. The
numbers that can appear in the sixth character
of this string are:

Number
Meaning

0 Symmetric Key Label Export controls
are not enabled.

1 Symmetric Key Label Export control is
enabled for DES keys only.

2 Symmetric Key Label Export control is
enabled for AES keys only.

3 Symmetric Key Label Export controls
are enabled for both DES and AES
keys.

ICSF Query Facility

646 z/OS ICSF Application Programmer's Guide

Table 280. Output for option ICSFST2 (continued)

Element
Number Name Description

The seventh character in this string indicates if
PKA Key Management Extensions have been
enabled in either WARN or FAIL mode, and, if
so, whether a SAF key ring or a PKCS #11
token is identified as the trusted certificate
repository. (The trusted certificate repository is
identified using the APPLDATA field of the
CSF.PKAEXTNS.ENABLE profile. If no value is
specified in the APPLDATA field, a PKCS #11
token is assumed.) The numbers that can
appear in the seventh character of this string
are:

Number
Meaning

0 Symmetric Key Label Export controls
are not enabled.

1 PKA Key Management Extensions
control is enabled in FAIL mode. The
trusted certificate repository is a SAF
key ring.

2 PKA Key Management Extension
control is enabled in FAIL mode. The
trusted certificate repository is a PKCS
#11 token.

3 PKA Key Management Extensions
control is enabled in WARN mode.
The trusted certificate repository is a
SAF key ring.

4 PKA Key Management Extension
control is enabled in WARN mode.
The trusted certificate repository is a
PKCS #11 token.

8 ICSF Status Field 6 Status of ICSF

Number
Meaning

0 ICSF started

1 ICSF initialized

2 ECC master key valid, internal keys
supported

3 ECC master key valid, external keys
also supported

9 ICSF Status Field 7 Status of ICSF

Number
Meaning

0 ICSF started

1 ICSF initialized

2 RSA master key valid

ICSF Query Facility

Chapter 12. Utilities 647

Table 280. Output for option ICSFST2 (continued)

Element
Number Name Description

10 ICSF Status Field 8 Status of ICSF

Number
Meaning

0 ICSF started

1 ICSF initialized

2 DES master key valid

11 ICSF Status Field 9 Status of ICSF

Number
Meaning

0 PKA callable services disabled.

1 PKA callable services enabled.

See Usage Notes for additional information.

12 Future use Currently blanks

Table 281. Output for option NUM-DECT

Element Number Description

1 The number of bytes required for the output of a STATDECT
request. This is the number of decimalization tables loaded
times 20 bytes. This is a four-byte binary number.

Table 282. Output for option STATAES

Element
Number Name Description

1 AES NMK Status State of the AES new master key register:

Number
Meaning

1 Register is clear

2 Register contains a partially complete key

3 Register contains a complete key

2 AES CMK Status State of the AES current master key register:

Number
Meaning

1 Register is clear

2 Register contains a key

3 AES OMK Status State of the AES old master key register:

Number
Meaning

1 Register is clear

2 Register contains a key

ICSF Query Facility

648 z/OS ICSF Application Programmer's Guide

Table 282. Output for option STATAES (continued)

Element
Number Name Description

4 AES key length
enablement

The maximum AES key length that is enabled by the
function control vector. The value is 0 (if no AES key
length is enabled in the FCV), 128, 192, or 256.

Table 283. Output for option STATCCA

Element
Number Name Description

1 NMK Status State of the DES New Master Key Register:

First character
Meaning

1 Register is clear

2 Register contains a partially complete key

3 Register contains a complete key

Last character
Meaning (when MOREMKS keyword
specified in rule array)

blank Register contains a 16-byte key

1 Register contains a 24-byte key

2 CMK Status State of the DES Current Master Key Register:

First character
Meaning

1 Register is clear

2 Register contains a complete key

Last character
Meaning (when MOREMKS keyword
specified in rule array)

blank Register contains a 16-byte key

1 Register contains a 24-byte key

3 OMK Status State of the DES Old Master Key Register:

First character
Meaning

1 Register is clear

2 Register contains a complete key

Last character
Meaning (when MOREMKS keyword
specified in rule array)

blank Register contains a 16-byte key

1 Register contains a 24-byte key

4 CCA Application
Version

A character string that identifies the version of the
CCA application program that is running in the
coprocessor.

ICSF Query Facility

Chapter 12. Utilities 649

|

|
|

||

||

||

|
|
|

||

||

|

|
|

||

||

|
|
|

||

||

|

|
|

||

||

|
|
|

||

||

Table 283. Output for option STATCCA (continued)

Element
Number Name Description

5 CCA Application Build
Date

A character string containing the build date for the
CCA application program that is running in the
coprocessor.

6 User Role A character string containing the Role identifier
which defines the host application user's current
authority.

Table 284. Output for option STATCCAE

Element
Number Name Description

1 Symmetric NMK Status State of the DES New Master Key Register:

First character
Meaning

1 Register is clear

2 Register contains a partially complete key

3 Register contains a complete key

Last character
Meaning (when MOREMKS keyword
specified in rule array)

blank Register contains a 16-byte key

1 Register contains a 24-byte key

2 Symmetric CMK Status State of the DES Current Master Key Register:

First character
Meaning

1 Register is clear

2 Register contains a complete key

Last character
Meaning (when MOREMKS keyword
specified in rule array)

blank Register contains a 16-byte key

1 Register contains a 24-byte key

3 Symmetric OMK Status State of the DES Old Master Key Register:

First character
Meaning

1 Register is clear

2 Register contains a complete key

Last character
Meaning (when MOREMKS keyword
specified in rule array)

blank Register contains a 16-byte key

1 Register contains a 24-byte key

ICSF Query Facility

650 z/OS ICSF Application Programmer's Guide

|

|
|

||

||

||

|
|
|

||

||

|

|
|

||

||

|
|
|

||

||

|

|
|

||

||

|
|
|

||

||

Table 284. Output for option STATCCAE (continued)

Element
Number Name Description

4 CCA Application
Version

A character string that identifies the version of the
CCA application program that is running in the
coprocessor.

5 CCA Application Build
Date

A character string containing the build date for the
CCA application program that is running in the
coprocessor.

6 User Role A character string containing the Role identifier
which defines the host application user's current
authority.

7 RSA NMK Status State of the RSA New Master Key Register:

Number
Meaning

1 Register is clear

2 Register contains a partially complete key

3 Register contains a complete key

8 RSA CMK Status State of the RSA Current Master Key Register:

Number
Meaning

1 Register is clear

2 Register contains a key

9 RSA OMK Status State of the RSA Old Master Key Register:

Number
Meaning

1 Register is clear

2 Register contains a key

Table 285. Output for option STATCARD

Element
Number Name Description

1 Number of installed
adapters

The number of active cryptographic coprocessors
installed in the machine. This only includes
coprocessors that have CCA software loaded
(including those with CCA UDX software).

2 DES hardware level A numeric character string containing an integer
value identifying the version of DES hardware that is
on the coprocessor.

3 RSA hardware level A numeric character string containing an integer
value identifying the version of RSA hardware that is
on the coprocessor.

4 POST Version A character string identifying the version of the
coprocessor's Power-On Self Test (POST) firmware.
The first four characters define the POST0 version
and the last four characters define the POST1
version.

ICSF Query Facility

Chapter 12. Utilities 651

||

|
|

||

||

||

||

|
|

||

||

||

|
|

||

||

Table 285. Output for option STATCARD (continued)

Element
Number Name Description

5 Coprocessor Operating
System Name

A character string identifying the operating system
firmware on the coprocessor. Padding characters are
blanks.

6 Coprocessor Operating
System Version

A character string identifying the version of the
operating system firmware on the coprocessor.

7 Coprocessor Part
Number

A character string containing the eight-character part
number identifying the version of the coprocessor.

8 Coprocessor EC Level A character string containing the eight-character EC
(engineering change) level for this version of the
coprocessor.

9 Miniboot Version A character string identifying the version of the
coprocessor's miniboot firmware. This firmware
controls the loading of programs into the
coprocessor.

The first four characters define the MiniBoot0 version
and the last four characters define the MiniBoot1
version.

10 CPU Speed A numeric character string containing the operating
speed of the microprocessor chip, in megahertz.

11 Adapter ID (Also see
element number 15)

A unique identifier manufactured into the
coprocessor. The coprocessor's Adapter ID is an
eight-byte binary value.

12 Flash Memory Size A numeric character string containing the size of the
flash EPROM memory on the coprocessor, in
64-kilobyte increments.

13 DRAM Memory Size A numeric character string containing the size of the
dynamic RAM (DRAM) on the coprocessor, in
kilobytes.

14 Battery-Backed
Memory Size

A numeric character string containing the size of the
battery-backed RAM on the coprocessor, in kilobytes.

15 Serial Number A character string containing the unique serial
number of the coprocessor. The serial number is
factory installed and is also reported by the CLU
utility in a coprocessor signed status message.

For STATDECT, the output is a table of up to 100 PIN decimalization tables as
shown in the following table. The maximum size is 2000 bytes.

Table 286. Output for option STATDECT

Offset Field Description

0 Number Numeric character indicating the table number

3 State Character indicating the state of the table

L loaded

A active

4 Table 16-byte decimalization table

ICSF Query Facility

652 z/OS ICSF Application Programmer's Guide

Table 287. Output for option STATDIAG

Element
Number Name Description

1 Battery State A numeric character string containing a value which
indicates whether the battery on the coprocessor
needs to be replaced:

Number
Meaning

1 Battery is good

2 Battery should be replaced

2 Intrusion Latch State A numeric character string containing a value which
indicates whether the intrusion latch on the
coprocessor is set or cleared:

Number
Meaning

1 Latch is cleared

2 Latch is set

3 Error Log Status A numeric character string containing a value which
indicates whether there is data in the coprocessor
CCA error log.

Number
Meaning

1 Error log is empty

2 Error log contains data but is not yet full

3 Error log is full

4 Mesh Intrusion A numeric character string containing a value to
indicate whether the coprocessor has detected
tampering with the protective mesh that surrounds
the secure module — indicating a probable attempt to
physically penetrate the module.

Number
Meaning

1 No intrusion detected

2 Intrusion attempt detected.

5 Low Voltage Detected A numeric character string containing a value to
indicate whether a power supply voltage was under
the minimum acceptable level. This may indicate an
attempt to attack the security module.

Number
Meaning

1 Only acceptable voltages have been detected

2 A voltage has been detected under the
low-voltage tamper threshold

ICSF Query Facility

Chapter 12. Utilities 653

Table 287. Output for option STATDIAG (continued)

Element
Number Name Description

6 High Voltage Detected A numeric character string containing a value to
indicate whether a power supply voltage was higher
than the maximum acceptable level. This may
indicate an attempt to attack the security module.

Number
Meaning

1 Only acceptable voltages have been detected

2 A voltage has been detected that is higher
than the high-voltage tamper threshold

7 Temperature Range
Exceeded

A numeric character string containing a value to
indicate whether the temperature in the secure
module was outside of the acceptable limits. This
may indicate an attempt to obtain information from
the module:

Number
Meaning

1 Temperature is acceptable

2 Detected temperature is outside an
acceptable limit

8 Radiation Detected A numeric character string containing a value to
indicate whether radiation was detected inside the
secure module. This may indicate an attempt to
obtain information from the module:

Number
Meaning

1 No radiation has been detected

2 Radiation has been detected

9, 11, 13,
15, 17

Last Five Commands
Run

These five rule-array elements contain the last five
commands that were executed by the coprocessor
CCA application. They are in chronological order,
with the most recent command in element 9. Each
element contains the security API command code in
the first four characters and the subcommand code in
the last four characters.

10, 12,
14,16, 18

Last Five Return Codes These five rule-array elements contain the SAPI
return codes and reason codes corresponding to the
five commands in rule-array elements 9, 11, 13, 15,
and 17. l Each element contains the return code in the
first four characters and the reason code in the last
four characters.

Table 288. Output for option STATEID

Element
Number Name Description

1 EID During initialization, a value of zero is set in
the coprocessor.

ICSF Query Facility

654 z/OS ICSF Application Programmer's Guide

Table 289. Output for option STATEXPT

Element
Number Name Description

1 Base CCA Services
Availability

A numeric character string containing a value
to indicate whether base CCA services are
available.

Number
Meaning

0 Base CCA services are not available

1 Base CCA services are available

2 CDMF Availability A numeric character string containing a value
to indicate whether CDMF is available.

Number
Meaning

0 CDMF encryption is not available

3 56-bit DES Availability A numeric character string containing a value
to indicate whether 56-bit DES encryption is
available.

Number
Meaning

0 56-bit DES encryption is not available

1 56-bit DES encryption is available

4 Triple-DES Availability A numeric character string containing a value
to indicate whether triple-DES encryption is
available.

Number
Meaning

0 Triple-DES encryption is not available

1 Triple-DES encryption is available

5 SET Services Availability A numeric character string containing a value
to indicate whether SET (Secure Electronic
Transaction) services are available.

Number
Meaning

0 SET Services are not available

1 SET Services are available

ICSF Query Facility

Chapter 12. Utilities 655

|
|

||

Table 289. Output for option STATEXPT (continued)

Element
Number Name Description

6 Maximum Modulus for
Symmetric Key Encryption

A numeric character string containing the
maximum modulus size that is enabled for the
encryption of symmetric keys. This defines the
longest public-key modulus that can be used
for key management of symmetric-algorithm
keys.

Number
Meaning

0 RSA not available

1024 RSA 1024 key size

2048 RSA 2048 key size

4096 RSA 4096 key size

Table 290. Output for option STATAPKA

Element
Number Name Description

1 ECC NMK status The state of the ECC new master key register:

Number
Meaning

1 Register is clear.

2 Register contains a partially complete
key.

3 Register contains a complete key.

2 ECC CMK status The state of the ECC current master key
register:

Number
Meaning

1 Register is clear.

2 Register contains a key.

3 ECC OMK status The state of the ECC old master key register:

Number
Meaning

1 Register is clear.

2 Register contains a key.

4 ECC key length enablement The maximum ECC curve size that is enabled
by the function control vector. The value will be
0 (if no ECC keys are enabled in the FCV) and
521 for the maximum size.

ICSF Query Facility

656 z/OS ICSF Application Programmer's Guide

|

|

|

Table 291. Output for option WRAPMTHD

Element
Number Name Description

1 Internal tokens Default wrapping method for internal tokens.

Number
Meaning

0 Keys will be wrapped with the
original method

1 Keys will be wrapped with the
enhanced X9.24 method

2 External tokens Default wrapping method for external tokens.

Number
Meaning

0 Keys will be wrapped with the
original method

1 Keys will be wrapped with the
enhanced X9.24 method

Table 292. Output for option STATP11

Element
Number Name Description

1 P11 NMK Status State of the P11 new master key register:

Number
Meaning

1 Register is clear

2 Register contains an uncommitted key

3 Register contains a committed key

2 P11 CMK Status State of the P11 current master key
register:

Number
Meaning

1 Register is clear

2 Register contains a key

3 Compliance Mode Current compliance mode for the coprocessor.
An 8-byte hexadecimal number that is the sum
of the active compliance modes:

Number
Meaning

n An 8-byte hexadecimal number that is
the sum of the active compliance
modes:

v 1 - FIPS 2009

v 2 - BSI 2009

v 4 - FIPS 2011

v 8 - BSI 2011

ICSF Query Facility

Chapter 12. Utilities 657

|||
|
|

|
|

||
|
|

|

|

|

|

|

Table 292. Output for option STATP11 (continued)

Element
Number Name Description

4 Firmware version Coprocessor PKCS #11 firmware version
number as an 8-byte hexadecimal value.

5 Serial Number A character string containing the unique serial
number of the coprocessor. The serial number is
factory installed.

6 – 12 Future use Currently blanks

reserved_data_length

Direction Type

Input Integer

The length of the reserved_data parameter. Currently, the value must be 0.

reserved_data

Direction Type

Input String

This field is currently not used.

Usage Notes
RACF will be invoked to check authorization to use this service.

PKA key generate available indicates the PKA callable services are enabled and
there is at least one ACTIVE coprocessor.

The options ICSFSTAT and ICSFST2 report on the state of PKA callable services.
ICSFSTAT reports it in element 2. ICSFST2 reports it in elements 3 and 11. There is
a subtle difference between the three options. ICSFSTAT reports PKA callable
services as enabled only after the DES master key is loaded and valid. ICSFSTAT
does not report PKA callable services as enabled when only the AES master key is
loaded and valid. Option ICSFST2 element 3 reports PKA callable services as
enabled when the DES and/or AES master key is loaded and valid. Option
ICSFST2 element 11 reports PKA callable services as enabled when neither the DES
nor AES master keys are loaded and valid.

Note: If your system has CEX3C or later coprocessors, the PKA callable services
control will not be available. The PKA callable services state will be the same as
the RSA master key. If the RSA master key is active, the PKA callable services will
be enabled in the ICSFSTAT and ICSFST2 reports.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

ICSF Query Facility

658 z/OS ICSF Application Programmer's Guide

|
|
|
|

Table 293. ICSF Query Service required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

IBM zEnterprise 196

IBM zEnterprise 114

None.

IBM zEnterprise EC12

IBM zEnterprise BC12

None

ICSF Query Facility2 (CSFIQF2 and CSFIQF26)
Use this utility to retrieve status information about the cryptographic environment
as currently known to ICSF.

This callable service will:
v NOT be SAF protected.
v NOT make calls to any cryptographic processor
v Return information that can be collected from various ICSF control blocks

The callable service name for AMODE(64) invocation is CSFIQF26.

Format
CALL CSFIQF2(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
returned_data_length,
returned_data,
reserved_data_length,
reserved_data)

Parameters
return_code

Direction Type

Output Integer

ICSF Query Facility

Chapter 12. Utilities 659

|

|
|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|

|

|

|||

||
|

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords in the rule_array. This field is currently reserved and
must be 0.

rule_array

Direction Type

Ignored String

Keywords that provide control information to callable services. This field is
currently ignored

returned_data_length

Direction Type

Input/Output Integer

The length of the returned_data parameter in bytes. A minimum value of 11 is
required.

returned_data

Direction Type

Output String/Integer

ICSF Query Facility 2

660 z/OS ICSF Application Programmer's Guide

|
|

|

|||

||
|

|
|
|
|

|

|||

||
|

|

|

|||

||
|

|

|

|||

||
|

|
|

|

|||

||
|

|
|

|

|||

||
|

|
|

|

|||

||
|

This field will contain the output from the service. The service will return only
the amount of data specified by the returned_data_length field.

The format of the returned_data is defined in Table 294.

Table 294. Format of returned ICSF Query Facility 2 data

Bytes Description

0-7 ICSF FMID

8
Bit Meaning when set on

0 Crypto Accelerator Available

1 CCA Coprocessor Available

2 Public Key Hardware Available

3 TKDS Available

4 SHA-1 Available in CPACF

5 SHA-224 Available in CPACF

6 SHA-256 Available in CPACF

7 SHA-384 Available in CPACF

9
Bit Meaning when set on

0 SHA-512 Available in CPACF

1 DES Available in CPACF

2 TDES Available in CPACF

3 AES 128-bit Available in CPACF

4 AES 192-bit Available in CPACF

5 AES 256-bit Available in CPACF

6 AES-GCM Available in CPACF

7 ECC Clear Key Hardware Available

10
Bit Meaning when set on

0 ECC Secure Key Hardware Available

1 PKCS #11 Secure Key Available

2 FIPS No Enforcement Mode

3 FIPS Mode Enabled

4 FIPS Compatibility Mode Enabled

5 RESERVED

6 RESERVED

7 RESERVED

reserved_data_length

Direction Type

Input Integer

The length of the reserved_data parameter. This field is reserved and must be 0.

ICSF Query Facility 2

Chapter 12. Utilities 661

|
|

|

||

||

||

|
||

||

||

||

||

||

||

||

||

|
||

||

||

||

||

||

||

||

||

|
||

||

||

||

||

||

||

||

||
|

|

|||

||
|

|

reserved_data

Direction Type

Ignored String

This field is currently not used.

Required Hardware
No specific hardware is required by this callable service.

SAF ACEE Selection (CSFACEE and CSFACEE6)
This callable service allows an authorized caller (either system key or supervisor
state) to provide an ENVR to use in place of the default ACEE selected for SAF
checking.

ICSF invokes RACROUTE to verify access to resources. When an ICSF callable
service is invoked directly (not through this service), ICSF allows the ACEE
selection to default. The default for RACROUTE is to use the TASK ACEE
(TCBSENV) pointer in the TCB.

When there is no TCB (which is the case in SRB mode), or when the TASK ACEE
pointer is zero, RACROUTE uses the main ACEE for the address space.

This service affects ACEE selection for all four ICSF classes: CSFSERV, CSFKEYS,
XCSFKEY, and CRYPTOZ. It does not change the behavior of installation exits.

The callable service name for AMODE(64) is CSFACEE6.

Format
CALL CSFACEE(

envr,
service_name,,
parameters...)

Parameters
envr

Direction Type

Input String

The ENVR object that holds the information used to describe a security
environment. This object was extracted from an ACEE using RACROUTE
REQUEST=EXTRACT,TYPE=ENVRXTR.

The calling application is responsible for the integrity and currency of the
information contained in the ENVR object.

service_name

Direction Type

Input String

ICSF Query Facility 2

662 z/OS ICSF Application Programmer's Guide

|

|||

||
|

|

|

|

|

|
|
|

|
|
|
|

|
|

|
|

|

|

|
|
|
|

|

|

|||

||
|

|
|
|

|
|

|

|||

||
|

The name of the ICSF callable service of the form CSFzzz or CSNyzzz. See
“ICSF Callable Services Naming Conventions” on page 3 for details. The
keyword is 8 bytes in length, left justified, and padded on the right with space
characters.

This is the name of the entry point you would invoke directly. See “Usage
Notes” for examples.

All services documented in this documentation are supported with the
exception of this service itself.

parameters...

Direction Type

not applicable not applicable

The parameters for the callable service specified just as they would normally
appear when invoking the service directly.

Usage Notes
The parameters specified should match the normal invocation. For example, if the
direct call was:
CALL CSNEXYZ(parm1, parm2, parm3, parm4);

The invocation via this service would be:
CALL CSFACEE6(envr, "CSNEXYZ ", parm1, parm2, parm3, parm4);

Note: Since the original call (CSNEXYZ) is AMODE(64), the CALL (CSFACEE6)
must be as well.

Similarly, if the direct call was:
CALL CSFZYX(parm1, parm2, parm3);

The invocation via this service would be:
CALL CSFACEE(envr, "CSFZYX ", parm1, parm2, parm3);

Note: The callable service name can be either of the aliases (CSFzzz or CSNyzzz)
for an invocation. If the original call was:
CALL CSFZYX(parm1, parm2, parm3);

The invocation via this service could be:
CALL CSFACEE(envr, "CSNBZYX", parm1, parm2, parm3);

Determination of whether a service is in the CICS Wait List is performed before the
service name is resolved, so for the purposes of CICS Wait List checking, all calls
through this service will be treated as CSFACEE, and not as the service that will
eventually be executed. If this is a concern, CSFACEE could be added to the CICS
Wait List.

Any environmental or parameters errors that would result in ICSF not invoking
the requested service will cause a non-zero return code to be returned in register
15 and a non-zero reason code to be returned in register 0, with the rest of the
parameters unchanged from input.

SAF ACEE Selection

Chapter 12. Utilities 663

|
|
|
|

|
|

|
|

|

|||

||
|

|
|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|
|
|
|

|
|
|
|

Required Hardware
There is no required hardware for this service. See an individual service for
specifics related to that service.

X9.9 Data Editing (CSNB9ED)
Use this utility to edit an ASCII text string according to the editing rules of ANSI
X9.9-4. It edits the text that the source_text parameter supplies according to these
rules. The rules are listed here in the order in which they are applied. It returns the
result in the target_text parameter.
1. This service replaces each carriage-return (CR) character and each line-feed (LF)

character with a single-space character.
2. It replaces each lowercase alphabetic character (a through z) with its equivalent

uppercase character (A through Z).
3. It deletes all characters other than:

v Alphabetics A...Z
v Numerics 0...9
v Space
v Comma ,
v Period .
v Dash -
v Solidus /
v Asterisk *
v Open parenthesis (
v Close parenthesis)

4. It deletes all leading space characters.
5. It replaces all sequences of two or more space characters with a single-space

character.

This utility does not support invocation in AMODE(64).

Format
CALL CSNB9ED(

return_code,
reason_code,
exit_data_length,
exit_data,
text_length,
source_text,
target_text)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

SAF ACEE Selection

664 z/OS ICSF Application Programmer's Guide

|

|
|

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF
and TSS Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

text_length

Direction Type

Input/Output Integer

On input, the text_length contains an integer that is the length of the
source_text. The length must be a positive, nonzero value. On output,
text_length is updated with an integer that is the length of the edited text.

source_text

Direction Type

Input String

This parameter contains the string to edit.

target_text

Direction Type

Output String

The edited text that the callable service returns.

Usage Notes
This service is structured differently from the other services. It runs in the caller's
address space in the caller's key and mode.

ICSF need not be active for the service to run. There are no pre-processing or
post-processing exits that are enabled for this service. While running, this service
does not issue any calls to RACF.

X9.9 Data Editing

Chapter 12. Utilities 665

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 295. X9.9 data editing required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

IBM zEnterprise 196

IBM zEnterprise 114

None.

IBM zEnterprise EC12

IBM zEnterprise BC12

None

X9.9 Data Editing

666 z/OS ICSF Application Programmer's Guide

Chapter 13. Trusted Key Entry Workstation Interfaces

The Trusted Key Entry (TKE) workstation is an optional feature. It offers an
alternative to clear key entry. You can use the TKE workstation to load master keys
and operational keys in a secure way.
v On the CEX3C, all operational keys may be loaded with TKE 6.0 or higher.
v On the CEX4C, all operational keys may be loaded with TKE 7.2 or higher.
v DES and RSA master keys are available on all CCA coprocessors.
v The AES master key and AES operational keys are supported on the z9 and

newer systems with the Nov. 2008 or later licensed internal code (LIC)
v The ECC master key is supported on the z196 and newer systems with the Sep.

2011 or later licensed internal code.
v The P11 master key is supported on Enterprise PKCS #11 coprocessors (CEX4P)

This topic describes these callable services:
v “PCI Interface Callable Service (CSFPCI and CSFPCI6)”

PCI Interface Callable Service (CSFPCI and CSFPCI6)
TKE uses this callable service to send a request to a specific PCI card queue and
remove the corresponding response when complete. This service also allows the
TKE workstation to query the list of access control points which may be enabled or
disabled by a TKE user. This service is synchronous. The return and reason codes
reflect the success or failure of the queue functions rather than the success or
failure of the actual PCI request.

The callable service name for AMODE(64) invocation is CSFPCI6.

Format
CALL CSFPCI(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
target_pci_coprocessor,
target_pci_coprocessor_serial_number,
request_block_length,
request_block,
request_data_block_length,
request_data_block,
reply_block_length,
reply_block,
reply_data_block_length,
reply_data_block,
masks_length,
masks_data)

© Copyright IBM Corp. 1997, 2013 667

|

|

|
|
|

|

|

|

|
|

|
|

|

|

|

|
|

|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. See
Appendix A, “ICSF and TSS Return and Reason Codes,” on page 755, for a list
of return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. See Appendix A, “ICSF and TSS Return
and Reason Codes,” on page 755 for a list of reason codes.

exit_data_length

Direction Type

Input/Output Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction Type

Input/Output String

The data that is passed to the installation exit.

rule_array_count

Direction Type

Input Integer

The number of keywords you are supplying in rule_array. The value must be 1
or 2.

rule_array

Direction Type

Input String

Keyword that provides control information to callable services. The keyword is
left-justified in an 8-byte field and padded on the right with blanks. The
keyword must be in contiguous storage. These keywords are mutually
exclusive:

PCI Interface

668 z/OS ICSF Application Programmer's Guide

|

|

|||

||
|

|
|
|

|

|||

||
|

|
|
|
|

|

|||

||
|

|
|
|

|

|||

||
|

|

|

|||

||
|

|
|

|

|||

||
|

|
|
|
|

Table 296. Keywords for PCI Interface Callable Service

Keyword Meaning

Operation Requested (required)

ACPOINTS Queries the list of CCA access control points which may be
enabled or disabled by a TKE user.

XPPOINTS Queries the list of PKCS #11 access control points which may be
enabled or disabled by a TKE user.

ACTIVECP This keyword is a request to call the PCI card initialization code
to revalidate the PCI cards. When the PCI card initialization is
completed, both the 64-bit mask indicating which of the PCI
cards are online and 64-bit mask indicating which of the PCI
cards are active will be returned. This keyword is used by the
TKE workstation code after the ACTIVATE portion of the
domain zeroize command. This is to ensure that the status of
the PCI card is accurately reflected to the users. See the
masks_data parameter description for more information.

APNUM Specifies the target_pci_coprocessor field is to be used to submit a
CCA request.

XPNUM Specifies the target_pci_coprocessor field is to be used to submit a
PKCS #11 request.

SERIALNO Specifies the target_pci_coprocessor_serial_number field is to be
used to submit a CCA request

XCPMASK This keyword is a request to return both the 64-bit mask
indicating which of the PCIXCCs and Crypto Express
coporcessors are online and the 64-bit mask indicating which of
the PCIXCCs and Crypto Express coprocessors are active. See
the masks_data parameter description for more information.

CX2MASK This keyword is a request to return both the 64-bit mask
indicating which of the CEX2Cs are online and the 64-bit mask
indicating which of the CEX2Cs are active. See the masks_data
parameter description for more information.

CX3MASK This keyword is a request to return both the 64-bit mask
indicating which of the CEX3Cs are online and the 64-bit mask
indicating which of the CEX3Cs are active. See the masks_data
parameter description for more information.

CX4MASK This keyword is a request to return both the 64-bit mask
indicating which of the Crypto Express4 coprocessors are online
and the 64-bit mask indicating which of the Crypto Express4
coprocessors are active. Only the coprocessors configured for
CCA are to be examined. See the masks_data parameter
description for more information.

XP4MASK This keyword is a request to return both the 64-bit mask
indicating which of the Crypto Express4 coprocessors are online
and the 64-bit mask indicating which of the Crypto Express4
coprocessors are active. Only the coprocessors configured for
PKCS #11 are to be examined. See the masks_data parameter
description for more information.

QUERYDOM This keyword is a request to return a 256-bit mask indicating
the controlled domain information from the AP facility. See the
masks_data parameter description for more information.

Reason (optional)

PCI Interface

Chapter 13. Trusted Key Entry Workstation Interfaces 669

||

||

|

||
|

||
|

||
|
|
|
|
|
|
|
|

||
|

||
|

||
|

||
|
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|
|
|

||
|
|
|
|
|

||
|
|

|

Table 296. Keywords for PCI Interface Callable Service (continued)

Keyword Meaning

DISTREC This keyword indicates that the operation is being issued in
preparation for disaster recovery. ICSF performs limited error
checking in the case.

Note: When the PCIMASKS, ACTIVECP, XCPMASK, CX2MASK, CX3MASK
CX4MASK, XP4MASK, or QUERYDOM keyword is specified, the
request_data_block_length, request_data_block, reply_data_block_length, and the
reply_data_block parameters are ignored.

target_pci_coprocessor

Direction Type

Input Integer

The index of the coprocessor card to which this request is directed. Valid
values are between 0 and 64.

target_pci_coprocessor_serial_number

Direction Type

Input/Output String

The serial number of the coprocessor to which the request is directed. This
parameter may be used instead of the target_pci_coprocessor by specifying the
SERIALNO rule. The length is 8 bytes. This parameter is updated with the
serial number of the card if the request was successfully processed.

request_block_length

Direction Type

Input Integer

Length of CPRB and the request block in the request_block field. For the
APNUM or SERIALNO rules, the maximum length allowed is 5,500 bytes. For
the XPNUM rule, the maximum length allowed is 12,000 bytes.

request_block

Direction Type

Input String

The complete command or query request for the target coprocessor, including
the CPRB.

request_data_block_length

Direction Type

Input Integer

Length of request data block in the request_data_block field. The maximum
length allowed is 6,400 bytes. The length field must be a multiple of 4. For the
XPNUM rule, the length must be zero.

PCI Interface

670 z/OS ICSF Application Programmer's Guide

|

||

||
|
|
|

|
|
|
|

|

|||

||
|

|
|

|

|||

||
|

|
|
|
|

|

|||

||
|

|
|
|

|

|||

||
|

|
|

|

|||

||
|

|
|
|

request_data_block

Direction Type

Input String

The data that accompanies the request_block field.

reply_block_length

Direction Type

Input/Output Integer

Length of CPRB and the reply block in the reply_block field. For the APNUM or
SERIALNO rules, the maximum length allowed is 5,500 bytes. For the XPNUM
rule, the maximum length allowed is 12,000 bytes. This field is updated on
output with the actual length of the reply_block field.

reply_block

Direction Type

Output String

Reply from the target coprocessor. This is the CPRB and reply block that has
been processed by the coprocessor.

reply_data_block_length

Direction Type

Input/Output Integer

Length of reply block in the reply_data_block field. For the APNUM or
SERIALNO rules, the maximum length allowed is 6,400 bytes. This field is
updated on output with the actual length of the reply_data_block field. This
length field must be a multiple of 4. For the XPNUM rule, the length must be
zero. For the XPPOINTS keyword, the minimum length is 2206 bytes. For the
ACPOINTS keyword, the minimum length is 17469 bytes.

reply_data_block

Direction Type

Output String

The data that accompanies the reply_block field.

masks_length

Direction Type

Input Integer

Length of the reply data being returned in the masks_data field. The length
must be 32 bytes for all requests.

masks_data

PCI Interface

Chapter 13. Trusted Key Entry Workstation Interfaces 671

|

|||

||
|

|

|

|||

||
|

|
|
|
|

|

|||

||
|

|
|

|

|||

||
|

|
|
|
|
|
|

|

|||

||
|

|

|

|||

||
|

|
|

|
|

Direction Type

Output String

Masks data is returned only when the input rule_array keyword is ACTIVECP
XCPMASK, CX2MASK, CX3MASK, CX4MASK, XP4MASK, or QUERYDOM.
For all other rule_array keywords, hex zeroes are returned.

For the QUERYDOM rule, the returned data indicates a bit mask of the actual
Crypto domains that may be controlled from this logical partition. For all other
rules, the first 8 bytes indicate the count of the cards online. The second 8
bytes indicate a bit mask of the actual cards brought online. The third 8 bytes
indicate the count of the cards active. The fourth 8 bytes indicate a bit mask of
the actual cards that are active. For the ACTIVECP keyword, if the card
initialization failed, the appropriate return code and reason code is issued and
the masks_data field will contain zeros.

Usage Notes
The target_pci_coprocessor, the target_pci_coprocessor_serial_number, the request_block,
the reply_block, the request_data_block, and the reply_data_block, are recorded in SMF
Record Type 82, subtype 16.

Required Hardware
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 297. PCI Interface required hardware

Server Required
cryptographic
hardware

Restrictions

IBM eServer zSeries
990

IBM eServer zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

The QUERYDOM rule is not supported.

IBM System z9 EC

IBM System z9 BC

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

The QUERYDOM rule is not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

The QUERYDOM rule is not supported.

IBM zEnterprise 196

IBM zEnterprise 114

Crypto Express3
Coprocessor

PCI Interface

672 z/OS ICSF Application Programmer's Guide

|||

||
|

|
|
|

|
|
|
|
|
|
|
|

|

|
|
|

|

|
|

||

||
|
|

|

|
|

|
|

|
|

|
|

|

|

|

|
|

|
|

|

|

|

|
|

|
|

|

|

|

|
|
|

Table 297. PCI Interface required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM zEnterprise EC12

IBM zEnterprise BC12

Crypto Express4
Coprocessor

Crypto Express4 CCA
Coprocessor

Crypto Express4
Enterprise PKCS #11
Coprocessor

PCI Interface

Chapter 13. Trusted Key Entry Workstation Interfaces 673

|

||
|
|

|

|

|

|
|

|
|

|
|
|

|

|

PCI Interface

674 z/OS ICSF Application Programmer's Guide

Part 3. PKCS #11 Callable Services

© Copyright IBM Corp. 1997, 2013 675

|

676 z/OS ICSF Application Programmer's Guide

Chapter 14. Using PKCS #11 Tokens and Objects

This topic describes the callable services for creating and maintaining PKCS #11
tokens and objects. ICSF provides a number of callable services to assist you in
managing PKCS #11 tokens and maintaining the token data set (TKDS). Services
are also provided for generating, using, and managing key objects.

The following callable services are described:
v “PKCS #11 Derive multiple keys (CSFPDMK and CSFPDMK6)”
v “PKCS #11 Derive key (CSFPDVK and CSFPDVK6)” on page 685
v “PKCS #11 Get attribute value (CSFPGAV and CSFPGAV6)” on page 691
v “PKCS #11 Generate key pair (CSFPGKP and CSFPGKP6)” on page 693
v “PKCS #11 Generate secret key (CSFPGSK and CSFPGSK6)” on page 696
v “PKCS #11 Generate HMAC (CSFPHMG and CSFPHMG6)” on page 699
v “PKCS #11 Verify HMAC (CSFPHMV and CSFPHMV6)” on page 703
v “PKCS #11 One-way hash, sign, or verify (CSFPOWH and CSFPOWH6)” on

page 707
v “PKCS #11 Private key sign (CSFPPKS and CSFPPKS6)” on page 713
v “PKCS #11 Public key verify (CSFPPKV and CSFPPKV6)” on page 716
v “PKCS #11 Pseudo-random function (CSFPPRF and CSFPPRF6)” on page 719
v “PKCS #11 Set attribute value (CSFPSAV and CSFPSAV6)” on page 722
v “PKCS #11 Secret key decrypt (CSFPSKD and CSFPSKD6)” on page 724
v “PKCS #11 Secret key encrypt (CSFPSKE and CSFPSKE6)” on page 729
v “PKCS #11 Token record create (CSFPTRC and CSFPTRC6)” on page 735
v “PKCS #11 Token record delete (CSFPTRD and CSFPTRD6)” on page 739
v “PKCS #11 Token record list (CSFPTRL and CSFPTRL6)” on page 741
v “PKCS #11 Unwrap key (CSFPUWK and CSFPUWK6)” on page 746
v “PKCS #11 Wrap key (CSFPWPK and CSFPWPK6)” on page 749

A TKDS is not required to use the PKCS #11 services. If ICSF is started without a
TKDS, however, only the omnipresent token will be available. The omnipresent
token supports session objects only. Session objects are objects that do not persist
beyond the life of a PKCS #11 session.

PKCS #11 Derive multiple keys (CSFPDMK and CSFPDMK6)
Use the PKCS #11 Derive Multiple Keys callable service to generate multiple secret
key objects and protocol dependent keying material from an existing secret key
object. This service does not support any recovery methods.

The key handle must be a handle of a PKCS #11 secret key object. The
CKA_DERIVE attribute for the secret key object must be true. The mechanism
keyword specified in the rule array indicates what derivation protocol to use. The
derive parms list provides additional input/output data. The format of this list is
dependent on the protocol being used.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPDMK6.

© Copyright IBM Corp. 1997, 2013 677

|
|
|
|

Format
CALL CSFPDMK(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
attribute_list_length,
attribute_list,
base_key_handle,
parms_list_length,
parms_list)

Parameters
return_code

Direction Type

Output String

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output String

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1.

rule_array

PKCS #11 Derive multiple keys

678 z/OS ICSF Application Programmer's Guide

Direction Type

Input String

Keywords that provide control information to the callable service. Each
keyword is left-justified in 8-byte fields and padded on the right with blanks.
All keywords must be in contiguous storage.

Table 298. Keywords for derive multiple keys

Keyword Meaning

Mechanism (required)

SSL-KM Use the SSL 3.0 Key and MAC derivation protocol as defined in the
PKCS #11 standard as mechanism
CKM_SSL3_KEY_AND_MAC_DERIVE.

TLS-KM Use the TLS 1.0/1.1 Key and MAC derivation protocol as defined in
the PKCS #11 standard as mechanism
CKM_TLS_KEY_AND_MAC_DERIVE.

IKE1PHA1 Use the IKEv1 phase 1 protocol to derive multiple keys using a
previously derived IKE seed key as the base key and a previously
derived secret key as an additional key. 3 keys are derived (one
derivation, one authentication, and one encryption key).

Using IKE terminology, this mechanism performs {SKEYID_d |
SKEYID_a | SKEYID_e} = prf(SKEYID, g^xy | CKY-I | CKY-R) with
key expansion for SKEYID_e, if required. (SKEYID_d,a are always the
size of the prf output.)

Where:

v CKY-I | CKY-R - is the concatenated initiator/responder cookie
string

v SKEYID - is the base key

v g^xy - is the additional key

v SKEYID_d,a,e - are the to-be-derived derivation, authentication and
encryption keys

IKE2PHA1 Use the IKEv2 phase 1 (SA) protocol to derive multiple keys using a
previously derived IKE seed key as the base key. 7 keys are derived
(one derivation, two authentication, two encryption, and two peer
authentication keys).

Using IKE terminology, this mechanism performs {SK_d | SK_ai |
SK_ar | SK_ei | SK_er | SK_pi | SK_pr } = prf+(SKEYSEED, Ni | Nr |
SPIi | SPIr).

Where:

v Ni | Nr | SPIi | SPIr - is the concatenated initiator/responder
nonce and Security Parameter Index string

v SKEYSEED - is the base key

v SK_d,ai,ar,ei,er,pi,pr - are the to-be-derived derivation, initiator
authentication, responder authentication, initiator encryption,
responder encryption, initiator peer authentication, and responder
peer authentication keys

PKCS #11 Derive multiple keys

Chapter 14. Using PKCS #11 Tokens and Objects 679

Table 298. Keywords for derive multiple keys (continued)

Keyword Meaning

IKE1PHA2 Use the IKEv1 phase 2 (CHILD SA) protocol to derive multiple keys
and salt values using a previously derived IKE derivation key as the
base key and a previously derived secret key as an additional key
(optional). The derivation produces one of the following key sets:

v One authentication key

v One GMAC key plus salt value

v One authentication key plus one encryption key

v One GCM key plus a salt value

Up to two such sets are produced, one for the sender and one for the
receiver.

Using IKE terminology, this mechanism performs KEYMAT =
prf(SKEYID_d, [g^xy |] protocol | SPI | Ni_b | Nr_b), done in two
passes – once for the sender and once for the receiver.

Where:

v protocol | SPI | Ni_b | Nr_b - is the concatenated Protocol, Security
Parameter Index, and initiator/responder nonce string

v SKEYID_d - is the base key

v g^xy - is the optional additional key

v KEYMAT - is the generated key material which is partitioned into
the key set

IKE2PHA2 Use the IKEv2 phase 2 protocol to derive multiple keys and salt
values using a previously derived IKE derivation key as the base key
and a previously derived secret key as an additional key (optional).
The derivation produces one of the following key sets:

v One authentication key

v One GMAC key plus salt value

v One authentication key plus one encryption key

v One GCM key plus a salt value

Two such sets are produced, one for the initiator and one for the
responder.

Using IKE terminology, this mechanism performs KEYMAT =
prf+(SK_d, [g^ir |] Ni | Nr).

Where:

v Ni | Nr - is the concatenated initiator/responder nonce string

v SK_d - is the base key

v g^ir - is the optional additional key

v KEYMAT - is the generated key material which is partitioned into
the key set

attribute_list_length

Direction Type

Input Integer

The length of the attributes supplied in the attribute_list parameter in bytes.
The minimum value for this field is 2 and the maximum value for this field is
32752.

PKCS #11 Derive multiple keys

680 z/OS ICSF Application Programmer's Guide

|
|

attribute_list

Direction Type

Input String

List of attributes for the derived secret key object. See “Attribute List” on page
88 for the format of an attribute_list.

base_key_handle

Direction Type

Input String

The 44-byte handle of the base key object. See “Handles” on page 89 for the
format of a key_handle.

parms_list_length

Direction Type

Input Integer

The length of the parameters supplied in the parms_list parameter in bytes.

parms_list

Direction Type

Input String

The protocol specific parameters. This field has a varying format depending on
the mechanism specified:

Table 299. parms_list parameter format for SSL-KM and TLS-KM mechanisms

Offset Length in bytes Direction Description

0 1 Input Boolean indicating if “export” processing is
required. Any value other than x’00’ means yes

1 3 Not applicable reserved

4 4 Input length in bytes of the client’s random data (x)),
where 1 <= length <= 32

8 4 Input length in bytes of the server’s random data (y)),
where 1 <= length <= 32

12 4 Input size of MAC to be generated in bits, where 8 <= size
<= 384, in multiples of 8

16 4 Input size of key to be generated in bits, Must match a
supported size for the key type specified in the
attribute list. Zero if no encryption keys are to be
generated.

20 4 Input size of IV to be generated in bits (v), where 0<= size
<= 128, in multiples of 8. Must be zero if no
encryption keys are to be generated.

24 44 Output handle of client MAC secret object created

68 44 Output handle of server MAC secret object created

112 44 Output handle of client key object created

156 44 Output handle of server key object created

200 x Input client’s random data

PKCS #11 Derive multiple keys

Chapter 14. Using PKCS #11 Tokens and Objects 681

Table 299. parms_list parameter format for SSL-KM and TLS-KM mechanisms (continued)

Offset Length in bytes Direction Description

200+x y Input server’s random data

200+x+y v/8 Output client’s IV

200+x+y+v/8 v/8 Output server’s IV

Table 300. parms_list parameter format for IKE1PHA1 mechanism

Offset Length in bytes Direction Description

0 1 Input IKE version code. Must be x’01’

1 1 Input PRF function code x'01' = HMAC_MD5, x’02’ =
HMAC_SHA1, x’04’ = HMAC_SHA256, x’05’ =
SHA384, and x’06’ = SHA512

2 4 Input reserved

6 2 Input length of to-be-derived encryption key, SKEYID_e

8 44 Input Key handle of additional key

52 16 Input Concatenated cookie string

68 44 Output SKEYID_d key handle

112 44 Output SKEYID_a key handle

156 44 Output SKEYID_e key handle

Table 301. parms_list parameter format for IKE2PHA1 mechanism

Offset Length in bytes Direction Description

0 1 Input IKE version code. Must be x’02’

1 1 Input PRF function code x'01' = HMAC_MD5, x’02’ =
HMAC_SHA1, x’04’ = HMAC_SHA256, x’05’ =
SHA384, and x’06’ = SHA512

2 2 Input length of to-be-derived derivation key, SK_d

4 2 Input length of a single to-be-derived authentication key,
SK_a

6 2 Input length of a single to-be-derived encryption key,
SK_e

8 2 Input length of a single to-be-derived peer authentication
key, SK_p

10 2 Input Concatenated nonce, SPI string length (n), where 24
<= n <= 520

12 44 Output SKEYID_d key handle

56 44 Output Initiator SKEYID_a key handle

100 44 Output Responder SKEYID_a key handle

144 44 Output Initiator SKEYID_e key handle

188 44 Output Responder SKEYID_e key handle

232 44 Output Initiator SKEYID_p key handle

276 44 Output Responder SKEYID_p key handle

320 n Input Concatenated nonce, SPI string

PKCS #11 Derive multiple keys

682 z/OS ICSF Application Programmer's Guide

Table 302. parms_list parameter format for IKE1PHA2 and IKE2PHA2 mechanisms

Offset Length in bytes Direction Description

0 1 Input IKE version code. Must be x’01’ for IKE1PHA2, x’02’
for IKE2PHA2

1 1 Input PRF function code x'01' = HMAC_MD5, x’02’ =
HMAC_SHA1, x’04’ = HMAC_SHA256, x’05’ =
SHA384, and x’06’ = SHA512

2 2 Input length of to-be-derived salts (s), where 0 <= s <= 4.
Zero if salts are not to be derived

4 2 Input length of to-be-derived authentication keys. Zero if
authentication keys are not to be derived

6 2 Input length of to-be-derived encryption, GMAC, or GCM
keys. Zero if no such keys are to be derived

8 2 Input First pass parameter string length (n)

v For IKE1PHA2 – Receiver concatenated Protocol,
Security Parameter Index, and initiator/responder
nonce string length, where 25 <= n <= 525

v For IKE2PHA2 – Concatenated
initiator/responder nonce string length, where 16
<= n <= 512.

10 2 Input Second pass parameter string length (m)

v For IKE1PHA2 – Sender concatenated Protocol,
Security Parameter Index, and initiator/responder
nonce string length, where 25 <= m <= 525. Zero
if second pass is to be skipped

v For IKE2PHA2 – Not used. Must be zero

12 44 Input Key handle of additional key. Fill with binary zeros
if n/a

56 44 Output Initiator (sender) authentication key handle

100 44 Output Responder (receiver) authentication key handle

144 44 Output Initiator (sender) encryption, GMAC, or GCM key
handle

188 44 Output Responder (receiver) encryption, GMAC, or GCM
key handle

232 n Input First pass parameter string

232+n m Input Second pass parameter string

232+n+m s Output Initiator (sender) salt

232+n+m+s s Output Responder (receiver) salt

Authorization
There are multiple keys involved in this service — one or two base keys and the
target keys (the new keys created from the base key).
v To use a base key that is a public object, the caller must have SO (READ)

authority or USER (READ) authority (any access).
v To use a base key that is a private object, the caller must have USER (READ)

authority (user access).
v To derive a target key that is a public object, the caller must have SO (READ)

authority or USER (UPDATE) authority.

PKCS #11 Derive multiple keys

Chapter 14. Using PKCS #11 Tokens and Objects 683

v To derive a target key that is a private object, the caller must have SO
(CONTROL) authority or USER (UPDATE) authority.

Usage Notes
The service does not support secure keys.

Key derivation functions are performed in software.

For the SSL-KM and TLS-KM mechanisms, an attribute list is required if
encryption keys are to be generated.

For the IKE1PHA1, IKE2PHA1, IKE1PHA2, and IKE2PHA2 mechanisms, the
following attribute rules apply to the derived keys:
v Derivation keys will have the following attributes which may not be overridden

by other values in the attribute list:
– CKA_CLASS=CKO_SECRET_KEY
– CKA_KEY_TYPE=CKK_GENERIC_SECRET
– CKA_DERIVE=TRUE
– CKA_VALUE_LEN=as specified in the parms list

v Authentication keys will have the following attributes which may not be
overridden by other values in the attribute list:
– CKA_CLASS=CKO_SECRET_KEY
– CKA_KEY_TYPE=CKK_GENERIC_SECRET
– CKA_SIGN=TRUE=TRUE
– CKA_VERIFY=TRUE=TRUE
– CKA_VALUE_LEN= as specified in the parms list

v Encryption, GMAC, and GCM keys will be typed according to information
found in the attribute list. However, they will have the following attributes
which may not be overridden by other values in the attribute list:
– CKA_CLASS=CKO_SECRET_KEY
– For key types other than CKK_DES, CKK_DES2, and CKK_DES3,

CKA_VALUE_LEN= as specified in the parms list

v All key types will inherit the values of the CKA_SENSITIVE,
CKA_ALWAYS_SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE attributes from the base key. These may not be
overridden by other values in the attribute list. If an additional key is specified,
its values will be applied after setting the base key values as follows:
– If the additional key has CKA_SENSITIVE=TRUE, so will the derived key(s)
– If the additional key has CKA_EXTRACTABLE=FALSE, so will the derived

keys(s)
– If the additional key has CKA_ALWAYS_SENSITIVE=FALSE, so will the

derived keys(s)
– If the additional key has CKA_NEVER_EXTRACTABLE=FALSE, so will the

derived keys(s)
v If encryption, GMAC, or GCM keys are to be derived, an attribute list is

required for the key typing information. Otherwise, it is optional. For all keys,
other applicable secret key attributes may be specified in the attribute list. Any
attribute not specified will be assigned the default value normally assigned to a
newly created secret key.

PKCS #11 Derive multiple keys

684 z/OS ICSF Application Programmer's Guide

For the IKE1PHA1, IKE1PHA2, and IKE2PHA2 mechanisms, the additional key
must be a secret key (CKA_CLASS=CKO_SECRET_KEY) capable of performing
key derivation (CKA_DERIVE=TRUE). It must also be contained in the same PKCS
#11 token as the base key.

The IKE1PHA1, IKE2PHA1, IKE1PHA2, and IKE2PHA2 mechanisms have the
following limitations if the operation is FIPS 140 restricted:
v The MD5 PRF may not be specified.
v The length of the base key must be at least half the length of the output of the

PRF function.

PKCS #11 Derive key (CSFPDVK and CSFPDVK6)
Use the PKCS #11 Derive Key callable service to generate a new secret key object
from an existing key object. This service does not support any recovery methods.

The deriving key handle must be a handle of an existing PKCS #11 key object. The
CKA_DERIVE attribute for this object must be true. The mechanism keyword
specified in the rule array indicates what derivation protocol to use. The derive
parms list provides additional input data. The format of this list is dependent on
the protocol being used.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPDVK6.

Format
CALL CSFPDVK(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
attribute_list_length,
attribute_list,
base_key_handle,
parms_list_length,
parms_list,
target_key_handle)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that

PKCS #11 Derive multiple keys

Chapter 14. Using PKCS #11 Tokens and Objects 685

indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1 or 2.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. Each
keyword is left-justified in 8-byte fields and padded on the right with blanks.
All keywords must be in contiguous storage.

Table 303. Keywords for derive key

Keyword Meaning

Mechanism (required)

PKCS-DH Use the Diffie-Hellman PKCS derivation protocol as defined in the
PKCS #11 standard as mechanism CKM_DH_PKCS_DERIVE.

SSL-MS Use the SSL 3.0 Master Secret derivation protocol as defined in the
PKCS #11 standard as mechanism
CKM_SSL3_MASTER_KEY_DERIVE. The SSL protocol version is also
returned. The base key must have been generated according to the
rules for SSL 3.0

SSL-MSDH Use the SSL 3.0 Master Secret for Diffie-Hellman derivation protocol
as defined in the PKCS #11 standard as mechanism
CKM_SSL3_MASTER_KEY_DERIVE_DH.

TLS-MS Use the TLS Master Secret derivation protocol as defined in the PKCS
#11 standard as mechanism CKM_TLS_MASTER_KEY_DERIVE. The
base key must have been generated according to the rules for TLS 1.0
or TLS 1.1

TLS-MSDH Use the TLS Master Secret for Diffie-Hellman derivation protocol as
defined in the PKCS #11 standard as mechanism
CKM_TLS_MASTER_KEY_DERIVE_DH.

PKCS #11 Derive key

686 z/OS ICSF Application Programmer's Guide

|
|

Table 303. Keywords for derive key (continued)

Keyword Meaning

EC-DH Use the Elliptic Curve Diffie-Hellman derivation protocol as defined
in the PKCS #11 standard as mechanism CKM_ECDH1_DERIVE

IKESEED Use the IKEv1 or IKEv2 initial seeding protocol to derive a seed key
using a previously derived secret key as the base key.

Using IKE terminology, this mechanism performs either SKEYID =
prf(Ni_b | Nr_b, g^xy) for IKEv1 or SKEYSEED = prf(Ni | Nr, g^ir) for
IKEv2.

Where:

v Ni_b | Nr_b or Ni | Nr - is the concatenated initiator/responder
nonce string

v g^xy or g^ir - is the base key

IKESHARE Use the IKEv1 initial seeding protocol to derive a seed key using a
pre-shared secret key as the base key.

Using IKE terminology, this mechanism performs SKEYID =
prf(pre-shared-key, Ni_b | Nr_b).

Where:

v Ni_b | Nr_b - is the concatenated initiator/responder nonce string

v pre-shared-key - is the base key

IKEREKEY Use the IKEv2 rekeying protocol to derive a new seed key using a
previously derived IKE derivation key as the base key and a
previously derived secret key as an additional key.

Using IKE terminology, this mechanism performs SKEYSEED =
prf(SK_d, g^ir | Ni | Nr).

Where:

v Ni | Nr - is the concatenated initiator/responder nonce string

v SK_d - is the base key

v g^ir - is the additional key

Key Destination (optional)

OMNITOKN Store the derived session key in the Omnipresent Token (label
SYSTOK-SESSION-ONLY). The default action is to store the key in the
same token as the base key(s).

attribute_list_length

Direction Type

Input Integer

The length of the attributes supplied in the attribute_list parameter in bytes.
The minimum value for this field is 2 and the maximum value for this field is
32752.

attribute_list

Direction Type

Input String

List of attributes for the derived secret key object. See “Attribute List” on page
88 for the format of an attribute_list.

PKCS #11 Derive key

Chapter 14. Using PKCS #11 Tokens and Objects 687

|

||
|
|

|
|

base_key_handle

Direction Type

Input String

The 44-byte handle of the source key object. See “Handles” on page 89 for the
format of a base_key_handle.

parms_list_length

Direction Type

Input Integer

The length of the parameters supplied in the parms_list parameter in bytes.

parms_list

Direction Type

Input/Output String

The protocol specific parameters. This field has a varying format depending on
the mechanism specified:

Table 304. parms_list parameter format for PKCS-DH mechanism

Offset Length in
bytes

Direction Description

0 4 Input length in bytes of the other party’s public value, where 64 <= length <= 256

4 <=256 Input binary value representing the other party’s public value.

Table 305. parms_list parameter format for SSL-MS, SSL-MSDH, TLS-MS, and TLS-MSDH mechanisms

Offset Length in
bytes

Direction Description

0 2 Output SSL protocol version returned for SSL-MS and TLS-MS only. For the other
protocols, this field is left unchanged.

2 2 not
applicable

reserved

4 4 Input length in bytes of the client’s random data (x), where 1 <= length <= 32

8 4 Input length in bytes of the server’s random data (y)), where 1 <= length <= 32

12 x Input client’s random data

12+x y Input server’s random data

Table 306. parms_list parameter format for EC-DH mechanism

Offset Length in
bytes

Direction Description

0 1 Input KDF function code, x’01’ = NULL; x’02’ = SHA1. x’05’ = SHA224, x’06’ =
SHA256, x’07’ = SHA384, and x’08’ = SHA512

1 3 not
applicable

reserved

4 4 Input length in bytes of the optional data shared between the two parties. A zero
length means no shared data. For the NULL KDF the length must be zero.
Otherwise, the maximum shared data length 2147483647.

PKCS #11 Derive key

688 z/OS ICSF Application Programmer's Guide

Table 306. parms_list parameter format for EC-DH mechanism (continued)

Offset Length in
bytes

Direction Description

8 8 Input 64-bit address of the data shared between the two parties. The data must reside
in the caller’s address space. High order word must be set to all zeros by
AMODE31 callers. This field is ignored if the length is zero.

16 4 Input length in bytes of the other party’s public value (x). This length is dependent on
the curve type/size of the base key and on whether the value is DER encoded or
not:

secp192r1 – 49 (51 w/DER)
secp224r1 – 57 (59 w/DER)
secp256r1 – 65 (67 w/DER)
secp384r1 – 97 (99 w/DER)
secp521r1 – 133 (136 w/DER)

brainpoolP160r1 – 41 (43 w/DER)
brainpoolP192r1 – 49 (51 w/DER)
brainpoolP224r1 – 57 (59 w/DER)
brainpoolP256r1 – 65 (67 w/DER)
brainpoolP320r1 – 81 (83 w/DER)
brainpoolP384r1 – 97 (99 w/DER)
brainpoolP512r1 – 129 (132 w/DER)

20 x<=136 Input binary value representing the other party’s public value with or without DER
encoding.

Table 307. parms_list parameter format for IKESEED, IKESHARE, and IKEREKEY mechanisms

Offset Length in
bytes

Direction Description

0 1 Input IKE version code. Must be x’01’ for IKESHARE, x’02’ for IKEREKEY, x’01’ or
x’02’ for IKESEED

1 1 Input PRF function code x'01' = HMAC_MD5, x’02’ = HMAC_SHA1, x’04’ =
HMAC_SHA256, x’05’ = SHA384, and x’06’ = SHA512

2 2 Input Length of concatenated initiator/responder nonce string (n), where 16 <= n <=
512

4 44 Input Key handle of additional key - required for IKEREKEY. Ignored for the other
mechanisms.

48 n Input Concatenated initiator/responder nonce string

target_key_handle

Direction Type

Output String

Upon successful completion, the 44-byte handle of the secret key object that
was derived.

Authorization
There are multiple keys involved in this service — one or two base keys and the
target key (the new key created from the base key).
v To use a base key that is a public object, the caller must have SO (READ)

authority or USER (READ) authority (any access).

PKCS #11 Derive key

Chapter 14. Using PKCS #11 Tokens and Objects 689

v To use a base key that is a private object, the caller must have USER (READ)
authority (user access).

v To derive a target key that is a public object, the caller must have SO (READ)
authority or USER (UPDATE) authority.

v To derive a target key that is a private object, the caller must have SO
(CONTROL) authority or USER (UPDATE) authority.

Usage Notes
The service does not support the derivation of secure keys. For rules EC-DH and
PKCS-DH only, the input base key may be a secure key.

Derivation of the EC-DH shared secret "Z" may be performed in hardware or
software. All other key derivation operations are performed in software.

Key derivation functions are performed in software.

For the IKESEED, IKESHARE, and IKEREKEY mechanisms, the following attribute
rules apply to the derived key:
v The key will have the following attributes which may not be overridden by

other values in the attribute list:
– CKA_CLASS=CKO_SECRET_KEY
– CKA_KEY_TYPE=CKK_GENERIC_SECRET
– CKA_DERIVE=TRUE
– CKA_VALUE_LEN=length of the output of the PRF function

v Other applicable secret key attributes may be specified in the attribute list.
However, an attribute list is not required. Any attribute not specified will be
assigned the default value normally assigned to a newly created secret key. In
particular, CKA_SENSITIVE defaults to FALSE and CKA_EXTRACTABLE
defaults to TRUE.

v CKA_ALWAYS_SENSITIVE is set to FALSE if the CKA_ALWAYS_SENSITIVE
attribute from the base key is FALSE. Otherwise it is set equal to the value of the
CKA_SENSITIVE attribute assigned to the derived key.

v CKA_NEVER_EXTRACTABLE is set to FALSE if the
CKA_NEVER_EXTRACTABLE attribute from the base key is FALSE. Otherwise
it is set opposite to the value of the CKA_EXTRACTABLE attribute assigned to
the derived key.

For the IKEREKEY mechanism, the additional key must be a secret key
(CKA_CLASS=CKO_SECRET_KEY) capable of performing key derivation
(CKA_DERIVE=TRUE). It must also be contained in the same PKCS #11 token as
the base key.

For the IKESEED, IKESHARE, and IKEREKEY mechanisms, the MD5 PRF may not
be specified if the operation is FIPS 140 restricted.

For the IKESHARE and IKEREKEY mechanisms, the length of the base key must
be at least half the length of the output of the PRF function if the operation is FIPS
140 restricted.

For the IKESEED mechanism, the length of the concatenated initiator/responder
nonce value must be at least half the length of the output of the PRF function if
the operation is FIPS 140 restricted.

PKCS #11 Derive key

690 z/OS ICSF Application Programmer's Guide

|
|

The OMNITOKN rule can not be specified in combination with
CKA_TOKEN=TRUE in the attribute_list.

PKCS #11 Get attribute value (CSFPGAV and CSFPGAV6)
Use the get attribute value callable service (CSFPGAV) to retrieve the attributes of
an object.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPGAV6.

Format
CALL CSFPGAV(

return_code,
reason_code,
exit_data_length,
exit_data,
handle,
rule_array_count,
rule_array,
attribute_list_length,
attribute_list)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

PKCS #11 Derive key

Chapter 14. Using PKCS #11 Tokens and Objects 691

|
|

handle

Direction Type

Input String

The 44-byte handle of the object. See “Handles” on page 89 for the format of a
handle.

rule_array_count

Direction Type

Input Integer

The number of keywords supplied in the rule_array parameter. This value must
be 0.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. Each
keyword is left-justified in 8-byte fields and padded on the right with blanks.
All keywords must be in contiguous storage.

attribute_list_length

Direction Type

Input/Output Integer

On input, the length of the attribute_list parameter in bytes.

On output, the length of the attribute_list parameter in bytes. If the length
supplied on input is insufficient to hold all attributes, the length on output is
set to the minimum length required.

The minimum value for this field is 2 and the maximum value for this field is
32752.

attribute_list

Direction Type

Output String

A list of object attributes.

See “Attribute List” on page 88 for the format of an attribute_list.

Authorization
The token authorization required and the amount of attribute information returned
is dependent on the values of the attributes the object possesses.

The authority to retrieve the non-sensitive attributes is as follows:
v For a public object - any authority to the token (USER (READ) or SO (READ))
v For a private object - USER (READ) or SO (CONTROL)

If the caller is not authorized to retrieve the non-sensitive attributes, the service
fails.

PKCS #11 Get attribute value

692 z/OS ICSF Application Programmer's Guide

|
|

If the caller is authorized to retrieve the non-sensitive attributes and the object
does not possess any sensitive attributes, the service returns all the object's
attributes.

If the caller is authorized to retrieve the non-sensitive attributes and the object
does possess sensitive attributes, processing is as defined in this table:

Table 308. Get attribute value processing for objects possessing sensitive attributes

Object PKCS #11 role
authority

CKA_SENSITIVE CKA_EXTRACTABLE Attributes
returned

Public USER (READ)
or SO (READ)

True True or False Non-sensitive only

Private USER (READ)
or SO
(CONTROL)

True True or False Non-sensitive only

Public USER (READ)
or SO (READ)

False False Non-sensitive only

Private USER (READ)
or SO
(CONTROL)

False False Non-sensitive only

Public USER (READ)
or SO (READ)

False True Sensitive and
non-sensitive

Private SO (CONTROL) False True Non-sensitive only

Private USER (READ) False True Sensitive and
non-sensitive

Note:

v Session and token objects require the same authority.
v The sensitive attributes are as follows:

– CKA_VALUE for a secret key, Elliptic Curve private key, DSA private key, or
Diffie-Hellman private key object.

– CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2,
CKA_EXPONENT_1, CKA_EXPONENT_2, and CKA_COEFFICIENT for a
private key object.

v See z/OS Cryptographic Services ICSF Writing PKCS #11 Applications for more
information on the SO and User PKCS #11 roles.

Usage Notes
If the object is marked sensitive or not extractable, the sensitive attributes are not
returned.

If the caller is authorized to list the non-sensitive attributes of an object, but not
the sensitive ones, the sensitive attributes are not returned.

If the caller is not authorized to list the non-sensitive attributes of the object, the
service fails.

PKCS #11 Generate key pair (CSFPGKP and CSFPGKP6)
Use the generate key pair callable service to generate an RSA, DSA, Elliptic Curve,
or Diffie-Hellman key pair. New token or session objects are created to hold the
key pair.

PKCS #11 Get attribute value

Chapter 14. Using PKCS #11 Tokens and Objects 693

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPGKP6.

Format
CALL CSFPGKP(

return_code,
reason_code,
exit_data_length,
exit_data,
token_handle,
rule_array_count,
rule_array,
public_key_attribute_list_length,
public_key_attribute_list,
public_key_object_handle,
private_key_attribute_list_length,
private_key_attribute_list,
private_key_object_handle)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

token_handle

Direction Type

Input String

PKCS #11 Generate key pair

694 z/OS ICSF Application Programmer's Guide

The 44-byte handle of the token of the key objects. See “Handles” on page 89
for the format of a token_handle.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array_parameter. This value
must be 0.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. Each
keyword is left-justified in 8-byte fields and padded on the right with blanks.
All keywords must be in contiguous storage

public_key_attribute_list_length

Direction Type

Input Integer

The length of the attributes supplied in the public_key_attribute list parameter in
bytes.

public_key_attribute_list

Direction Type

Input String

List of attributes for the public key object. The minimum value for this field is
2 and the maximum value for this field is 32752. See “Attribute List” on page
88 for the format of a public_key_attribute_list.

public_key_object_handle

Direction Type

Output String

The 44-byte handle of the new public key object.

private_key_attribute_list_length

Direction Type

Input Integer

The length of the attributes supplied in the private_key_attribute_list parameter
in bytes.

private_key_attribute_list

Direction Type

Input Integer

List of attributes for the private key object. The minimum value for this field is
2 and the maximum value for this field is 32752. See “Attribute List” on page
88 for the format of a private_key_attribute_list.

PKCS #11 Generate key pair

Chapter 14. Using PKCS #11 Tokens and Objects 695

|
|

|
|

private_key_object_handle

Direction Type

Output String

The 44-byte handle of the new private key object.

Authorization
To generate a public object, the caller must have SO (READ) authority or USER
(UPDATE) authority.

To generate a private object, the caller must have SO (CONTROL) authority or
USER (UPDATE) authority.

Usage Notes
The type of key pair generated is determined by the key type attributes in the
public_key_attributes_list and private_key_attributes_list parameters.

Key pair generation may be done in hardware or software.

PKCS #11 Generate secret key (CSFPGSK and CSFPGSK6)
Use the generate secret key callable service to generate a secret key or set of
domain parameters. A new token or session object is created to hold the
information.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPGSK6.

Format
CALL CSFPGSK(

return_code,
reason_code,
exit_data_length,
exit_data,
handle,
rule_array_count,
rule_array,
attribute_list_length,
attribute_list,
parms_list_length,
parms_list)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

PKCS #11 Generate key pair

696 z/OS ICSF Application Programmer's Guide

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

handle

Direction Type

Input/Output String

On input, the 44-byte handle of the token. On output, the 44-byte handle of the
new secret key or domain parameters object. See “Handles” on page 89 for the
format of a handle.

rule_array_count
The number of keywords you supplied in the rule_array parameter. This value
must be 1.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service.

Table 309. Keywords for generate secret key

Keyword Meaning

Mechanism (One of the following must be specified)

SSL Generate a generic secret key object where the client is using SSL (for
CKM_SSL3_PRE_MASTER_KEY_GEN)

TLS Generate a generic secret key object where the client is using TLS (for
CKM_TLS_PRE_MASTER_KEY_GEN)

KEY Generate a secret key object according to the key type attribute in the
attribute_list parameter (for CKM_GENERIC_SECRET_KEY_GEN,
CKM_DES_KEY_GEN, CKM_DES2_KEY_GEN,
CKM_DES3_KEY_GEN, CKM_AES_KEY_GEN, CKM_RC4_KEY_GEN,
and CKM_BLOWFISH_KEY_GEN)

PKCS #11 Generate secret key

Chapter 14. Using PKCS #11 Tokens and Objects 697

Table 309. Keywords for generate secret key (continued)

Keyword Meaning

PBEKEY Generate password-based encryption key material and a secret key
object according to the key type attribute in the attribute_list parameter
(for CKM_PBE_SHA1_DES3_EDE_CBC only)

PARMS Generate a domain parameters object according to the key type
attribute in the attribute_list parameter (for
CKM_DSA_PARAMETER_GEN and
CKM_DH_PKCS_PARAMETER_GEN)

attribute_list_length

Direction Type

Input Integer

The length of the attributes supplied in the attribute_list parameter in bytes.
The minimum value for this field is 2 and the maximum value for this field is
32752.

attribute_list

Direction Type

Input String

List of attributes for the secret key object. See “Attribute List” on page 88 for
the format of an attribute_list.

parms_list_length

Direction Type

Input Integer

The length of the parameters supplied in the parms_list parameter in bytes.

parms_list

Direction Type

Input/Output String

The protocol specific parameters. This field has a varying format depending on
the mechanism specified:

Table 310. parms_list parameter format for SSL and TLS mechanism

Offset Length in
bytes

Direction Description

0 2 input SSL or TLS version number in binary, e.g., for version 3.01 this would be x’0301’

Table 311. parms_list parameter format for PBEKEY mechanism

Offset Length in
bytes

Direction Description

0 2 input length in bytes of the password (p), where 1 <= p <= 128

2 2 input length in bytes of the salt (s), where 1 <= s <= 128

4 4 input number of iterations required (n), where 1 <= n <= 65,536

8 8 output 8-byte IV returned

PKCS #11 Generate secret key

698 z/OS ICSF Application Programmer's Guide

|
|

Table 311. parms_list parameter format for PBEKEY mechanism (continued)

Offset Length in
bytes

Direction Description

16 p input password

16+p s input salt

For the KEY and PARMS mechanisms, there are no paramerters. The
parms_list_length parameter must be set to zero for these mechanisms.

Authorization
To generate a public object, the caller must have SO (READ) authority or USER
(UPDATE) authority.

To generate a private object, the caller must have SO (CONTROL) authority or
USER (UPDATE) authority.

Usage Notes
Domain parameters are generated in hardware when a Enterprise PKCS #11
coprocessor (CEX4P) is present, otherwise they are generated in software.

BLOWFISH, RC4, TLS and SSL key generation is performed in software. All other
key generation may be performed in hardware or software.

Rule PBEKEY requires a z890/990 or later machine type.

PKCS #11 Generate HMAC (CSFPHMG and CSFPHMG6)
Use the PKCS #11 Generate HMAC callable service to generate a hashed message
authentication code (MAC). This service does not support any recovery methods.

The key handle must be a handle of a PKCS #11 generic secret key object. The
mechanism keyword specified in the rule array indicates the hash algorithm to use.
The CKA_SIGN attribute for the secret key object must be true.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPHMG6.

Format
CALL CSFPHMG(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
text_length,
text,
text_id,
chain_data_length,
chain_data,
key_handle,
hmac_length,
hmac)

PKCS #11 Generate secret key

Chapter 14. Using PKCS #11 Tokens and Objects 699

|
|

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1 or 2.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. Each
keyword is left-justisfied in 8-byte fields and padded on the right with blanks.
All keywords must be in contiguous storage.

Table 312. Keywords for generate HMAC

Keyword Meaning

Mechanism (required)

PKCS #11 Generate HMAC

700 z/OS ICSF Application Programmer's Guide

Table 312. Keywords for generate HMAC (continued)

Keyword Meaning

MD5 Generate an HMAC. Use MD5 hashing. Output returned in the hmac
parameter is 16 bytes in length.

SHA-1 Generate an HMAC. Use SHA-1 hashing. Output returned in the hmac
parameter is 20 bytes in length.

SHA-224 Generate an HMAC. Use SHA-224 hashing. Output returned in the
hmac parameter is 28 bytes in length.

SHA-256 Generate an HMAC. Use SHA-256 hashing. Output returned in the
hmac parameter is 32 bytes in length.

SHA-384 Generate an HMAC. Use SHA-384 hashing. Output returned in the
hmac parameter is 48 bytes in length.

SHA-512 Generate an HMAC. Use SHA-512 hashing. Output returned in the
hmac parameter is 64 bytes in length.

SSL3-MD5 Generate a MAC according to the SSL v3 protocol. Use MD5 hashing.
Output returned in the hmac parameter is 16 bytes in length.

SSL3-SHA Generate a MAC according to the SSL v3 protocol. Use SHA1 hashing.
Output returned in the hmac parameter is 20 bytes in length.

Chaining Selection (Optional)

FIRST Specifies this is the first call in a series of chained calls. Intermediate
results are stored in the hash field.

MIDDLE Specifies this is a middle call in a series of chained calls. Intermediate
results are stored in the hash field.

LAST Specifies this is the last call in a series of chained calls.

ONLY Specifies this is the only call and the call is not chained. This is the
default.

text_length

Direction Type

Input Integer

Length of the text parameter in bytes. The length can be from 0 to 2147483647.

text

Direction Type

Input String

Value for which an HMAC will be generated.

text_id

Direction Type

Input Integer

The ALET identifying the space where the text resides.

chain_data_length

Direction Type

Input/Output Integer

The byte length of the chain_data parameter. This must be 128 bytes.

PKCS #11 Generate HMAC

Chapter 14. Using PKCS #11 Tokens and Objects 701

chain_data

Direction Type

Input/Output String

This field is a 128-byte work area. The chain data permits chaining data from
one call to another. ICSF initializes the chain data on a FIRST call and may
change it on subsequent MIDDLE and LAST calls. Your application must not
change the data in this field between the sequence of FIRST, MIDDLE, and
LAST calls for a specific message. The chain data has the following format:

Table 313. chain_data parameter format

Offset Length Description

0 4 Flag word

Bit Meaning when set on

0 Cryptographic state object has been allocated

1-31 Reserved for IBM’s use

4 44 Cryptographic state object handle

48 80 Reserved for IBM’s use

key_handle

Direction Type

Input String

The 44-byte handle of a generic secret key object. This parameter is ignored for
MIDDLE and LAST chaining requests. See “Handles” on page 89 for the
format of a key_handle.

hmac_length

Direction Type

Ignored Integer

Reserved field

hmac

Direction Type

Output String

Upon successful completion of an ONLY or LAST request, this field contains
the generated HMAC value, left justified. The caller must provide an area large
enough to hold the generated HMAC as defined by the mechanism specified.
This field is ignored for FIRST and MIDDLE requests.

Authorization
To use this service with a public object, the caller must have at least SO (READ)
authority or USER (READ) authority (any access).

To use this service with a private object, the caller must have at least USER
(READ) authority (user access).

PKCS #11 Generate HMAC

702 z/OS ICSF Application Programmer's Guide

Usage Notes
HMAC operations are performed in hardware or software.

If the FIRST rule is used to start a series of chained calls:
v The key used to initiate the chained calls must not be deleted until the chained

calls are complete.
v The application should make a LAST call to free ICSF resources allocated. If

processing is to be aborted without making a LAST call and the chain_data
parameter indicates that a cryptographic state object has been allocated, the
caller must free the object by calling CSFPTRD (or CSFPTRD6 for 64-bit callers)
passing the state object's handle.

PKCS #11 Verify HMAC (CSFPHMV and CSFPHMV6)
Use the PKCS #11 Verify HMAC callable service to verify a hash message
authentication code (MAC). This service does not support any recovery methods.

The key handle must be a handle of a PKCS #11 generic secret key object. The
mechanism keyword specified in the rule array indicates the hash algorithm to use.
The CKA_VERIFY attribute for the secret key object must be true.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPHMV6.

Format
CALL CSFPHMV(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
text_length,
text,
text_id,
chain_data_length,
chain_data,
key_handle,
hmac_length,
hmac)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

PKCS #11 Generate HMAC

Chapter 14. Using PKCS #11 Tokens and Objects 703

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1 or 2.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. Each
keyword is left-justified in 8-byte fields and padded on the right with blanks.
All keywords must be in contiguous storage.

Table 314. Keywords for verify HMAC

Keyword Meaning

Mechanism (required)

MD5 Verify an HMAC. Use MD5 hashing. Data supplied in the hmac
parameter must be 16 bytes in length.

SHA-1 Verify an HMAC. Use SHA-1 hashing. Data supplied in the hmac
parameter must be 20 bytes in length.

SHA-224 Verify an HMAC. Use SHA-224 hashing. Data supplied in the hmac
parameter must be 28 bytes in length.

SHA-256 Verify an HMAC. Use SHA-256 hashing. Data supplied in the hmac
parameter must be 32 bytes in length.

SHA-384 Verify an HMAC. Use SHA-384 hashing. Data supplied in the hmac
parameter must be 48 bytes in length.

SHA-512 Verify an HMAC. Use SHA-512 hashing. Data supplied in the hmac
parameter must be 64 bytes in length.

SSL3-MD5 Verify a MAC according to the SSL v3 protocol. Use MD5 hashing.
Data supplied in the hmac parameter must be 16 bytes in length.

PKCS #11 Verify HMAC

704 z/OS ICSF Application Programmer's Guide

Table 314. Keywords for verify HMAC (continued)

Keyword Meaning

SSL3-SHA Verify a MAC according to the SSL v3 protocol. Use SHA1 hashing.
Data supplied in the hmac parameter must be 20 bytes in length.

Chaining Selection (Optional)

FIRST Specifies this is the first call in a series of chained calls. Intermediate
results are stored in the hash field.

MIDDLE Specifies this is a middle call in a series of chained calls. Intermediate
results are stored in the hash field.

LAST Specifies this is the last call in a series of chained calls.

ONLY Specifies this is the only call and the call is not chained. This is the
default.

text_length

Direction Type

Input Integer

Length of the text parameter in bytes. The length can be from 0 to 2147483647.

text

Direction Type

Input String

Value for which an HMAC will be generated.

text_id

Direction Type

Input Integer

The ALET identifying the space where the text resides.

chain_data_length

Direction Type

Input/Output Integer

The byte length of the chain_data parameter. This must be 128 bytes.

chain_data

Direction Type

Input/Output String

This field is a 128-byte work area. The chain data permits chaining data from
one call to another. ICSF initializes the chain data on a FIRST call and may
change it on subsequent MIDDLE and LAST calls. Your application must not
change the data in this field between the sequence of FIRST, MIDDLE, and
LAST calls for a specific message. The chain data has the following format:

PKCS #11 Verify HMAC

Chapter 14. Using PKCS #11 Tokens and Objects 705

Table 315. chain_data parameter format

Offset Length Description

0 4 Flag word

Bit Meaning when set on

0 Cryptographic state object has been allocated

1-31 Reserved for IBM’s use

4 44 Cryptographic state object handle

48 80 Reserved for IBM’s use

key_handle

Direction Type

Input String

The 44-byte handle of a generic secret key object. This parameter is ignored for
MIDDLE and LAST chaining requests. See “Handles” on page 89 for the
format of a key_handle.

hmac_length

Direction Type

Ignored Integer

Reserved field

hmac

Direction Type

Input String

This field contains the HMAC value to be verified on ONLY and LAST
requests, left justified. The caller must provide an HMAC value of the required
length as determined by the mechanism specified. This field is ignored for
FIRST and MIDDLE requests.

Authorization
To use this service with a public object, the caller must have at least SO (READ)
authority or USER (READ) authority (any access).

To use this service with a private object, the caller must have at least USER
(READ) authority (user access).

Usage Notes
HMAC operations are performed in hardware or software.

Return code 4, reason code 8000 indicates the HMAC didn’t verify.

If the FIRST rule is used to start a series of chained calls:
v The key used to initiate the chained calls must not be deleted until the chained

calls are complete.
v The application should make a LAST call to free ICSF resources allocated. If

processing is to be aborted without making a LAST call and the chain_data

PKCS #11 Verify HMAC

706 z/OS ICSF Application Programmer's Guide

parameter indicates that a cryptographic state object has been allocated, the
caller must free the object by calling CSFPTRD (or CSFPTRD6 for 64-bit callers)
passing the state object's handle.

PKCS #11 One-way hash, sign, or verify (CSFPOWH and CSFPOWH6)
Use the one-way hash, sign, or verify callable service to generate a one-way hash
on specified text, sign specified text, or verify a signature on specified text. For
one-way hash, this service supports the following methods:
v MD2 - software only
v MD5 - software only
v SHA-1
v RIPEMD-160 - software only
v SHA-224
v SHA-256
v SHA-384
v SHA-512

For sign and verify, the following methods are supported:
v MD2 with RSA-PKCS 1.5
v MD5 with RSA-PKCS 1.5
v SHA1 with RSA-PKCS 1.5, RSA-PKCS PSS, DSA, or ECDSA
v SHA-224 with RSA-PKCS 1.5, RSA-PKCS PSS, DSA, or ECDSA
v SHA-256 with RSA-PKCS 1.5, RSA-PKCS PSS, DSA, or ECDSA
v SHA-384 with RSA-PKCS 1.5, RSA-PKCS PSS, DSA, or ECDSA
v SHA-512 with RSA-PKCS 1.5, RSA-PKCS PSS, DSA, or ECDSA
v RSA-PKCS PSS without hashing

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPOWH6.

Format
CALL CSFPOWH(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
text_length,
text,
text_id,
chain_data_length,
chain_data,
handle,
hash_length,
hash)

PKCS #11 Verify HMAC

Chapter 14. Using PKCS #11 Tokens and Objects 707

|

|

|

|

|

|

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1 or 2.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. Each
keyword is left-justified in 8-byte fields and padded on the right with blanks.
All keywords must be in contiguous storage.

Table 316. Keywords for one-way hash generate

Keyword Meaning

Hash Method (required)

PKCS #11 One-way hash, sign, or verify (CSFPOWH)

708 z/OS ICSF Application Programmer's Guide

Table 316. Keywords for one-way hash generate (continued)

Keyword Meaning

MD2 Hash algorithm is MD2 algorithm. Length of hash generated is 16
bytes.

MD5 Hash algorithm is MD5 algorithm. Length of hash generated is 16
bytes.

RPMD-160 Hash algorithm is RIPEMD-160. Length of hash generated is 20 bytes.

SHA-1 Hash algorithm is SHA-1. Length of hash generated is 20 bytes.

SHA-224 Hash algorithm is SHA-224. Length of hash generated is 28 bytes.

SHA-256 Hash algorithm is SHA-256. Length of hash generated is 32 bytes.

SHA-384 Hash algorithm is SHA-384. Length of hash generated is 48 bytes.

SHA-512 Hash algorithm is SHA-512. Length of hash generated is 64 bytes.

DETERMIN For use with non-chained RSA signature verifies only. Hash algorithm
is to be determined from the input signature.

NULL For use with non-chained signature generate and verifies only.
Hashing is not to be performed. Data in text parameter must be the
output of the same hashing algorithm specified in the chain_data PSS
mask. Can only be specified in combination with SIGN-PSS or
VER-PSS.

Chaining Flag (optional)

FIRST Specifies this is the first call in a series of chained calls. Intermediate
results are stored in the hash and chain_data fields. Cannot be specified
with hash method DETERMIN.

MIDDLE Specifies this is a middle call in a series of chained calls. Intermediate
results are stored in the hash and chain_data fields. Cannot be specified
with hash method DETERMIN.

LAST Specifies this is the last call in a series of chained calls. Cannot be
specified with hash method DETERMIN.

ONLY Specifies this is the only call and the call is not chained. This is the
default.

Requested Operation (optional)

HASH The specified text is to be hashed only. This is the default. Cannot be
specified (either explicitly or by default) with hash method
DETERMIN.

SIGN-RSA The data is to be hashed then signed using RSA-PKCS 1.5 formatting.
Any hash method is acceptable except RPMD-160 and DETERMIN.

SIGN-PSS The data is to be optionally hashed then signed using RSA-PKCS PSS
formatting. The hash method must be SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512, or NULL. If not NULL, the hash method must
match the chain_data Hash method.

SIGN-DSA The data is to be hashed then signed using DSA. The hash method
must be SHA-1, SHA-224, SHA-256, SHA-384, or SHA-512.

SIGN-EC The data is to be hashed then signed using ECDSA. The hash method
must be SHA-1, SHA-224, SHA-256, SHA-384, or SHA-512.

VER-RSA The data is to be hashed then signature verified using RSA-PKCS 1.5
formatting. Any hash method is acceptable except RPMD-160. This
operation is required for hash method DETERMIN.

PKCS #11 One-way hash, sign, or verify (CSFPOWH)

Chapter 14. Using PKCS #11 Tokens and Objects 709

||
|
|
|
|

||
|
|
|

Table 316. Keywords for one-way hash generate (continued)

Keyword Meaning

VER-PSS The data is to be optionally hashed then signature verified using
RSA-PKCS PSS formatting. The hash method must be SHA-1,
SHA-224, SHA-256, SHA-384, SHA-512, or NULL. If not NULL, the
Hash method must match the chain_data Hash method.

VER-DSA The data is to be hashed then signature verified using DSA. The hash
method must be SHA-1, SHA-224, SHA-256, SHA-384, or SHA-512.

VER-EC The data is to be hashed then signature verified using ECDSA. The
hash method must be SHA-1, SHA-224, SHA-256, SHA-384, or
SHA-512.

text_length

Direction Type

Input Integer

The length of the text parameter in bytes.

If you specify the FIRST or MIDDLE keyword, then the text length must be a
multiple of the block size of the hash method. For MD2, this is a multiple of 16
bytes. For MD5, RPMD-160, SHA-1, SHA-224, and SHA-256, this is a multiple
of 64 bytes. For SHA-384 and SHA-512, this is a multiple of 128 bytes. For
ONLY and LAST, this service performs the required padding according to the
algorithm specified. The length can be from 0 to 2147483647.

If NULL was specified then text_length must match the output length of the
SHA hash method specified on the chain_data PSS mask.

text

Direction Type

Input String

Value to be hashed

text_id

Direction Type

Input Integer

The ALET identifying the space where the text resides.

chain_data_length

Direction Type

Input/Output Integer

The byte length of the chain_data parameter. This must be 128 bytes.

chain_data

Direction Type

Input/Output String

This field is a 128-byte work area. The chain data permits chaining data from
one call to another and allows for the passing of initialization values for
specific operations. ICSF initializes the chain data on a FIRST call and may

PKCS #11 One-way hash, sign, or verify (CSFPOWH)

710 z/OS ICSF Application Programmer's Guide

||
|
|
|

|
|

|
|
|

change it on subsequent MIDDLE calls. Your application must not change the
data in this field between the sequence of FIRST, MIDDLE, and LAST calls for
a specific message. The chain data has the following format:

Table 317. chain_data parameter format on input (FIRST and ONLY for SIGN-PSS and
VER-PSS)

Offset Length Initialization values provided by the caller

0 4 Hash method.

Must match the method specified in rule_array if NULL was not
specified.

0x00000220 (CKM_SHA_1)
0x00000255 (CKM_SHA224)
0x00000250 (CKM_SHA256)
0x00000260 (CKM_SHA384)
0x00000270 (CKM_SHA512)

4 4 PSS mask generation function.

Must be the same digest method as the Hash method.

0x00000001 (CKG_MGF1_SHA1),
0x00000005 (CKG_MGF1_SHA224),
0x00000002 (CKG_MGF1_SHA256),
0x00000003 (CKG_MGF1_SHA384),
0x00000004 (CKG_MGF1_SHA512) only.

8 4 PSS salt length in bytes. For SIGN-PSS must be 0 or the size of the hash
generated by the Hash Method and must be less than or equal to the
maximum salt length specified by the PKCS #1 standard for the RSA PSS
mechanism. For SIGN-VER, the value must be less than or equal to the
maximum salt length specified by the PKCS #1 standard for the RSA PSS
mechanism.

12 116 Reserved – to be initialized by ICSF

Table 318. chain_data parameter format on input (FIRST and ONLY for non-PSS
operations)

Offset Length Description

0 128 Reserved – to be initialized by ICSF

Table 319. chain_data parameter format on output (all calls) and input (MIDDLE and LAST)

Offset Length Description

0 4 Flag word

Bit Meaning when set on

0 Cryptographic state object has been allocated

1-31 Reserved for IBM’s use

4 44 Cryptographic state object handle

48 80 Reserved for IBM’s use

handle

Direction Type

Input String

PKCS #11 One-way hash, sign, or verify (CSFPOWH)

Chapter 14. Using PKCS #11 Tokens and Objects 711

|
|
|

||
|

|||

|||

|
|

|
|
|
|
|

|||

|

|
|
|
|
|

|||
|
|
|
|
|

|||
|

||
|

|||

|||
|

||

|||

|||

||

||

||

|||

|||
|

For hash requests, this is the 44-byte name of the token to which this hash
operation is related. The first 32 bytes of the handle are meaningful. The
remaining 12 bytes are reserved. See “Handles” on page 89 for the format of a
handle.

For sign and verify requests, this is the 44-byte handle to the key object that is
to be used. For FIRST and MIDDLE chaining requests, only the first 32 bytes of
the handle are meaningful, to identify the token.

hash_length

Direction Type

Input/Output Integer

The length of the supplied hash field in bytes.

For hash requests, this field is input only. For SHA-1 and RPMD-160 this must
be at least 20 bytes; for MD2 and MD5 this must be at least 16 bytes. For
SHA-224 and SHA-256, this must be at least 32 bytes. Even though the length
of the SHA-224 hash is less than SHA-256, the extra bytes are used as a work
area during the generation of the hash value. The SHA-224 value is
left-justified and padded with 4 bytes of binary zeroes. For SHA-384 and
SHA-512, thus must be at least 64 bytes. Even though the length of the
SHA-384 hash is less than SHA-512, the extra bytes are used as a work area
during the generation of the hash value. The SHA-384 value is left-justified
and padded with 16 bytes of binary zeroes.

For FIRST and MIDDLE sign and verify requests, this field is ignored.

For LAST and ONLY sign requests, this field is input/output. If the signature
generation is successful, ICSF will update this field with the length of the
generated signature. If the signature generation is unsuccessful because the
supplied hash field is too small, ICSF will update this field with the required
length.

For LAST and ONLY verify requests, this field is input only.

hash

Direction Type

Input/Output String

This field contains the hash or signature, left-justified. The processing of the
rest of the field depends on the implementation.

For hash requests, this field is the generated hash. If you specify the FIRST or
MIDDLE keyword, this field contains the intermediate hash value. Your
application must not change the data in this field between the sequence of
FIRST, MIDDLE, and LAST calls for a specific message.

For FIRST and MIDDLE sign and verify requests, this field is ignored.

For LAST and ONLY sign requests, this field is the generated signature.

For LAST and ONLY verify requests, this field is input signature to be verified.

Authorization
To use this service to sign or verify with a public object, the caller must have at
least SO (READ) authority or USER (READ) authority (any access).

PKCS #11 One-way hash, sign, or verify (CSFPOWH)

712 z/OS ICSF Application Programmer's Guide

To use this service to sign or verify with a private object, the caller must have at
least USER (READ) authority (user access).

Usage Notes
If the FIRST rule is used to start a series of chained calls, the application must not
change the Hash Method or Requested Operation rules between the calls. The
behavior of the service is undefined if the rules are changed.

If the FIRST rule is used to start a series of chained calls, the application should
make a LAST call to free ICSF resources allocated. If processing is to be aborted
without making a LAST call and the chain_data parameter indicates that a
cryptographic state object has been allocated, the caller must free the object by
calling CSFPTRD (or CSFPTRD6 for 64-bit callers) passing the state object’s handle.

The CSFSERV resource name that protects this service is CSFOWH, the same
resource name used to protect the non-PKCS #11 One Way Hash service.

If the CSF.CSFSERV.AUTH.CSFOWH.DISABLE resource profile is defined in the
XFACILIT SAF resource class, no SAF authorization checks will be performed
against the CSFSERV class when using this service. If
CSF.CSFSERV.AUTH.CSFOWH.DISABLE is not defined, the SAF authorization
check will be performed. Disabling the SAF check may improve the performance
of your application.

For hash method DETERMIN, ICSF determines the hashing method by RSA
decrypting the input signature using the specified public key and examining the
result. ICSF will return the “signature did not verify” error (return code 4, reason
code X'2AF8') if this process is unsuccessful for any of the following reasons:
1. ICSF cannot successfully perform the decryption because the public key is the

wrong size.
2. The resulting clear text block is not properly RSA-PKCS 1.5 formatted.
3. The resulting clear text block indicates a hashing algorithm not supported by

this service was used.

PKCS #11 Private key sign (CSFPPKS and CSFPPKS6)
Use the PKCS #11 private key sign callable service to:
v Decrypt or sign data using an RSA private key using zero-pad or PKCS #1 v1.5

formatting
v Sign data using a DSA private key
v Sign data using an Elliptic Curve private key in combination with DSA

The key handle must be a handle of a PKCS #11 private key object. When the
request type keyword DECRYPT is specified in the rule array, CKA_DECRYPT
attribute must be true. When no request type is specified, the CKA_SIGN attribute
must be true.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPPKS6.

Format
CALL CSFPPKS(

return_code,
reason_code,

PKCS #11 One-way hash, sign, or verify (CSFPOWH)

Chapter 14. Using PKCS #11 Tokens and Objects 713

|
|
|
|
|
|

exit_data_length,
exit_data,
rule_array_count,
rule_array,
cipher_value_length,
cipher_value,
key_handle,
clear_value_length,
clear_value)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array_parameter. This value
may be 1 or 2.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service.

PKCS #11 Private key sign

714 z/OS ICSF Application Programmer's Guide

Table 320. Keywords for private key sign

Keyword Meaning

Mechanism (One of the following must be specified)

RSA-ZERO Mechanism is RSA decryption or signature generation using zero-pad
formatting

RSA-PKCS Mechanism is RSA decryption or signature generation using PKCS #1
v1.5 formatting

DSA Mechanism is DSA signature generation

ECDSA Mechanism is Elliptic Curve with DSA signature generation

Request type (optional)

DECRYPT The request is to decrypt data. This type of request requires the
CKA_DECRYPT attribute to be true. If DECRYPT is not specified, the
CKA_SIGN attribute must be true. Valid with RSA only.

cipher_value_length

Direction Type

Input Integer

Length of the cipher_value parameter in bytes.

cipher_value

Direction Type

Input String

For decrypt, this is the value to be decrypted. Otherwise this is the value to be
signed. For RSA-PKCS signature requests, the data to be signed is expected to
be a DER encoded DigestInfo structure. For DSA and ECDSA signature
requests, the data to be signed is expected to be a SHA1, SHA224, SHA256,
SHA384 or SHA512 digest.

key_handle

Direction Type

Input String

The 44-byte handle of a private key object. See “Handles” on page 89 for the
format of a key_handle.

clear_value_length

Direction Type

Input/Output Integer

Length of the clear_value parameter in bytes. On output, this is updated to be
the actual length of the decrypted value or the generated signature.

clear_value

Direction Type

Output String

For decrypt, this field will contain the decrypted value. Otherwise this field
will contain the generated signature.

PKCS #11 Private key sign

Chapter 14. Using PKCS #11 Tokens and Objects 715

Authorization
To use this service with a public object, the caller must have SO (READ) authority
or USER (READ) authority (any access).

To use this service with a private object, the caller must have USER (READ)
authority (user access).

Usage Notes
DSA, ECDSA and RSA operations may be done in hardware or software.

Request type DECRYPT is not supported for an Elliptic Curve or DSA private key.

PKCS #11 Public key verify (CSFPPKV and CSFPPKV6)
Use the PKCS #11 public key verify callable service to:
v Encrypt or verify data using an RSA public key using zero-pad or PKCS #1 v1.5

formatting. For encryption, the encrypted data is returned
v Verify a signature using a DSA public key. No data is returned
v Verify a signature using an Elliptic Curve public key in combination with DSA.

No data is returned

The key handle must be a handle of a PKCS #11 public key object. When the
request type keyword ENCRYPT is specified in the rule array, CKA_ENCRYPT
attribute must be true. When no request type is specified, the CKA_VERIFY
attribute must be true.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPPKV6.

Format
CALL CSFPPKV(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
clear_value_length,
clear_value,
key_handle,
cipher_value_length,
cipher_value)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

PKCS #11 Private key sign

716 z/OS ICSF Application Programmer's Guide

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1 or 2.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service.

Table 321. Keywords for public key verify

Keyword Meaning

Mechanism (One of the following must be specified)

RSA-ZERO Mechanism is RSA encryption or signature verification using zero-pad
formatting

RSA-PKCS Mechanism is RSA encryption or signature verification using PKCS #1
v1.5 formatting

DSA Mechanism is DSA signature verification

ECDSA Mechanism is Elliptic Curve with DSA signature verification

Request type (optional)

ENCRYPT The request is to encrypt data. This type of request requires the
CKA_ENCRYPT attribute to be true. If ENCRYPT is not specified, the
CKA_VERIFY attribute must be true. Valid with RSA only.

clear_value_length

PKCS #11 Public key verify

Chapter 14. Using PKCS #11 Tokens and Objects 717

Direction Type

Input Integer

The length of the clear_value parameter

clear_value

Direction Type

Input String

For encrypt, this is the value to be encrypted. Otherwise this is the signature is
be verified.

key_handle

Direction Type

Input String

The 44-byte handle of public key object. See “Handles” on page 89 for the
format of a key_handle.

cipher_value_length

Direction Type

Input/Output Integer

For encrypt, on input, this is the length of the cipher_value parameter in bytes.
On output, this is updated to be the actual length of the text encrypted into the
cipher_value parameter. For signature verification, this is the length of the data
to be verified (input only).

cipher_value

Direction Type

Input/Output String

For encrypt, this is the encrypted value (output only). For signature
verification, this is the data to be verified (input only). For RSA-PKCS
signature verification requests, the data to be verified is expected to be a DER
encoded DigestInfo structure. For DSA and ECDSA signature verification
requests, the data to be verified is expected to be a SHA1, SHA224, SHA256,
SHA384 or SHA512 digest.

Authorization
To use this service with a public object, the caller must have SO (READ) authority
or USER (READ) authority (any access).

To use this service with a private object, the caller must have USER (READ)
authority (user access).

Usage Notes
DSA, ECDSA, and RSA operations may be done in hardware or software.

Request type ENCRYPT is not supported for an Elliptic Curve or DSA public key.

PKCS #11 Public key verify

718 z/OS ICSF Application Programmer's Guide

PKCS #11 Pseudo-random function (CSFPPRF and CSFPPRF6)
Use the PKCS #11 Pseudo-random callable service to generate pseudo-random
output of arbitrary length. This service does not support any recovery methods.

The mechanism keyword specified in the rule array indicates what derivation
protocol to use. The derive parms list provides additional input/output data. The
format of this list is dependent on the protocol being used.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPPRF6.

Format
CALL CSFPPRF(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
handle,
parms_list_length,
parms_list,
prf_output_length,
prf_output)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

PKCS #11 Pseudo-random function

Chapter 14. Using PKCS #11 Tokens and Objects 719

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. Each
keyword is left-justified in 8-byte fields and padded on the right with blanks.
All keywords must be in contiguous storage.

Table 322. Keywords for PKCS #11 Pseudo-random function

Keyword Meaning

Mechanism (required)

TLS-PRF Use the TLS Pseudo-Random Function derivation protocol as defined in the PKCS #11
standard as mechanism CKM_TLS_PRF. This mechanism derives deterministic random
bytes from a caller supplied secret key object and other parameters.

PRNG Generate pseudo-random bytes using the best source available. Possible sources are: CCA
coprocessors, Enterprise PKCS #11 coprocessors, or a pseudo (deterministic) random
algorithm. CCA coprocessors are only used for entropy seeding when ICSF is running in
FIPS standard mode or FIPS compatibility mode.

PRNGFIPS Generate pseudo-random bytes using the best source available. Possible sources are:
Enterprise PKCS #11 coprocessors or a pseudo (deterministic) random algorithm,
consistent with NIST SP 800-90. PRNGFIPS allows the caller to demand FIPS processing,
in which case CCA coprocessors are only used for entropy seeding.

handle

Direction Type

Input String

For mechanism TLS-PRF, this is the 44-byte handle of the source secret key
object. The CKA_DERIVE attribute for the secret key object must be true. If no
key is to be used, set the handle to all blanks.

For mechanisms PRNG and PRNGFIPS, this is the 44-byte name of the token
to which this operation is related. The first 32 bytes of the handle are
meaningful. The remaining 12 bytes are reserved and must be blanks.

See “Handles” on page 89 for the format of a handle.

parms_list_length

Direction Type

Input Integer

The length of the parameters supplied in the parms_list parameter in bytes.

parms_list

PKCS #11 Pseudo-random function

720 z/OS ICSF Application Programmer's Guide

Direction Type

Input/Output String

The protocol specific parameters. This field has a varying format depending on
the mechanism specified:

Table 323. parms_list parameter format for TLS-PRF mechanism

Offset Length in
bytes

Direction Description

0 1 input PRF function code – x’00’, use combined MD5/SHA1 digest algorithm as
defined in TLS 1.0/1.1, otherwise use the following single digest algorithm as
defined in TLS 1.2: x’01’ = SHA256, x’02’ = SHA384, and x’03’ = SHA512

1 3 not
applicable

reserved

4 4 input length in bytes of the label (x). where 1 <= length <= 256

8 4 input length in bytes of the seed (y), where 1 <= length <= 256

12 x input label

12+x y input seed

For the PRNG and PRNGFIPS mechanisms, there are no paramerters. The
parms_list_length parameter must be set to zero for this mechanism

prf_output_length

Direction Type

Input Integer

The length in bytes of pseudo-random data to be generated and returned in
the prf_output parameter. The maximum length is 2147483647 bytes.

prf_output

Direction Type

Output String

The pre-allocated area in which the pseudo-random data is returned.

Authorization
To use this service with a public object for mechanism TLS-PRF, the caller must
have at least SO (READ) authority or USER (READ) authority (any access).

To use this service with a private object for mechanism TLS-PRF, the caller must
have at least USER (READ) authority (user access).

Usage Notes
Pseudo-random functions operations are performed in hardware or software.

The CSFSERV resource name that protects this service is CSFRNG, the same
resource name used to protect the non-PKCS #11 Random Number Generation
service.

If the CSF.CSFSERV.AUTH.CSFRNG.DISABLE SAF resource profile is defined in
the XFACILIT SAF resource class, no SAF authorization checks will be performed
against the CSFSERV class when using this service. If

PKCS #11 Pseudo-random function

Chapter 14. Using PKCS #11 Tokens and Objects 721

|
|
|

CSF.CSFSERV.AUTH.CSFRNG.DISABLE is not defined, the SAF authorization
check will be performed. Disabling the SAF check may improve the performance
of your application.

PKCS #11 Set attribute value (CSFPSAV and CSFPSAV6)
Use the set attribute value callable service (CSFPSAV) to update the attributes of
an object.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPSAV6.

Format
CALL CSFPSAV(

return_code,
reason_code,
exit_data_length,
exit_data,
handle,
rule_array_count,
rule_array,
attribute_list_length,
attribute_list)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

PKCS #11 Pseudo-random function

722 z/OS ICSF Application Programmer's Guide

|
|
|

handle

Direction Type

Input String

The 44-byte handle of the object. See “Handles” on page 89 for the format of a
handle.

rule_array_count

Direction Type

Input Integer

The number of keywords supplied in the rule_array parameter. This value must
be 0.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. Each
keyword is left-justisfied in 8-byte fields and padded on the right with blanks.
All keywords must be in contiguous storage.

attribute_list_length

Direction Type

Input Integer

The length of the attribute_list parameter in bytes.

The minimum value for this field is 2 and the maximum value for this field is
32752.

attribute_list

Direction Type

Input String

A list of object attributes.

Note: Lengths in the attribute list and attribute structures are unsigned
integers.

See “Attribute List” on page 88 for the format of an attribute_list.

Authorization
Table 324. Authorization requirements for the set attribute value callable service

Action Object Authority required

Set Public object, except a CA
certificate

USER (UPDATE) or SO (READ)

Set Private object, except a CA
certificate

USER (UPDATE) or SO
(CONTROL)

Set Public CA certificate object USER (CONTROL) or SO
(READ)

PKCS #11 Set attribute value

Chapter 14. Using PKCS #11 Tokens and Objects 723

|
|

Table 324. Authorization requirements for the set attribute value callable service (continued)

Action Object Authority required

Set Private CA certificate object USER (CONTROL) or SO
(CONTROL)

Note:

v Session and token objects require the same authority.
v See z/OS Cryptographic Services ICSF Writing PKCS #11 Applications for more

information on the SO and User PKCS #11 roles and how ICSF determines that a
certificate is a CA certificate.

Usage Notes
When updating the attributes of an object, all attributes in the template will be
processed and the value used is that of the last instance processed.

Key pair generation may be done in hardware or software.

PKCS #11 Secret key decrypt (CSFPSKD and CSFPSKD6)
Use the PKCS #11 secret key decrypt callable service to decipher data using a clear
symmetric key. AES, DES, BLOWFISH, and RC4 are supported. This service
supports CBC, ECB, Galois/Counter, and stream modes and PKCS #7 padding.
The key handle must be a handle of a PKCS #11 secret key object. The
CKA_DECRYPT attribute must be true.

If the length of output field is too short to hold the output, the service will fail and
return the required length of the output field in the clear_text_length parameter.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPSKD6.

Format
CALL CSFPSKD(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_handle,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
cipher_text_length,
cipher_text,
cipher_text_id,
clear_text_length,
clear_text,
clear_text_id)

PKCS #11 Set attribute value

724 z/OS ICSF Application Programmer's Guide

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 0, 1, 2, or 3.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service.

Table 325. Keywords for secret key decrypt

Keyword Meaning

Encryption Mechanism (Optional. No default. If not specified, mechanism will be taken
from key type of secret key. If specified , must match key type)

AES AES algorithm will be used.

DES DES algorithm will be used. This is only single-key encryption.

PKCS #11 Secret key decrypt

Chapter 14. Using PKCS #11 Tokens and Objects 725

Table 325. Keywords for secret key decrypt (continued)

Keyword Meaning

DES3 DES3 algorithm will be used, This includes double- and triple-key
encryption.

BLOWFISH BLOWFISH algorithm will be used.

RC4 RC4 algorithm will be used. This is a stream cipher.

Processing Rule (optional)

CBC Performs cipher block chaining. The cipher text length must be a
multiple of the block size for the specified algorithm (8 bytes for DES,
DES3, and BLOWFISH, 16 bytes for AES). CBC is the default value for
DES, DES3, AES, and BLOWFISH. CBC cannot be specified for RC4.

CBC-PAD Performs cipher block chaining. The cipher text length must be greater
than zero and a multiple of the block size for the specified algorithm.
For FINAL and ONLY calls, PKCS #7 padding is performed. For this
reason, the clear text will always be shorter than the cipher text and
may even be zero length. CBC-PAD cannot be specified for
BLOWFISH or RC4.

ECB Performs electronic code book encryption. The cipher text length must
be a multiple of the block size for the specified algorithm. ECB cannot
be specified for BLOWFISH or RC4.

GCM Performs Galois/Counter mode encryption. The cipher text length
must be greater than zero. The clear text will be shorter than the
cipher text and may even be zero length due to the truncation of the
authentication tag. GCM may only be specified with AES. GMAC is a
specialized form of GCM where no plain text is returned.

STREAM Performs a stream cipher. STREAM cannot be specified for
BLOWFISH, DES, DES3, or AES. STREAM is the default value for
RC4.

Chaining Selection (optional)

INITIAL Specifies this is the first call in a series of chained calls. For cipher
block chaining, the initialization vector is taken from the
initialization_vector parameter. Cannot be specified with processing rule
ECB or GCM.

CONTINUE Specifies this is a middle call in a series of chained calls. Intermediate
results are read from and stored in the chain_data field. Cannot be
specified with processing rule ECB or GCM.

FINAL Specifies this is the last call in a series of chained calls. Intermediate
results are read from the chain_data field. Cannot be specified with
processing rule ECB or GCM.

ONLY Specifies this is the only call and the call is not chained. For cipher
block chaining, the initialization vector is taken from the
initialization_vector parameter. For Galois Counter mode, the
initialization parameters are taken from the initialization_vector
parameter. ONLY is the default chaining.

key_handle

Direction Type

Input String

The 44-byte handle of secret key object. See “Handles” on page 89 for the
format of a key_handle.

PKCS #11 Secret key decrypt

726 z/OS ICSF Application Programmer's Guide

initialization_vector_length

Direction Type

Input Integer

Length of the initialization_vector in bytes. For CBC and CBC-PAD, this must be
8 bytes for DES and BLOWFISH and 16 bytes for AES. For GCM, this must be
the size of the initialization_vector field (28 bytes).

initialization_vector

Direction Type

Input String

This field has a varying format depending on the mechanism specified. For
CBC and CBC-PAD this is the 8 or 16 byte initial chaining value. The format
for GCM is shown in the following table.

Table 326. initialization_vector parameter format for GCM mechanism

Offset Length
in bytes

Direction Description

0 4 Input length in bytes of the initialization vector. The minimum value is 1. The maximum
value is 128. 12 is recommended.

4 8 Input 64-bit address of the initialization vector. The data must reside in the caller’s
address space. High order word must be set to all zeros by AMODE31 callers.

12 4 Input length in bytes of the additional authentication data. The minimum value is 0. The
maximum value is 1048576.

16 8 Input 64-bit address of the additional authentication data. The data must reside in the
caller’s address space. High order word must be set to all zeros by AMODE31
callers. This field is ignored if the length of the additional authentication data is
zero.

24 4 Input Length in bytes of the desired authentication tag. This value must be one of 4, 8, 12,
13, 14, 15, or 16.

chain_data_length

Direction Type

Input/Output Integer

The byte length of the chain_data parameter. This must be 128 bytes.

chain_data

Direction Type

Input/Output String

This field is a 128-byte work area. The chain data permits chaining data from
one call to another. ICSF initializes the chain data on an INITIAL call, and may
change it on subsequent CONTINUE calls. Your application must not change
the data in this field between the sequence of INITIAL, CONTINUE, and
FINAL calls for a specific message. The chain data has the following format:

PKCS #11 Secret key decrypt

Chapter 14. Using PKCS #11 Tokens and Objects 727

Table 327. chain_data parameter format

Offset Length Description

0 4 Flag word

Bit Meaning when set on

0 Cryptographic state object has been allocated

1-31 Reserved for IBM’s use

4 44 Cryptographic state object handle

48 80 Reserved for IBM’s use

cipher_text_length

Direction Type

Input Integer

Length of the cipher_text parameter in bytes. Except for processing rule GCM,
the length can be up to 2147483647. For processing rule GCM, the length
cannot exceed 1048576 plus the length of the tag.

cipher_text

Direction Type

Input String

Text to be decrypted.

cipher_text_id

Direction Type

Input Integer

The ALET identifying the space where the cipher text resides.

clear_text_length

Direction Type

Input/Output Integer

On input, the length in bytes of the clear_text parameter. On output, the length
of the text decrypted into the clear_text parameter

clear_text

Direction Type

Output String

Decrypted text

clear_text_id

Direction Type

Input Integer

The ALET identifying the space where the clear text resides.

PKCS #11 Secret key decrypt

728 z/OS ICSF Application Programmer's Guide

Authorization
To use this service with a public object, the caller must have at least SO (READ)
authority or USER (READ) authority (any access).

To use this service with a private object, the caller must have at least USER
(READ) authority (user access).

Usage Notes
If the INITIAL rule is used to start a series of chained calls:
v The same key_handle, Encryption Mechanism and Processing Rule must be used

on the subsequent CONTINUE and FINAL calls.
v The key used to initiate the chained calls must not be deleted until the chained

calls are complete.
v The application should make a FINAL call to free ICSF resources allocated. If

processing is to be aborted without making a FINAL call and the chain_data
parameter indicates that a cryptographic state object has been allocated, the
caller must free the object by calling CSFPTRD (or CSFPTRD6 for 64-bit callers)
passing the state object’s handle.

GCM decryption may be used to verify a GMAC on some authentication data. To
do this request AES decryption with processing rule. The cipher_text_length and
cipher_text fields must be set to the length and value of the GMAC to be verified. A
return_code of zero and no clear_text data returned means the GMAC verification
was successful.

A secure key may not be used for Processing Rule GCM.

PKCS #11 Secret key encrypt (CSFPSKE and CSFPSKE6)
Use the PKCS #11 secret key encrypt callable service to encipher data using a clear
symmetric key. AES, DES, BLOWFISH, and RC4 are supported. This service
supports CBC, ECB, Galois/Counter, and stream modes and PKCS #7 padding.
The key handle must be a handle of a PKCS #11 secret key object. The
CKA_ENCRYPT attribute must be true.

If the length of output field is too short to hold the output, the service will fail and
return the required length of the output field in the cipher_text_length parameter.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPSKE6.

Format
CALL CSFPSKE(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_handle,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
clear_text_length,
clear_text,

PKCS #11 Secret key decrypt

Chapter 14. Using PKCS #11 Tokens and Objects 729

clear_text_id,
cipher_text_length,
cipher_text,
cipher_text_id)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 0, 1, 2, or 3.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service.

PKCS #11 Secret key encrypt (CSFPSKE)

730 z/OS ICSF Application Programmer's Guide

Table 328. Keywords for secret key encrypt

Keyword Meaning

Encryption Mechanism (Optional. No default. If not specified, mechanism will be taken
from key type of secret key. If specified , must match key type)

AES AES algorithm will be used.

DES DES algorithm will be used. This is only single-key encryption.

DES3 DES3 algorithm will be used, This includes double- and triple-key
encryption.

BLOWFISH BLOWFISH algorithm will be used.

RC4 RC4 algorithm will be used. This is a stream cipher.

Processing Rule (optional)

CBC Performs cipher block chaining. The text length must be a multiple of
the block size for the specified algorithm (8 bytes for DES, DES3, and
BLOWFISH, 16 bytes for AES). CBC is the default value for DES,
DES3, AES, and BLOWFISH. CBC cannot be specified for RC4.

CBC-PAD Performs cipher block chaining. Except for FINAL and ONLY chaining
calls, the clear text length must be a multiple of the block size for the
specified algorithm. For FINAL and ONLY calls:

v The clear text length may be shorter than the block size and may
even be zero.

v PKCS #7 padding is performed. Thus, the cipher text will always be
longer than the clear text.

CBC-PAD cannot be specified for BLOWFISH or RC4.

ECB Performs electronic code book encryption. The text length must be a
multiple of the block size for the specified algorithm. ECB cannot be
specified for BLOWFISH or RC4.

GCM Performs Galois/Counter mode encryption. The clear text length may
be shorter than the block size and may even be zero. The
authentication tag is returned appended to the cipher text. GCM may
only be specified with AES. GMAC is a specialized form of GCM
where no plain text is specified.

GCMIVGEN Performs similarly to the GCM processing rule except that ICSF will
generate part of the initialization vector and return it in the
initialization_vector parameter. Having ICSF generate the initialization
vector ensures that initialization vectors are never repeated for a given
key object.

STREAM Performs a stream cipher. STREAM cannot be specified for
BLOWFISH, DES, DES3, or AES. STREAM is the default value for
RC4.

Chaining Selection (optional)

INITIAL Specifies this is the first call in a series of chained calls. For cipher
block chaining, the initialization vector is taken from the
initialization_vector parameter. Intermediate results are stored in the
chain_data field. Cannot be specified with processing rule ECB, GCM,
or GCMIVGEN.

CONTINUE Specifies this is a middle call in a series of chained calls. Intermediate
results are read from and stored in the chain_data field. Cannot be
specified with processing rule ECB, GCM, or GCMIVGEN.

FINAL Specifies this is the last call in a series of chained calls. Intermediate
results are read from the chain_data field. Cannot be specified with
processing rule ECB, GCM, or GCMIVGEN.

PKCS #11 Secret key encrypt (CSFPSKE)

Chapter 14. Using PKCS #11 Tokens and Objects 731

Table 328. Keywords for secret key encrypt (continued)

Keyword Meaning

ONLY Specifies this is the only call and the call is not chained. For cipher
block chaining, the initialization vector is taken from the
initialization_vector parameter. For Galois Counter mode, the
initialization parameters are taken from the initialization_vector
parameter. ONLY is the default chaining.

key_handle

Direction Type

Input String

The 44-byte handle of secret key object. See “Handles” on page 89 for the
format of a key_handle.

Initialization_vector_length

Direction Type

Input Integer

Length of the initialization_vector in bytes. For CBC and CBC-PAD, this must be
8 bytes for DES and BLOWFISH and 16 bytes for AES. For GCM and
GCMVGEN, this must be the size of the initialization_vector field (28 bytes).

initialization_vector

Direction Type

Input String

This field has a varying format depending on the mechanism specified. For
CBC and CBC-PAD this is the 8 or 16 byte initial chaining value. The format
for GCM and GCMIVGEN are shown in the following tables.

Table 329. initialization_vector parameter format for GCM mechanism

Offset Length
in bytes

Direction Description

0 4 Input length in bytes of the initialization vector area. The minimum value is 1. The
maximum value is 128. 12 is recommended.

4 8 Input 64-bit address of the initialization vector area. The data must reside in the caller’s
address space. High order word must be set to all zeros by AMODE31 callers.

12 4 Input length in bytes of the additional authentication data. The minimum value is 0. The
maximum value is 1048576.

16 8 Input 64-bit address of the additional authentication data. The data must reside in the
caller’s address space. High order word must be set to all zeros by AMODE31
callers. This field is ignored if the length of the additional authentication data is
zero.

24 4 Input Length in bytes of the desired authentication tag. This value must be one of 4, 8, 12,
13, 14, 15, or 16.

PKCS #11 Secret key encrypt (CSFPSKE)

732 z/OS ICSF Application Programmer's Guide

Table 330. initialization_vector parameter format for GCMIVGEN mechanism

Offset Length
in bytes

Direction Description

0 4 Input Nonce value which ICSF is to use as the first 4 bytes of the initialization vector. The
remaining 8 bytes will be generated and returned to the caller in the initialization
vector area.

4 8 Input 64-bit address of the initialization vector area into which ICSF will store the 8 bytes
it generates. The area must reside in the caller’s address space. High order word
must be set to all zeros by AMODE31 callers.

The complete initialization vector to be used for decryption is the 4-byte nonce
concatenated with the 8 bytes stored in the area

12 4 Input length in bytes of the additional authentication data. The minimum value is 0. The
maximum value is 1048576.

16 8 Input 64-bit address of the additional authentication data. The data must reside in the
caller’s address space. High order word must be set to all zeros by AMODE31
callers. This field is ignored if the length of the additional authentication data is
zero.

24 4 Input Length in bytes of the desired authentication tag. This value must be one of 4, 8, 12,
13, 14, 15, or 16.

chain_data_length

Direction Type

Input/Output Integer

The byte length of the chain_data parameter. This must be 128 bytes.

chain_data

Direction Type

Input/Output String

This field is a 128-byte work area. The chain data permits chaining data from
one call to another. ICSF initializes the chain data on an INITIAL call, and may
change it on subsequent CONTINUE calls. Your application must not change
the data in this field between the sequence of INITIAL, CONTINUE, and
FINAL calls for a specific message. The chain data has the following format:

Table 331. chain_data parameter format

Offset Length Description

0 4 Flag word

Bit Meaning when set on

0 Cryptographic state object has been allocated

1-31 Reserved for IBM’s use

4 44 Cryptographic state object handle

48 80 Reserved for IBM’s use

clear_text_length

Direction Type

Input Integer

PKCS #11 Secret key encrypt (CSFPSKE)

Chapter 14. Using PKCS #11 Tokens and Objects 733

Length of the clear_text parameter in bytes. Except for processing rules GCM
and GCMIVGEN, the length can be up to 2147483647. For processing rules
GCM and GCMIVGEN, the length cannot exceed 1048576.

clear_text

Direction Type

Input String

Text to be encrypted

clear_text_id

Direction Type

Input Integer

The ALET identifying the space where the clear text resides.

cipher_text_length

Direction Type

Input/Output Integer

On input, the length in bytes of the cipher_text parameter. On output, the
length of the text encrypted into the cipher_text parameter.

cipher_text

Direction Type

Output String

Encrypted text

cipher_text_id

Direction Type

Output Integer

The ALET identifying the space where the cipher text resides.

Authorization
To use this service with a public object, the caller must have at least SO (READ)
authority or USER (READ) authority (any access).

To use this service with a private object, the caller must have at least USER
(READ) authority (user access).

Usage Notes
If the INITIAL rule is used to start a series of chained calls:
v The same key_handle, Encryption Mechanism and Processing Rule must be used

on the subsequent CONTINUE and FINAL calls.
v The key used to initiate the chained calls must not be deleted until the chained

calls are complete.
v The application should make a FINAL call to free ICSF resources allocated. If

processing is to be aborted without making a FINAL call and the chain_data

PKCS #11 Secret key encrypt (CSFPSKE)

734 z/OS ICSF Application Programmer's Guide

parameter indicates that a cryptographic state object has been allocated, the
caller must free the object by calling CSFPTRD (or CSFPTRD6 for 64-bit callers)
passing the state object’s handle.

GCM encryption may be used to produce a GMAC on some authentication data.
To do this, request AES encryption with processing rule GCM or GCMVGEN. The
clear_text_length field must be set to zero. The authentication tag (the GMAC) is
returned in the cipher_text field.

For Processing Rule GCMIVGEN, the total number of initialization vector
generations for a token key object is limited to 4294967295. Once this number is
exceeded, the key object will no longer be eligible for Processing Rule GCMIVGEN
and is considered “retired”. This usage counter is maintained in the TKDS as part
of the key object. For keys that are copied using CSFPTRC (C_CopyObject), the
existing counter value is copied to the new key object, but not synchronized after
that.

For Processing Rule GCMIVGEN, session key objects have no maximum lifetime.
They may be retired at any time. Once retired, the key object will no longer be
eligible for Processing Rule GCMIVGEN.

For Processing Rule GCMIVGEN, the nonce value portion of the initialization
vector is predetermined by the caller. It is used to ensure that initialization vector
values are not repeated for any given key value. The caller should provide a
random value and change the value as often as practical. It must be changed
whenever:
v a given key value is replicated as a new persistent key object
v a given persistent key object is replicated as a new session key object
v a given session key value is re-instantiated after system IPL
v a given key value is re-instantiated after ICSF indicates it has been retired

Use of Processing Rule GCMIVGEN with token key objects requires that the first 4
bytes of ECVTSPLX or CVTSNAME be set to a unique value with respect to other
systems. See z/OS Cryptographic Services ICSF System Programmer's Guide for
information on how to set these fields.

A session key object should never be used for Processing Rule GCMIVGEN if the
key value is distributed to multiple systems outside the current sysplex where new
initialization vectors may be generated. Use only token key objects in such cases. If
session key objects are used, the other systems must use different nonces.

For Processing Rule GCMIVGEN, the 8 bytes of generated initialization vector are
stored back into the initialization vector area before the GCM operation is
performed. This allows the generated initialization vector to be part of the
additional authentication data, if desired.

A secure key may not be used for Processing Rule GCM or GCMIVGEN.

PKCS #11 Token record create (CSFPTRC and CSFPTRC6)
Use the token record create callable service (CSFPTRC) to do these tasks:
v Initialize or re-initialize a z/OS PKCS #11 token
v Create or copy a token object in the token data set
v Create or copy a session object for the current PKCS #11 session

PKCS #11 Secret key encrypt (CSFPSKE)

Chapter 14. Using PKCS #11 Tokens and Objects 735

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPTRC6.

Format
CALL CSFPTRC(

return_code,
reason_code,
exit_data_length,
exit_data,
handle,
rule_array_count,
rule_array,
attribute_list_length,
attribute_list)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

handle

Direction Type

Input/Output String

On input, the 44-byte name of the z/OS PKCS #11 token to be initialized, or
the token handle of the object to be created or copied. For the create or
re-create functions, the first 32 bytes of the handle are meaningful on input.

PKCS #11 Token record create

736 z/OS ICSF Application Programmer's Guide

The remaining 12 bytes are filled in by the token record create service. For the
copy function, all 44 bytes of the handle are significant on input.

On output, the 44-byte handle of the z/OS PKCS #11 token or object created.

See “Handles” on page 89 for the format of a handle.

rule_array_count

Direction Type

Input Integer

The number of keywords supplied in the rule_arrray parameter. The value must
be 1 or 2.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. Each
keyword is left-justisfied in 8-byte fields and padded on the right with blanks.
All keywords must be in contiguous storage.

Table 332. Token record create keywords

Keyword Meaning

One of these two keywords must be specified:

TOKEN Specifies that a token is to be initialized. If the token
exists in the token data set, the RECREATE keyword
must be specified.

OBJECT Specifies that an object (token object or session object) is
to be created. If the object is to be a copy of an existing
object, the COPY keyword must be specified.

This keyword is optional, and valid only with TOKEN:

RECREATE Specifies that the token exists and is to be re-initialized.
All objects of the existing token will be deleted.

This keyword is optional, and valid only with OBJECT:

COPY Specifies that the object specified by the handle is to be
copied into a new object.

attribute_list_length

Direction Type

Input Integer

Length of the attribute_list parameter in bytes.

The minimum value for this field is 2 and the maximum value for this field is
32752.

attribute_list

Direction Type

Input String

List of token or object attributes.

PKCS #11 Token record create

Chapter 14. Using PKCS #11 Tokens and Objects 737

|
|

When creating or re-creating a token, the attribute_list parameter has this
format:

Bytes Description

0 - 31 Manufacturer ID

32 - 47 Model

48 - 63 Serial number

64 - 67 Reserved for IBM's use. Must be hexadecimal zeros.

Note: The strings supplied for Manufacturer ID, Model, and Serial number are
assumed to be from code page IBM1047.

For objects, see “Attribute List” on page 88 for the format of an attribute_list.

Authorization

Note: Session and token objects require the same SAF authority.

Table 333. Authorization requirements for the token record create callable service

Action
Source object (Copy
only)

Token / Object being
created

PKCS #11 role
Authority required

Create or recreate
token

N/A Token SO (UPDATE)

Create object N/A Public object, except
a CA certificate

USER (UPDATE) or
SO (READ)

Create object N/A Private object, except
a CA certificate

USER (UPDATE) or
SO (CONTROL)

Create object N/A Public CA certificate
object

USER (CONTROL) or
SO (READ)

Create object N/A Private CA certificate
object

USER (CONTROL) or
SO (CONTROL)

Copy object Public object, except
a CA certificate

Public object, except
a CA certificate

USER (UPDATE) or
SO (READ)

Copy object Public object or
private object, except
a CA certificate

Private object, except
a CA certificate

USER (UPDATE) or
SO (CONTROL)

Copy object Private object, except
a CA certificate

Public object, except
a CA certificate

USER (UPDATE)

Copy object Public object, where
source or target or
both are CA
certificate objects

Public object, where
source or target or
both are CA
certificate objects

USER (CONTROL) or
SO (READ)

Copy object Public object or
private object, where
source or target or
both are CA
certificate objects

Private object, where
source or target or
both are CA
certificate objects

USER (CONTROL) or
SO (CONTROL) or
both USER
(UPDATE) and SO
(READ)

Copy object Private object, where
source or target or
both are CA
certificate objects

Public object, where
source or target or
both are CA
certificate objects

USER (CONTROL) or
both USER
(UPDATE) and SO
(READ)

PKCS #11 Token record create

738 z/OS ICSF Application Programmer's Guide

Note:

v Session and token objects require the same authority.
v See z/OS Cryptographic Services ICSF Writing PKCS #11 Applications for more

information on the SO and User PKCS #11 roles and on how ICSF determines
that a certificate is a CA certificate.

Usage Notes
HMAC operations are performed in hardware or software.

When creating an object, these attribute processing rules will be in effect:
v All attributes will be processed and the value of the last instance of an attribute

in the template will be saved.

When copying an object, these attribute processing rules will be in effect:
v All attributes will be processed and the value of the last instance of an attribute

in the template will be saved except for CKA_EXTRACTABLE and
CKA_SENSITIVE. CKA_EXTRACTABLE will be copied from the source object
and may be set to False if the value in the source object is True.
CKA_SENSITIVE will be copied from the source object and may be set to True if
the value in the source object is False.

PKCS #11 Token record delete (CSFPTRD and CSFPTRD6)
Use the token record delete callable service (CSFPTRD) to delete a z/OS PKCS #11
token, token object, session object, or state object. When a token is deleted, all
associated objects are deleted as well. The deletions occur in the token data set
(TKDS), and all session memory areas in the ICSF address space.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPTRD6.

Format
CALL CSFPTRD(

return_code,
reason_code,
exit_data_length,
exit_data,
handle,
rule_array_count,
rule_array)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

PKCS #11 Token record create

Chapter 14. Using PKCS #11 Tokens and Objects 739

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored Integer

This field is ignored.

handle

Direction Type

Input String

44-byte name of the token or object to be deleted. See “Handles” on page 89
for the format of a handle.

rule_array_count

Direction Type

Input Integer

The number of keywords supplied in the rule_array parameter. This value must
be 1.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. Each
keyword is left-justisfied in 8-byte fields and padded on the right with blanks.
All keywords must be in contiguous storage.

Table 334. Token record delete keywords

Keyword Meaning

One of these two keywords must be specified:

TOKEN Specifies that a token and all associated objects are to be
deleted.

OBJECT Specifies that an object is to be deleted.

PKCS #11 Token record delete

740 z/OS ICSF Application Programmer's Guide

Authorization
Table 335. Authorization requirements for the token record delete callable service

Token / Object Type PKCS #11 Role Authority Required

Token SO (UPDATE)

Public object, except CA certificate USER (UPDATE) or SO (READ)

Private object, except CA certificate USER (UPDATE) or SO (CONTROL)

Public CA certificate object USER (CONTROL) or SO (READ)

Private CA certificate object USER (CONTROL) or SO (CONTROL)

State object None

Note:

v Session and token objects require the same authority.
v See z/OS Cryptographic Services ICSF Writing PKCS #11 Applications for more

information on the SO and User PKCS #11 roles and how ICSF determines that a
certificate is a CA certificate.

Usage Notes
An application can free state objects allocated by certain PKCS #11 callable services
by calling this service. To do so, specify the handle of the state object in the handle
parameter and “OBJECT ” in the rule_array parameter. For more information on the
PKCS #11 callable services that can allocate state objects, refer to:
v “PKCS #11 Secret key decrypt (CSFPSKD and CSFPSKD6)” on page 724

CSFPSKD
v “PKCS #11 Secret key encrypt (CSFPSKE and CSFPSKE6)” on page 729 CSFPSKE
v “PKCS #11 One-way hash, sign, or verify (CSFPOWH and CSFPOWH6)” on

page 707 CSFPOWH
v “PKCS #11 Generate HMAC (CSFPHMG and CSFPHMG6)” on page 699

CSFPHMG
v “PKCS #11 Verify HMAC (CSFPHMV and CSFPHMV6)” on page 703 CSFPHMV

PKCS #11 Token record list (CSFPTRL and CSFPTRL6)
Use the token record list callable service (CSFPTRL) to:
v Obtain a list of z/OS PKCS #11 tokens. The caller must have SAF authority to

the token for a particular token to be listed.
v Obtain a list of token and session objects for a token. Use a search template to

restrict the search for specific attributes. The caller must have SAF authority to
the token.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPTRL6.

Format
CALL CSFPTRL(

return_code,
reason_code,
exit_data_length,
exit_data,
handle,

PKCS #11 Token record delete

Chapter 14. Using PKCS #11 Tokens and Objects 741

rule_array_count,
rule_array,
search_template_length,
search_template,
list_length,
handle_count,
output_list)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

handle

Direction Type

Input String

For tokens, an empty string (blanks) for the first call, or the 44-byte handle of
the last token found for subsequent calls.

For objects, the 44-byte handle of the token for the first call, or the 44-byte
handle of the last object found for subsequent calls.

See Usage Notes for more information. See “Handles” on page 89 for the
format of a handle.

rule_array_count

PKCS #11 Token record list

742 z/OS ICSF Application Programmer's Guide

Direction Type

Input Integer

The number of keywords supplied in the rule_array parameter. This value must
be 1 or 2.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service. Each
keyword is left-justisfied in 8-byte fields and padded on the right with blanks.
All keywords must be in contiguous storage.

Table 336. Token record list keywords

Keyword Meaning

Processing entity (required)

TOKEN Specifies that the list will contain all tokens to which the
caller has SAF access. The search_template parameter is
ignored.

OBJECT Specifies that the list will contain the handles of all
objects that match the attributes specified in the
search_template parameter and to which the caller has
SAF access.

List options (optional, valid only with OBJECT)

ALL Specifies that when listing objects, both public and
private objects that meet the search criteria should be
listed if the caller has SAF authority for the token. There
may be no sensitive attributes in the search template. See
the Authorization topic for details.

search_template_length

Direction Type

Input Integer

The length of the search_template parameter in bytes. The value must be 0 when
the TOKEN keyword is specified.

The maximum size in bytes is 32752.

search_template

Direction Type

Input String

A list of criteria (attribute values) that an object must meet to be added to the
list. If the search_template_length parameter is 0, no criteria are checked.

See “Attribute List” on page 88 for the format of an attribute_list.

list_length

Direction Type

Input Integer

On input, the length in bytes of the output_list parameter. On output, the

PKCS #11 Token record list

Chapter 14. Using PKCS #11 Tokens and Objects 743

number of bytes used for the output_list parameter. If the supplied length is
insufficient to hold one record, the list_length parameter is set to the minimum
length required for a record.

handle_count

Direction Type

Input/Output Integer

On input, the maximum number of tokens or object handles to return in the
list. On output from a successful call (return_code < 8), the actual number of
tokens or object handles in the list.

output_list

Direction Type

Output String

A list of token names and descriptions or a list of object handles meeting the
search criteria.

Authorization
To list tokens, the caller must have at least USER (READ) or SO (READ) authority.

Authority to list objects depends on the object's attributes and the search criteria as
follows:
v To list secret key or private key objects where sensitive key attributes are

specified in the search template, this must be true:
– The object must be marked CKA_SENSITIVE=F and CKA_EXTRACTABLE=T

and
– The caller must have USER (READ) authority

v Otherwise (no sensitive attributes in the search criteria)
– To list public objects, the caller must have at least USER (READ) or SO

(READ) authority
– To list private objects when the ALL rule array keyword is specified, the caller

must have at least USER (READ) or SO (READ) authority
– To list private objects when the ALL rule array keyword is not specified, the

caller must have USER (READ) or SO (CONTROL) authority

Token / Object Type
Sensitive Attributes in
search criteria ALL Rule Specified

PKCS #11 Role
Authority Required

Token N/A N/A USER (READ) or SO
(READ)

Public object No N/A USER (READ) or SO
(READ)

Private object No No USER (READ) or SO
(CONTROL)

Private object No Yes USER (READ) or SO
(READ)

Secret key or Private key
object (public or private object
class) CKA_SENSITIVE=F and
CKA_EXTRACTABLE=T

Yes N/A USER (READ)

PKCS #11 Token record list

744 z/OS ICSF Application Programmer's Guide

Token / Object Type
Sensitive Attributes in
search criteria ALL Rule Specified

PKCS #11 Role
Authority Required

Secret key or Private key
object (public or private object
class) CKA_SENSITIVE=T or
CKA_EXTRACTABLE=F

Yes N/A N/A (object is not listed)

Note:

v Session and token objects require the same authority.
v When the caller does not possess sufficient authority to list a given token or

object, that record is skipped. (No information for the token or object is
returned.) Processing continues with the next token or object.

v The sensitive attributes are as follows:
– CKA_VALUE for a secret key object, Elliptic Curve private key, DSA private

key, or Diffie-Hellman private key object.
– CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2,

CKA_EXPONENT_1, CKA_EXPONENT_2, and CKA_COEFFICIENT for an
RSA private key object.

v See z/OS Cryptographic Services ICSF Writing PKCS #11 Applications for more
information on the SO and USER PKCS #11 roles.

Usage Notes
For tokens: On the initial call to get a list of tokens, the handle parameter should be
all blanks. On subsequent calls, the handle parameter should be the last token
handle from the output_list returned in the previous call.

The output records are in this format:

Bytes Description

0 - 31 Token name

32 - 63 Manufacturer ID

64 - 79 Model

80 - 95 Serial number

96 - 103 Date that the token information or any token object was last
updated, expressed as Coordinated Universal Time (UCT) in the
format yyyymmdd

104 - 111 Time that the token information or any token object was last
updated, expressed as Coordinated Universal Time (UCT) in the
format hhmmssth

112 - 115 Flags

Bit Meaning when set on

0 Token is write protected.

For objects: On the initial call to get a list of object handles matching the search
template, the handle parameter contains the token handle. On subsequent calls, the
handle parameter should contain the last object handle from the output_list returned
in the previous call. The output records are the 44-byte handles of the objects.

PKCS #11 Token record list

Chapter 14. Using PKCS #11 Tokens and Objects 745

PKCS #11 Unwrap key (CSFPUWK and CSFPUWK6)
Use unwrap key callable service to unwrap and create a key object using another
key. The following formatting is supported:
v PKCS 1.2 formatting is supported for a secret wrapped by an RSA public key.

– A new secret key object is created with the decrypted key value
– The unwrapping key must be an RSA private key object
– The CKA_UNWRAP attribute must be true

v PKCS 8 formatting (CBC mode with padding) is supported for a private or
secret key wrapped by a secret key.
– A new private key or secret key object is created with the decrypted key

values
– The unwrapping key must be a DES, DES2, DES3, or AES secret key object
– The CKA_UNWRAP attribute must be true
– The encryption mechanism must be specified in the rule array and must

match the key type of the unwrapping secret key object
v IBM Proprietary Attribute Bound format – where the key’s usage flags are

restored from the wrapped key data

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPUWK6.

Format
CALL CSFPUWK(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
wrapped_key_length,
wrapped_key,
initialization_vector_length,
initialization_vector,
unwrapping_key_handle,
attribute_list_length,
attribute_list,
target_key_handle)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

PKCS #11 Unwrap key

746 z/OS ICSF Application Programmer's Guide

|

|

|

|

|
|

|
|

|

|

|
|

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1 or 2.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service.

Table 337. Keywords for unwrap key

Keyword Meaning

Formatting Method (required)

ATTRBND The wrapped_key is an IBM proprietary format. The private or secret
key and its usage flags are to be unwrapped together. A signature
verification public key or secret key handle must be supplied through
the initialization_vector parameter.

PKCS-1.2 RSA PKCS #1 block type 02 will be used to recover the key value.

PKCS-8 The private key values are DER encoded as specified by PKCS-8. The
encryption mechanism rule array keyword must be specified.

Encryption Mechanism (required when PKCS-8 specified, ignored otherwise)

AES For PKCS-8 processing, the unwrapping key must be an AES secret
key object.

DES For PKCS-8 processing, the unwrapping key must be a DES secret key
object.

DES3 For PKCS-8 processing, the unwrapping key must be a DES2 or DES3
secret key object.

wrapped_key_length

PKCS #11 Unwrap key

Chapter 14. Using PKCS #11 Tokens and Objects 747

Direction Type

Input Integer

Length of the wrapped key in the wrapped_key parameter.

wrapped_key

Direction Type

Input String

The key to be unwrapped.

initialization_vector_length

Direction Type

Input Integer

The length of the initialization_vector parameter. The initial value can only be
used with PKCS-8 or ATTRBND. This parameter is ignored for PKCS-1.2. For
PKCS-8, the length must match the key type of the wrapping key (8 for DES,
DES2, DES3 and 16 for AES). If the length is zero, the initialization_vector
parameter is ignored and an initial value of zero is used. For ATTRBND, the
length must be 44.

initialization_vector

Direction Type

Input String

For formatting method PKCS-8, this is the initial chaining value for symmetric
encryption. The length must match the key type of the wrapping key.

For formatting method ATTRBND, this is the 44-byte handle of the public or
secret key object to be used to verify the signature on the key data.

For formatting method PKCS-1.2, this parameter is ignored.

unwrapping_key_handle

Direction Type

Input String

The 44-byte handle of the private key or secret key object to unwrap the key.
See “Handles” on page 89 for the format of a unwrapping_key_handle.

attribute_list_length

Direction Type

Input Integer

Length of the attribute_list parameter in bytes. The minimum value for this
field is 2 and the maximum value for this field is 32752.

attribute_list

Direction Type

Input String

List of token or object attributes for the target key. The attributes must be

PKCS #11 Unwrap key

748 z/OS ICSF Application Programmer's Guide

|
|

consistent with the class of the object. See “Attribute List” on page 88 for the
format of an attribute_list.

target_key_handle

Direction Type

Output String

The 44-byte handle of the secret key or private key object created for the
unwrapped key. The object will use to token name of the unwrapping key
object.

Authorization
There are two or three keys involved in this service: the unwrapping key and the
target key (the new key created from the wrapped key), and (optionally) a
signature verification key.
v To use an unwrapping or verification key that is a public object, the caller must

have SO (READ) authority or USER (READ) authority (any access).
v To use an unwrapping or verification key that is a private object, the caller must

have USER (READ) authority (user access).
v To unwrap a target key that is a public object, the caller must have SO (READ)

authority or USER (UPDATE) authority
v To unwrap a target key that is a private object, the caller must have SO

(CONTROL) authority or USER (UPDATE) authority

Usage Notes
For Attribute Bound unwrapping:
v All keys involved (target, unwrapping, and verification) must have the

CKA_IBM_ATTRBOUND attribute set TRUE
v The unwrap template is restricted to the following attributes:

– CKA_TOKEN
– CKA_LABEL
– CKA_SUBJECT – For private keys only
– CKA_ID
– CKA_START_DATE
– CKA_END_DATE
– CKA_APPLICATION
– CKA_IBM_FIPS140
– CKA_PRIVATE

PKCS #11 Wrap key (CSFPWPK and CSFPWPK6)
Use wrap key callable service to wrap a key with another key. The following
formatting is supported:
v PKCS 1.2 is supported for wrapping a secret key with an RSA public key.

– The wrapping key must be an RSA public key object.
– The CKA_WRAP attribute must be true.

v PKCS 8 formatting (CBC mode with padding) is supported for wrapping a
private or secret key with a secret key.
– The wrapping key must be a DES, DES2, DES3, or AES secret key object.
– The CKA_WRAP attribute must be true

PKCS #11 Unwrap key

Chapter 14. Using PKCS #11 Tokens and Objects 749

|

|

|

|
|

|

|

– The encryption mechanism must be specified in the rule array and must
match the key type of the wrapping secret key object

v IBM Proprietary Attribute Bound format – where the key’s usage flags are to be
included in the wrapped key data

If the length of output field is too short to hold the output, the service will fail and
return the required length of the output field in the wrapped_key_length parameter.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPWPK6.

Format
CALL CSFPWPK(

return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
source_key_handle,
wrapping_key_handle,
initialization_vector_length,
initialization_vector,
wrapped_key_length,
wrapped_key)

Parameters
return_code

Direction Type

Output Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 755 lists the return codes.

reason_code

Direction Type

Output Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 755 lists the reason codes.

exit_data_length

Direction Type

Ignored Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction Type

Ignored String

PKCS #11 wrap key

750 z/OS ICSF Application Programmer's Guide

|
|

This field is ignored.

rule_array_count

Direction Type

Input Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1 or 2.

rule_array

Direction Type

Input String

Keywords that provide control information to the callable service.

Table 338. Keywords for wrap key

Keyword Meaning

Formatting Method (required)

ATTRBND The private or secret key and its usage flags are to be wrapped
together in an IBM proprietary format. A signing key handle must be
supplied through the initialization_vector parameter

PKCS-1.2 RSA PKCS #1 block type 02 will be used to format the key value.

PKCS-8 The private key values are DER encoded as specified by PKCS-8. The
encryption mechanism rule array keyword must be specified.

Encryption Mechanism (required when PKCS-8 specified, ignored otherwise)

AES For PKCS-8 processing, the wrapping key must be an AES secret key
object.

DES For PKCS-8 processing, the wrapping key must be a DES secret key
object.

DES3 For PKCS-8 processing, the wrapping key must be a DES2 or DES3
secret key object.

source_key_handle

Direction Type

Input String

The 44-byte handle of the secret key or private key object to be wrapped.

wrapping_key_handle

Direction Type

Input String

The 44-byte handle of the public key or secret key object to wrap the secret
key. See “Handles” on page 89 for the format of a wrapping_key_handle.

Initialization_vector_length

Direction Type

Input Integer

PKCS #11 wrap key

Chapter 14. Using PKCS #11 Tokens and Objects 751

The length of the initialization_vector parameter. The initial value can only be
used with PKCS-8 or ATTRBND. This parameter is ignored for PKCS-1.2. For
PKCS-8, the length must match the key type of the wrapping key (8 for DES,
DES2, DES3 and 16 for AES). If the length is zero, the initialization vector
parameter is ignored and a value of zero is used. For ATTRBND the length
must be 44.

Initialization_vector

Direction Type

Input String

For formatting method PKCS-8, this is the initial chaining value for symmetric
encryption. The length must match the key type of the wrapping key.

For formatting method ATTRBND, this is the 44-byte handle of the private or
secret key object to be used to sign the key data.

For formatting method PKCS-1.2, this parameter is ignored.

wrapped_key_length

Direction Type

Input/Output Integer

On input, the length of the wrapped_key parameter. On output, the actual length
of the wrapped key returned in the wrapped_key parameter.

wrapped_key

Direction Type

Output String

The wrapped key

Authorization
There are two or three key objects used by this service, the source key (the key to
be wrapped), the wrapping key, and (optionally) a signing key.
v To wrap a source key that is a public object, the caller must have SO (READ)

authority or USER (READ) authority (any access).
v To wrap a source key that is a private object, the caller must have USER (READ)

authority (user access)
v To use a wrapping or signing key that is a public object, the caller must have SO

(READ) authority or USER (READ) authority (any access).
v To use a wrapping or signing key that is a private object, the caller must have

USER (READ) authority (user access).

Usage Notes
Clear keys may not be used to wrap secure keys and vice versa. (See z/OS
Cryptographic Services ICSF Writing PKCS #11 Applications for the more information
on clear keys and secure keys.)
v One exception, clear RSA public keys may be used to perform non-attribute

bound wrap of secure secret keys.

For Attribute Bound wrapping, all keys involved (source, wrapping, and signing)
must have the CKA_IBM_ATTRBOUND attribute set TRUE

PKCS #11 wrap key

752 z/OS ICSF Application Programmer's Guide

Part 4. Appendixes

© Copyright IBM Corp. 1997, 2013 753

754 z/OS ICSF Application Programmer's Guide

Appendix A. ICSF and TSS Return and Reason Codes

This topic includes this information:
v Return codes and reason codes issued on the completion of a call to an ICSF

callable service
v Return codes and reason codes issued on the completion of a process on a

coprocessor or accelerator.
v ICSF return and reason codes can be specified in the installation options data set

on the REASONCODES parameter. If the REASONCODES option is not
specified, the default of REASONCODES(ICSF) is used. A REASONCODES line
in the description indicates a conversion was done as a result of the
REASONCODES option in the installation options data set.
If you specified REASONCODES(ICSF) and your service was processed on a
CCA coprocessor, a TSS reason code may be returned if there is no 1–1
corresponding ICSF reason code.

Return Codes and Reason Codes
This topic describes return codes and reason codes.

The TSS return and reason codes have been merged with the ICSF codes in this
release. If there is a REASONCODES line in the description, it will indicate an
alternate reason code you should investigate.

Each return code returns unique reason codes to your application program. The
reason codes associated with each return code are described in these topics. The
reason code tables present the hexadecimal code followed by the decimal code in
parenthesis.

Return Codes
Table 339 lists return codes from the ICSF callable services.

Table 339. Return Codes

Return Code Hex
(Decimal) Description

Return Code 0 (0) The call to the service was successfully processed. See the reason code for more information.

Return Code 4 (4) The call to the service was successfully processed, but some minor event occurred during processing.
See the reason code for more information.

User action: Review the reason code.

Return Code 8 (8) The call to the service was unsuccessful. The parameters passed into the call are unchanged, except for
the return code and reason code. There are rare examples where output areas are filled, but their
contents are not guaranteed to be accurate. These are described under the appropriate reason code
descriptions. The reason code identifies which error was found.

User action: Review the reason code, correct the problem, and retry the call.

Return Code C (12) The call to the service could not be processed because ICSF was not active, ICSF found something
wrong in its environment, a TSS security product is not available, or a processing error occurred in a
TSS product. The parameters passed into the call are unchanged, except for the return code and reason
code.

User action: Review the reason code and take the appropriate action.

© Copyright IBM Corp. 1997, 2013 755

|
|
|

Table 339. Return Codes (continued)

Return Code Hex
(Decimal) Description

Return Code 10 (16) The call to the service could not be processed because ICSF found something seriously wrong in its
environment or a processing error occurred in the coprocessor. The parameters passed into the call are
unchanged, except for the return code and reason code.

User action: Review the reason code and contact your system programmer.

Return Code 14 (20) The call to the service could not be processed because an unexpected error occurred in ICSF's
cryptographic software element. The reason codes for this error are not documented.

User action: Contact your IBM support center.

Return Code 18 (24) The call to the service could not be processed because an unexpected error occurred in the Crypto
Express Enterprise PKCS #11 coprocessor. The reason codes for this error are not documented.

User action: Contact your IBM support center.

Return Code 19 (25) The call to the service could not be processed because a vendor specific error occurred in the Crypto
Express Enterprise PKCS #11 coprocessor. The reason codes for this error are not documented.

User action: Contact your IBM support center.

Reason Codes for Return Code 0 (0)
Table 340 lists reason codes returned from callable services that give return code 0.

Table 340. Reason Codes for Return Code 0 (0)

Reason Code Hex
(Decimal) Description

0 (0) The call to the ICSF callable service was successfully processed. No error was encountered.

User action: None.

2 (2) The call to the ICSF callable service was successfully processed. A minor error was detected. A key
used in the service did not have odd parity. This key could be one provided by you as a parameter or
be one (perhaps of many) that was retrieved from the in-storage CKDS.

User action: Refer to the reason code obtained when the key passed to this service was transformed
into operational form using clear key import, multiple clear key import, key import, secure key import,
or multiple secure key import callable services. Check if any of the services prepared an even parity
key. If one of these service reported an even parity key, you need to know which key is affected. If
none of these services identified an even parity key, then the even parity key detected was found on
the CKDS. Report this to your administrator.

REASONCODES: ICSF 4 (4)

4 (4) The call to the ICSF callable service was successfully processed. A minor error was detected. A key
used in the service did not have odd parity. This key could be one provided by you as a parameter or
be one (perhaps of many) that was retrieved from the in-storage CKDS.

User action: Refer to the reason code obtained when the key passed to this service was transformed
into operational form using clear key import, multiple clear key import, key import, secure key import,
or multiple secure key import callable services. Check if any of the services prepared an even parity
key. If one of these service reported an even parity key, you need to know which key is affected. If
none of these services identified an even parity key, then the even parity key detected was found on
the CKDS. Report this to your administrator.

REASONCODES:TSS 2 (2)

8 (8) The CKDS key record read callable service attempted to read a NULL key record. The returned key
token contains a null token.

User action: None required.

756 z/OS ICSF Application Programmer's Guide

|
|

|

Table 340. Reason Codes for Return Code 0 (0) (continued)

Reason Code Hex
(Decimal) Description

862 (2146) The call to the callable service was successfully processed. A key was wrapped by a weaker key. This
reason code is returned when either the "Warn when weak wrap - Transport keys" or "Warn when
weak wrap - Master keys" access control point is enabled.

User action: None required. If you wish to prohibit weak key wrapping, enable the access control point
"Prohibit weak wrapping - Transport keys" and "Prohibit weak wrapping - Master keys" access control
points using the TKE workstation.

87D (2173) The call to the callable service was successfully processed. The key token format was already payload
version 1 (fixed-length).

BC2 (3010) The call to CSFIQF was successful. Additionally, the coprocessor adapter is disabled by TKE.

2710 (10000) The call to the callable service was successfully processed. The keys in one or more key identifiers have
been reenciphered from encipherment under the old master key to encipherment under the current
master key.

User action: If you obtained your operational token from a file, replace the token in the file with the
token just returned from ICSF.

Management of internal tokens is a user responsibility. Consider the possible case where the token for
this call was fetched from a file, and where this reason code is ignored. For the next invocation of the
service, the token will be fetched from the file again, and the service will give this reason code again. If
this continues until the master key is changed again, then the next use of the internal token will fail.

2711 (10001) The call to the callable service was successfully processed. The keys in one or more key identifiers were
encrypted under the old master key. The callable service was unable to reencipher the key.

2713 (10003) The call to the callable service was successfully processed. Weak key used. The strength of the KEK key
is less than the strength of the key to be wrapped.

If Access Control Point 'Prohibit weak wrapping - Transport keys' is not enabled, this informational
Reason Code will be returned. If Access Control Point 'Prohibit weak wrapping - Transport keys' is
enabled you will receive an error from the callable service.

User action: None.

Reason Codes for Return Code 4 (4)
Table 341 lists reason codes returned from callable services that give return code 4.

Table 341. Reason Codes for Return Code 4 (4)

Reason Code Hex
(Decimal) Description

1 (1) The verification test failed.

REASONCODES: This reason code also corresponds to these ICSF reason codes: FA0 (4000), 1F40
(8000), 1F44 (8004), 2328 (9000), 232C (9004), 2AF8 (11000), or 36B8 (14008).

13 (19) This is a combination reason code value. The call to the Encrypted PIN verify (PINVER) callable
service was successfully processed. However, the trial PIN that was supplied does not match the PIN
in the PIN block.

User action: The PIN is incorrect. If you expected the reason code to be zero, check that you are using
the correct key.

REASONCODES: ICSF BD4 (3028)

In addition, a key in a key identifier token has been reenciphered.

User action: See reason code 10000 (return code 0) for more detail about the key reencipherment.

14 (20) The input text length was odd rather than even. The right nibble of the last byte is padded with X'00'.

User action: None

REASONCODES: ICSF 7D0 (2000)

Appendix A. ICSF and TSS Return and Reason Codes 757

||
|

Table 341. Reason Codes for Return Code 4 (4) (continued)

Reason Code Hex
(Decimal) Description

A6 (166) The control vector is not valid because of parity bits, anti-variant bits, inconsistent KEK bits, or because
bits 59 to 62 are not zero.

B3 (179) The control vector keywords that are in the rule array are ignored.

1AD (429) The digital signature verify ICSF callable service completed successfully but the supplied digital
signature failed verification.

User action: None

REASONCODES: ICSF 2AF8 (11000)

7D0 (2000) The input text length was odd rather than even. The right nibble of the last byte is padded with X'00'.

User action: None

REASONCODES: TSS 14 (20)

81E (2078) The call to CKDS Key Record Read was successful. The key label exists in the CKDS. The key label
contains a clear DES or AES key token and is not returned to the caller.

872 (2162) A weak master key was detected when the final key part was loaded for the DES or RSA master key. A
key is weak if any of the three parts are the same as another part. For example, when the first and
third key parts are the same, the key is weak (effectively a double-length key).

User action: Create new key values for the new master key and retry master key entry.

BBA (3002) The call to the CVV Verify callable service was successfully processed. However, the trial CVV that was
supplied does not match the generated CVV. In addition, a key in the key identifier has been
reenciphered.

REASONCODES: See reason code 4000 (return code 4) for more details about the incorrect CVV. See
reason code 10000 (return code 0) for more details about the key reencipherment.

BC9 (3017) The call to create a list of information completed successfully, however the storage supplied for the list
was insufficient to hold the complete list.

BD4 (3028) The call to the Encrypted PIN verify (PINVER) callable service was successfully processed. However,
the trial PIN that was supplied does not match the PIN in the PIN block.

User action: The PIN is incorrect. If you expected the reason code to be zero, check that you are using
the correct key.

REASONCODES: TSS 13 (19)

BD8 (3032) This is a combination reason code value. The call to the Encrypted PIN verify (PINVER) callable
service was successfully processed. However, the trial PIN that was supplied does not match the PIN
in the PIN block.

In addition, a key in a key identifier token has been reenciphered.

REASONCODES: See reason code 3028 (return code 4) for more detail about the incorrect PIN. See
reason code 10000 (return code 0) for more detail about the key reencipherment.

BFC (3068) The verification pattern of an encrypted CPACF key block doesn't match the current wrapping key's
verification pattern.

FA0 (4000) The CVV did not verify.

User action: Regenerate the CVV.

REASONCODES: TSS 1 (1)

FA4 (4004) Rewrapping is not allowed for one or more keys.

758 z/OS ICSF Application Programmer's Guide

Table 341. Reason Codes for Return Code 4 (4) (continued)

Reason Code Hex
(Decimal) Description

1F40 (8000) The call to the MAC verification (MACVER) callable service was successfully processed. However, the
trial MAC that you supplied does not match that of the message text.

User action: The message text may have been modified, such that its contents cannot be trusted. If you
expected the reason code to be zero, check that you are using the correct key. Check that all segments
of the message were presented and in the correct sequence. Also check that the trial MAC corresponds
to the message being authenticated.

REASONCODES: TSS 1 (1)

1F44 (8004) This is a combination reason code value. The call to the MAC verification (MACVER) callable service
was successfully processed. However, the trial MAC that was supplied does not match the message
text provided.

In addition, a key in a key identifier token has been reenciphered.

User action: See reason code 8000 (return code 4) for more detail about the incorrect MAC. See reason
code 10000 (return code 0) for more detail about the key reencipherment.

REASONCODES: TSS 1 (1)

2328 (9000) The call to the key test service processed successfully, but the key test pattern was not verified.

User action: Investigate why the key failed. When determining this, you can reinstall or regenerate the
key.

REASONCODES: TSS 1 (1)

232C (9004) This is a combination reason code value. The call to the key test service processed successfully, but the
key test pattern was not verified. Also, the key token has been reenciphered.

User action: Investigate why the key failed. When determining this, you can reinstall or regenerate the
key.

REASONCODES: TSS 1 (1)

2AF8 (11000) The digital signature verify ICSF callable service completed successfully but the supplied digital
signature failed verification.

User action: None

REASONCODES: TSS 1AD (429)

36B8 (14008) The PKDS record failed the authentication test.

User action: The record has changed since ICSF wrote it to the PKDS. The user action is application
dependent.

REASONCODES: TSS 1 (1)

8D10 (36112) CKDS conversion completed successfully but some tokens could not be rewrapped because the control
vector prohibited rewrapping from the enhanced wrapping method.

Reason Codes for Return Code 8 (8)
Table 342 on page 760 lists reason codes returned from callable services that give
return code 8.

Most of these reason codes indicate that the call to the service was unsuccessful.
No cryptographic processing took place. Therefore, no output parameters were
filled. Exceptions to this are noted in the descriptions.

Appendix A. ICSF and TSS Return and Reason Codes 759

Table 342. Reason Codes for Return Code 8 (8)

Reason Code Hex
(Decimal) Description

00C (12) A key identifier was passed to a service or token. It is checked in detail to ensure that it is a valid
token, and that the fields within it are valid values. There is a token validation value (TVV) in the
token, which is a non-cryptographic value. This value was again computed from the rest of the token,
and compared to the stored TVV. If these two values are not the same, this reason code is returned.

User action: The contents of the token have been altered because it was created by ICSF or TSS. Review
your program to see how this could have been caused.

016 (22) The ID number in the request field is not valid. The PAN data is incorrect for VISA CVV.

017 (23) Offset length not correct for data to be inserted.

018 (24) A key identifier was passed to a service. The master key verification pattern in the token shows that the
key was created with a master key that is neither the current master key nor the old master key.
Therefore, it cannot be reenciphered to the current master key.

User action: Re-import the key from its importable form (if you have it in this form), or repeat the
process you used to create the operational key form. If you cannot do one of these, you cannot repeat
any previous cryptographic process that you performed with this token.

REASONCODES: ICSF 2714 (10004)

019 (025) A length parameter has an incorrect value. The value in the length parameter could have been zero
(when a positive value was required) or a negative value. If the supplied value was positive, it could
have been larger than your installation's defined maximum, or for MDC generation with no padding, it
could have been less than 16 or not an even multiple of 8.

User action: Check the length you specified. If necessary, check your installation's maximum length
with your ICSF administrator. Correct the error.

01D (29) A key identifier was passed to a service or token. It is checked in detail to ensure that it is a valid
token, and that the fields within it are valid values. There is a token validation value (TVV) in the
token, which is a non-cryptographic value. This value was again computed from the rest of the token,
and compared to the stored TVV. If these two values are not the same, this reason code is returned.

User action: The contents of the token have been altered because it was created by ICSF or TSS. Review
your program to see how this could have been caused.

REASONCODES: ICSF 2710 (10000)

01E (30) A key label was supplied for a key identifier parameter. This label is the label of a key in the in-storage
CKDS or the PKDS. Either the key could not be found, or a key record with that label and the specific
type required by the ICSF callable service could not be found. For a retained key label, this error code
is also returned if the key is not found in the CCA coprocessor specified in the PKDS record.

User action: Check with your administrator if you believe that this key should be in the in-storage
CKDS or the PKDS. The administrator may be able to bring it into storage. If this key cannot be in
storage, use a different label.

REASONCODES: ICSF 271C (10012)

01F (31) The control vector did not specify a DATA key.

REASONCODES: ICSF 272C (10028)

020 (32) You called the CKDS key record create callable service, but the key_label parameter syntax was incorrect.

User action: Correct key_label syntax.

REASONCODES: ICSF 3EA0 (16032)

021 (33) The rule_array parameter contents or a parameter value is not correct.

User action: Refer to the rule_array parameter described in this publication under the appropriate
callable service for the correct value.

REASONCODES: ICSF 7E0 (2016)

022 (34) A rule_array keyword combination is not valid.

REASONCODES: ICSF 7E0 (2016)

760 z/OS ICSF Application Programmer's Guide

|

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

023 (35) The rule_array_count parameter contains a number that is not valid.

User action: Refer to the rule_array_count parameter described in this publication under the appropriate
callable service for the correct value.

REASONCODES: ICSF 7DC (2012)

027 (39) A control vector violation occurred.

REASONCODES: This reason code also corresponds to these ICSF reason codes: 272C (10028), 2730
(10032), 2734 (10036), 2744 (10052), 2768 (10088), 278C (10124), 3E90 (16016), 2724 (10020).

028 (40) The service code does not contain numerical data.

REASONCODES: ICSF BE0 (3040)

029 (41) The key_form parameter is neither IM nor OP. Most constants, these included, can be supplied in lower
or uppercase. Note that this parameter is 4 bytes long, so the value IM or OP is not valid. They must be
padded on the right with blanks.

User action: Review the value provided and change it to IM or OP, as required.

02A (42) The expiration date is not numeric (X'F0' through X'F9'). The parameter must be character
representations of numerics or hexadecimal data.

User action: Review the numeric parameters or fields required in the service that you called and change
to the format and values required.

REASONCODES: ICSF BE0 (3040)

02B (43) The value specified for the key_length parameter of the key generate callable service is not valid.

User action: Review the value provided and change it as appropriate.

REASONCODES: See also the ICSF reason code 80C (2060) or 2710 (10000) for additional information.

02C (44) The CKDS key record create callable service requires that the key created not already exist in the CKDS.
A key of the same label was found.

User action: Make sure the application specifies the correct label. If the label is correct, contact your
ICSF security administrator or system programmer.

02D (45) An input character is not in the code table.

User action: Correct the code table or the source text.

02F (47) A source key token is unusable because it contains data that is not valid or undefined.

REASONCODES: This reason code also corresponds to these ICSF reason codes: 83C (2108), 2754
(10068), 2758 (10072), 275C (10076), 2AFC (11004), 2B04 (11012), 2B08 (11016), 2B10 (11024). Please see
those reason codes for additional information.

030 (48) One or more keys has a master key verification pattern that is not valid.

This reason code also corresponds to these ICSF reason codes: 2714 (10004) and 2B0C (11020). Please see
those reason codes for additional information.

031 (49) Key identifiers contain a version number. The version number in a supplied key identifier (internal or
external) is inconsistent with one or more fields in the key identifier, making the key identifier
unusable.

User action: Use a token containing the required version number.

REASONCODES: ICSF 2738 (10040)

Appendix A. ICSF and TSS Return and Reason Codes 761

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

033 (51) The encipher and decipher callable services sometime require text (plaintext or ciphertext) to have a
length that is an exact multiple of 8 bytes. Padding schemes always create ciphertext with a length that
is an exact multiple of 8. If you want to decipher ciphertext that was produced by a padding scheme,
and the text length is not an exact multiple of 8, then an error has occurred. The CBC mode of
enciphering requires a text length that is an exact multiple of 8.

The value that the text_length parameter specifies is not a multiple of the cryptographic algorithm block
length.

User action: Review the requirements of the service you are using. Either adjust the text you are
processing or use another process rule.

038 (56) The master key verification pattern in the OCV is not valid.

03D (61) The keyword supplied with the key_type parameter is not valid.

REASONCODES: This reason code also corresponds to these ICSF reason codes: 2720 (10016), 2740
(10048), 274C (10060). Please see those reason codes for additional information.

03E (62) The source key was not found.

REASONCODES: ICSF 271C (10012)

03F (63) This check is based on the first byte in the key identifier parameter. The key identifier provided is
either an internal token, where an external or null token was required; or an external or null token,
where an internal token was required. The token provided may be none of these, and, therefore, the
parameter is not a key identifier at all. Another cause is specifying a key_type of IMP-PKA for a key in
importable form.

User action: Check the type of key identifier required and review what you have provided. Also check
that your parameters are in the required sequence.

REASONCODES: ICSF 7F8 (2040)

040 (64) The supplied private key can be used only for digital signature. Key management services are
disallowed.

User action: Supply a key with key management enabled.

OR

This service requires an RSA private key that is for signature use. The specified key may be used for
key management purposes only.

User action: Re-invoke the service with a supported private key.

OR

This service requires an RSA private key that is translatable. The specified key may not be used in the
PKA Key Translate callable service.

User action: Re-invoke the service with a supported private key. To make a key translatable, XLATE-OK
must be turned on.

041 (65) The RSA public or private key specified a modulus length that is incorrect for this service.

User action: Re-invoke the service with an RSA key with the proper modulus length.`

REASONCODES: ICSF 2B18 (11032) and 2B58 (11096)

042 (66) The recovered encryption block was not a valid PKCS-1.2 or zero-pad format. (The format is verified
according to the recovery method specified in the rule-array.) If the recovery method specified was
PKCS-1.2, refer to PKCS-1.2 for the possible error in parsing the encryption block.

User action: Ensure that the parameters passed to CSNDSYI or CSNFSYI are correct. Possible causes for
this error are incorrect values for the RSA private key or incorrect values in the RSA_enciphered_key
parameter, which must be formatted according to PKCS-1.2 or zero-pad rules when created.

REASONCODES: ICSF 2B20 (11040)

762 z/OS ICSF Application Programmer's Guide

|
|
|
|
|

|
|

|
|

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

043 (67) DES or RSA encryption failed.

044 (68) DES or RSA decryption failed.

046 (70) Identifier tag for optional block is invalid: conflicts with IBM reserved tag, is a duplicate to a tag
already found, is bad in combination with a tag already found when parsing a section of optional
blocks, or is otherwise invalid.

User action: Check the TR-31 key block header for correctness.

048 (72) The value specified for length parameter for a key token, key, or text field is not valid.

User action: Correct the appropriate length field parameter.

REASONCODES: This reason code also corresponds to these ICSF reason codes: 2AF8 (11000) and 2B14
(11028). Please see those reason codes for additional information.

05A (90) Access is denied for this request. This is due to an access control point in the domain role either being
disabled or an access control point being enabled that restricts the use of a parameter such as a rule
array keyword.

User action: Check the reference information for the callable service to determine which access control
points are involved in the request. Contact the ICSF administrator to determine if the access control
points are in the correct state. The access control points can be enabled/disabled using the TKE
workstation.

064 (100) A request was made to the Clear PIN generate or Encrypted PIN verify callable service, and the
PIN_length parameter has a value outside the valid range. The valid range is from 4 to 16, inclusive.

User action: Correct the value in the PIN_length parameter to be within the valid range from 4 to 16.

REASONCODES: ICSF BBC (3004)

065 (101) A request was made to the Clear PIN generate callable service, and the PIN_check_length parameter has
a value outside the valid range. The valid range is from 4 to 16, inclusive.

User action: Correct the value in the PIN_check_length parameter to be within the valid range from 4 to
16.

REASONCODES: ICSF BC0 (3008)

066 (102) The value of the decimalization table is not valid.

REASONCODES: ICSF BE0 (3040)

067 (103) The value of the validation date is not valid.

REASONCODES: ICSF BE0 (3040)

068 (104) The value of the customer-selected PIN is not valid or the PIN length does not match the value
specified.

REASONCODES: ICSF BE0 (3040)

069 (105) A request was made to the Clear PIN generate callable service, and the PIN_check_length parameter has
a value outside the valid range. The valid range is from 4 to 16, inclusive.

User action: Correct the value in the PIN_check_length parameter to be within the valid range from 4 to
16.

REASONCODES: ICSF BE0 (3040)

06A (106) A request was made to the Encrypted PIN Translate or the Encrypted PIN verify callable service, and
the PIN block value in the input_PIN_profile or output_PIN_profile parameter has a value that is not
valid.

User action: Correct the PIN block value.

Appendix A. ICSF and TSS Return and Reason Codes 763

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

06B (107) A request was made to the Encrypted PIN Translate callable service and the format control value in the
input_PIN_profile or output_PIN_profile parameter has a value that is not valid. The only valid value is
NONE.

User action: Correct the format control value to NONE.

06C (108) The value of the PAD data is not valid.

REASONCODES: ICSF B08 (3016)

06D (109) The extraction method keyword is not valid.

06E (110) The value of the PAD data is not numeric character date.

REASONCODES: ICSF BE0 (3040)

06F (111) A request was made to the Encrypted PIN Translate callable service. The sequence_number parameter
was required, but was not the integer value 99999.

User action: Specify the integer value 99999.

074 (116) The supplied PIN value is incorrect.

User action: Correct the PIN value.

REASONCODES: ICSF BBC (3004)

079 (121) The source_key_identifier or inbound_key_identifier you supplied is not a valid string.

User action: In the PKA key generate service, an invalid exponent or modulus length was specified.

07A (122) The outbound_KEK_count or inbound_KEK_count you supplied is not a valid ASCII hexadecimal string.

User action: Check that you specified a valid ASCII hexadecimal string for the outbound_KEK_count or
inbound_KEK_count parameter.

081 (129) A Required Rule Array keyword was not specified.

User action: Refer to the rule_array parameter described in this publication under the appropriate
callable service for the correct value.

09A (154) This check is based on the first byte in the key identifier parameter. The key identifier provided is
either an internal token, where an external or null token was required; or an external or null token,
where an internal token was required. The token provided may be none of these, and, therefore, the
parameter is not a key identifier at all. Another cause is specifying a key_type of IMP-PKA for a key in
importable form.

User action: Check the type of key identifier required and review what you have provided. Also check
that your parameters are in the required sequence.

REASONCODES: ICSF 7F8 (2040)

09B (155) The value that the generated_key_identifier parameter specifies is not valid,or it is not consistent with the
value that the key_form parameter specifies.

09C (156) A keyword is not valid with the specified parameters.

REASONCODES: ICSF 2790 (10128)

09D (157) The rule_array parameter contents are incorrect.

User action: Refer to the rule_array parameter described in this publication under the appropriate
callable service for the correct value.

REASONCODES: ICSF 7E0 (2016)

09F (159) A parameter requires Rule Array keyword that is not specified.

User action: Refer to the rule_array parameter described in this publication under the appropriate
callable service for the correct value.

764 z/OS ICSF Application Programmer's Guide

|
|
|

|

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

0A0 (160) The key_type and the key_length are not consistent.

User action: Review the key_type parameter provided and match it with the key_length parameter.

A2 (162)
A request was made to the Remote Key Export callable service, and the certificate_parms parameter
contains incorrect values. One or more of the offsets and/or lengths for the modulus, public exponent,
and/or digital signature would indicate overlap between two or all three of the fields within the
certificate parameter.

User Action: Correct the values in the certificate_parms parameter to indicate the actual offsets and
lengths of the modulus, public exponent, and digital signature within the certificate parameter.

A4 (164) Two parameters (perhaps the plaintext and ciphertext areas, or text_in and text_out areas) overlap each
other. That is, some part of these two areas occupy the same address in memory. This condition cannot
be processed.

User action: Determine which two areas are responsible, and redefine their positions in memory.

0A5 (165) The contents of a chaining vector passed to a callable service are not valid. If you called the MAC
generation callable service, or the MDC generation callable service with a MIDDLE or LAST segmenting
rule, the count field has a number that is not valid. If you called the MAC verification callable service,
then this will have been a MIDDLE or LAST segmenting rule.

User action: Check to ensure that the chaining vector is not modified by your program. The chaining
vector returned by ICSF should only be used to process one message set, and not intermixed between
alternating message sets. This means that if you receive and process two or more independent message
streams, each should have its own chaining vector. Similarly, each message stream should have its own
key identifier.

If you use the same chaining vector and key identifier for alternating message streams, you will not get
the correct processing performed.

REASONCODES: ICSF 7F4 (2036)

0B4 (180) A null key token was passed in the key identifier parameter. When the key type is TOKEN, a valid
token is required.

User action: Supply a valid token to the key identifier parameter.

0B5 (181) This check is based on the first byte in the key identifier parameter. The key identifier provided is
either an internal token, where an external or null token was required; or an external or null token,
where an internal token was required. The token provided may be none of these, and, therefore, the
parameter is not a key identifier at all. Another cause is specifying a key_type of IMP-PKA for a key in
importable form.

User action: Check the type of key identifier required and review what you have provided. Also check
that your parameters are in the required sequence.

This reason code also corresponds to these ICSF reason codes: 7F8 (2040), 2B24 (11044) and 3E98
(16024). Please see those reason codes for additional information.

0B7 (183) A cross-check of the control vector the key type implies has shown that it does not correspond with the
control vector present in the supplied internal key identifier.

User action: Change either the key type or key identifier.

REASONCODES: ICSF 273C (10044)

0B8 (184) An input pointer is null.

0CC (204) A memory allocation failed.

14F (335) The requested function is not implemented on the coprocessor.

154 (340) One of the input control vectors has odd parity.

157 (343) Either the data block or the buffer for the block is too small.

159 (345) Insufficient storage space exists for the data in the data block buffer.

15A (346) The requested command is not valid in the current state of the cryptographic hardware component.

Appendix A. ICSF and TSS Return and Reason Codes 765

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

176 (374) Less data was supplied than expected or less data exists than was requested.

REASONCODES: ICSF 7D4 (2004) and ICSF 7E0 (2016)

181 (385) The cryptographic hardware component reported that the data passed as part of the command is not
valid for that command.

197 (407) A PIN block consistency check error occurred.

REASONCODES: ICSF BC8 (3016)

1B9 (441) One or more input parameters indicates the key to be processed should be partial, but the key is not
partial according to the CV or other control bits of the key.

User action: Check that the partial key option of any input parameters is consistent with the partial key
setting of any key tokens being used.

1BA (442) A DES key supplied in a key identifier parameter has replicated key values (the left and right key
values are the same). The key cannot be used in the service called.

User action: Supply a key that doesn't have replicated key values.

25D (605) The number of output bytes is greater than the number that is permitted.

2BF (703) A new master key value was found to be one of the weak DES keys.

2C0 (704) The new master key would have the same master key verification pattern as the current master key.

2C1 (705) The same key-encrypting key was specified for both exporter keys.

2C2 (706) While deciphering ciphertext that had been created using a padding technique, it was found that the
last byte of the plaintext did not contain a valid count of pad characters.

Note that some cryptographic processing has taken place, and the clear_text parameter may contain
some or all of the deciphered text.

User action: The text_length parameter was not reduced. Therefore, it contains the length of the base
message, plus the length of the padding bytes and the count byte. Review how the message was
padded prior to being enciphered. The count byte that is not valid was created prior to the message's
encipherment.

You may need to check whether the ciphertext was not created using a padding scheme. Otherwise,
check with the creator of the ciphertext on the method used to create it. You could also look at the
plaintext to review the padding scheme used, if any.

REASONCODES: ICSF 7EC (2028)

2C3 (707) The master key registers are not in the state required for the requested function.

User action: Contact your ICSF administrator.

2CA (714) A reserved parameter was not a null pointer or an expected value.

REASONCODES: ICSF 844 (2116)

2CB (715) You supplied a pad_character that is not valid for a Transaction Security System compatibility parameter
for which ICSF supports only one value; or, you supplied a KEY keyword and a non-zero
master_key_version_number in the Key Token Build service; or, you supplied a non-zero regeneration data
length for a DSS key in the PKA Generate service.

User action: Check that you specified the valid value for the TSS compatibility parameter.

REASONCODES: ICSF 834 (2100)

2CF (719) The RSA-OAEP block did not verify when it decomposed. The block type is incorrect (must be X'03').

User action: Recreate the RSA-OAEP block.

REASONCODES: ICSF 2B38 (11064)

766 z/OS ICSF Application Programmer's Guide

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

2D0 (720) The RSA-OAEP block did not verify when it decomposed. The random number I is not correct (must be
non-zero with the high-order bit equal to zero).

User action: Recreate the RSA-OAEP block.

REASONCODES: ICSF 2B40 (11072)

2D1 (721) The RSA-OAEP block did not verify when it decomposed. The verification code is not correct (must be
all zeros).

User action: Recreate the RSA-OAEP block.

REASONCODES: ICSF 2BC3 (11068)

2F8 (760) The RSA public or private key specified a modulus length that is incorrect for this service.

User action: Re-invoke the service with an RSA key with the proper modulus length.

REASONCODES: ICSF 2B48 (11080)

302 (770) A reserved field in a parameter, probably a key identifier, has a value other than zero.

User action: Key identifiers should not be changed by application programs for other uses. Review any
processing you are performing on key identifiers and leave the reserved fields in them at zero.

This reason code also corresponds to these ICSF reason codes: 7E8 (2024) and 2B00 (11008). Please see
those reason codes for additional information.

REASONCODES: ICSF 2B00 (11008)

30F (783) The command is not permitted by the Function Control Vector value.

REASONCODES: ICSF Return code 12, reason code 2B0C (11020)

401 (1025) Registered public key or retained private key name already exists.

402 (1026) Registered public key or retained private key name does not exist.

405 (1029) There is an error in the Environment Identification data.

40B (1035) The signature does not match the certificate signature during an RKX call.

User Action: Check that the key used to check the signatures is the correct.

41A (1050) A KEK RSA-enciphered at this node (EID) cannot be imported at this same node.

41C (1052) Token identifier of the trusted block's header section is in the range 0x20 and 0xFF.

User Action: Check the token identifier of the trusted block.

41D (1053) The Active flag in the trusted block's trusted block section 0x14 is not disabled.

User Action: Use the trusted block create callable service to create an inactive/external trusted block.

41E (1054) Token identifier of the trusted block's header section is not 0x1E (external).

User Action: Use the trusted block create callable service to create an inactive/external trusted block.

41F (1055) The Active flag of the trusted block's trusted block section 0x14 is not enabled.

User Action: Use the trusted block create callable service to create an active/external trusted block.

420 (1056) Token identifier of the trusted block's header section is not 0x1F (internal).

User Action: Use the PKA public key import callable service to import the trusted block.

421 (1057) Trusted block rule section 0x12 Rule ID does not match input parameter rule ID.

User Action: Verify the trusted block used has the rule section specified.

422 (1058) Trusted block contains a value that is too small/too large.

423 (1059) A trusted block parameter that must have a value of zero (or a grouping of bits set to zero) is invalid.

424 (1060) Trusted block public key section failed consistency checking.

Appendix A. ICSF and TSS Return and Reason Codes 767

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

425 (1061) Trusted block contains extraneous sections or subsections (TLVs).

User Action: Check the trusted block for undefined sections of subsections.

426 (1062) Trusted block contains missing sections or subsections (TLVs).

User Action: Check the trusted block for required sections and subsections applicable to the callable
service invoked.

427 (1063) Trusted block contains duplicate sections or subsections (TLVs).

User Action: Check the trusted block's sections and subsections for duplicates. Multiple rule sections
are allowed.

428 (1064) Trusted block expiration date has expired (as compared to the 4764 clock).

User Action: Validate the expiration date in the trusted block's trusted information section's Activation
and Expiration Date TLV Object.

429 (1065) Trusted block expiration date is at a date prior to the activation date.

User Action: Validate the expiration date in the trusted block's trusted information section's Activation
and Expiration Date TLV Object.

42A (1066) Trusted Block Public Key Modulus bit length is not consistent with the byte length. The bit length must
be less than or equal to byte length * 8 and greater than (byte length - 1) * 8.

42B (1067) Trusted block Public Key Modulus Length in bits exceeds the maximum allowed bit length as defined
by the Function Control Vector.

42C (1068) One or more trusted block sections or TLV Objects contained data which is invalid (an example would
be invalid label data in label section 0x13).

42D (1069) Trusted block verification was attempted by a function other than CSNDDSV, CSNDKTC, CSNDKPI,
CSNDRKX, or CSNDTBC.

42E (1070) Trusted block rule ID contained within a Rule section contains invalid characters.

42F (1071) The source key's length or CV does not match what is expected by the rule section in the trusted block
that was selected by the rule ID input parameter.

430 (1072) The activation data is not valid.

User Action: Validate the activation data in the trusted block's trusted information section's Activation
and Expiration Date TLV Object.

431 (1073) The source-key label does not match the template in the export key DES token parameters TLV object of
the selected trusted block rule section.

432 (1074) The control-vector value specified in the common export key parameters TLV object in the selected rule
section of the trusted block contains a control vector that is not valid.

433 (1075) The source-key label template in the export key DES token parameters TLV object in the selected rule
section of the trusted block contains a label template that is not valid.

7D1 (2001) TKE: DH generator is greater than the modulus.

7D2 (2002) TKE: DH registers are not in a valid state for the requested operation.

7D3 (2003) TKE: TSN does not match TSN in pending change buffer.

7D4 (2004) A length parameter has an incorrect value. The value in the length parameter could have been zero
(when a positive value was required) or a negative value. If the supplied value was positive, it could
have been larger than your installation's defined maximum, or for MDC generation with no padding, it
could have been less than 16 or not an even multiple of 8.

User action: Check the length you specified. If necessary, check your installation's maximum length
with your ICSF administrator. Correct the error.

REASONCODES: TSS 019 (025)

7D5 (2005) TKE: PCB data exceeds maximum data length.

768 z/OS ICSF Application Programmer's Guide

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

7D8 (2008) Two parameters (perhaps the plaintext and ciphertext areas, or text_in and text_out areas) overlap each
other. That is, some part of these two areas occupy the same address in memory. This condition cannot
be processed.

User action: Determine which two areas are responsible, and redefine their positions in memory.

REASONCODES: TSS 0A4 (164)

7D9 (2009) TKE: ACI can not load both loads and profiles in one call.

7DA (2010) TKE: ACI can only load one role or one profile at a time.

7DB (2011) TKE: DH transport key algorithm match.

7DC (2012) The rule_array_count parameter contains a number that is not valid.

User action: Refer to the rule_array_count parameter described in this publication under the appropriate
callable service for the correct value.

REASONCODES: TSS 023 (035)

7DD (2013) TKE: Length of hash pattern for keypart is not valid for DH transport key algorithm specified.

7DE (2014) TKE: PCB buffer is empty.

7DF (2015) An error occurred in the Domain Manager.

7E0 (2016) The rule_array parameter contents are incorrect. One or more of the rules specified are not valid for this
service OR some of the rules specified together may not be combined.

User action: Refer to the rule_array parameter described in this publication under the appropriate
callable service for the correct value.

7E2 (2018) The form parameter specified in the random number generate callable service should be ODD, EVEN, or
RANDOM. One of these values was not supplied.

User action: Change your parameter to use one of the required values for the form parameter.

REASONCODES: TSS 021 (033)

7E3 (2019) TKE: Signature in request CPRB did not verify.

7E4 (2020) TKE: TSN in request CPRB is not valid.

7E8 (2024) A reserved field in a parameter, probably a key identifier, has a value other than zero.

User action: Key identifiers should not be changed by application programs for other uses. Review any
processing you are performing on key identifiers and leave the reserved fields in them at zero.

7EB (2027) TKE: DH transport key hash pattern doesn't match.

Appendix A. ICSF and TSS Return and Reason Codes 769

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

7EC (2028)
While deciphering ciphertext that had been created using a padding technique, it was found that the
last byte of the plaintext did not contain a valid count of pad characters. Note that all cryptographic
processing has taken place, and the clear_text parameter contains the deciphered text.

When deciphering ciphertext that had been created using Galois/Counter Mode (GCM) either through
PKCS #11 Secret key decrypt (CSFPSKD or CSFPSKD6) or Symmetric Key Decipher (CSNBSYD,
CSNBSYD1, CSNESYD, or CSNESYD1), the GCM tag provided did not match the data provided. No
cleartext was returned.

User action: The text_length parameter was not reduced. Therefore, it contains the length of the base
message, plus the length of the padding bytes and the count byte. Review how the message was
padded prior to it being enciphered. The count byte that is not valid was created prior to the message's
encipherment.

You may need to check whether the ciphertext was not created using a padding scheme. Otherwise,
check with the creator of the ciphertext on the method used to create it. You could also look at the
plaintext to review the padding scheme used, if any.

If using GCM, verify that the parameters provided (ciphertext, additional authenticated data, and tag)
match those provided to, or returned from, the corresponding call to PKCS #11 Secret key encrypt
(CSFPSKE or CSFPSKE6) or Symmetric Key Encipher (CSNBSYE, CSNBSYE1, CSNESYE, or
CSNESYE1).

REASONCODES: TSS 2C2 (706)

7ED (2029) TKE: Request data block hash does not match hash in CPRB.

7EE (2030) TKE: DH supplied hash length is not correct.

7EF (2031) Reply data block too large.

7F1 (2033) TKE: Change type does not match PCB change type.

7F4 (2036) The contents of a chaining vector or the chaining data passed to a callable service are not valid. If you
called the MAC generation callable service, or the MDC generation callable service with a MIDDLE or
LAST segmenting rule, the count field has a number that is not valid. If you called the MAC
verification callable service, then this will have been a MIDDLE or LAST segmenting rule. If you called
the Symmetric Key Encipher, Symmetric Key Decipher, PKCS#11 Secret Key Encrypt or PKCS #11 Secret
Key Decrypt, the chaining data passed is unusable, either because a CONTINUE or FINAL was not
preceded by an INITIAL or CONTINUE, or because an attempt was made to continue chaining calls
after a partial block has been processed.

User action: Check to ensure that the chaining vector or chaining data is not modified by your
program. The chaining vector or chaining data returned by ICSF should only be used to process one
message set, and not intermixed between alternating message sets. This means that if you receive and
process two or more independent message streams, each should have its own chaining vector. Similarly,
each message stream should have its own key identifier.

If you use the same chaining vector and key identifier for alternating message streams, you will not get
the correct processing performed.

REASONCODES: TSS 0A5 (165)

7F6 (2038) No RSA private key information was provided in the supplied token.

User action: Check that the token supplied was of the correct type for the service.

7F8 (2040) This check is based on the first byte in the key identifier parameter. The key identifier provided is
either an internal token, where an external or null token was required; or an external or null token,
where an internal token was required. The token provided may be none of these, and, therefore, the
parameter is not a key identifier at all. Another cause is specifying a key_type of IMP-PKA for a key in
importable form.

User action: Check the type of key identifier required and review what you have provided. Also check
that your parameters are in the required sequence.

REASONCODES: TSS 03F (063) and TSS 09A (154)

770 z/OS ICSF Application Programmer's Guide

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

7FC (2044) The caller must be in task mode, not SRB mode.

800 (2048) The key_form is not valid for the key_type

User action: Review the key_form and key_type parameters. For a key_type of IMP-PKA, the secure key
import callable service supports only a key_form of OP.

802 (2050) A UKPT keyword was specified, but there is an error in the PIN_profile key serial number.

User action: Correct the PIN profile key serial number.

803 (2051) Invalid message length in OAEP-decoded information.

804 (2052) A single-length key, passed to the secure key import callable service in the clear_key parameter, must be
padded on the right with binary zeros. The fact that it is a single-length key is identified by the
key_form parameter, which identifies the key as being DATA, MACGEN, MACVER, and so on.

User action: If you are providing a single-length key, pad the parameter on the right with zeros.
Alternatively, if you meant to pass a double-length key, correct the key_form parameter to a valid
double-length key type.

805 (2053) No message found in OAEP-decoded information.

806 (2054) Invalid RSA enciphered key cryptogram; OAEP optional encoding parameters failed validation.

807 (2055) The RSA public key is too small to encrypt the DES key.

808 (2056) The key_form parameter is neither IM nor OP. Most constants, these included, can be supplied in lower
or uppercase. Note that this parameter is 4 bytes long, so the value IM or OP is not valid. They must be
padded on the right with blanks.

User action: Review the value provided and change it to IM or OP, as required.

REASONCODES: TSS 029 (041)

80C (2060) The value specified for the key_length parameter of the key generate callable service is not valid.

User action: Review the value provided and change it as appropriate.

REASONCODES: TSS 02B (043)

810 (2064) The key_type and the key_length are not consistent.

User action: Review the key_type parameter provided and match it with the key_length parameter.

REASONCODES: TSS 0A0 (160)

811 (2065) A null key token was not specified for a key identifier parameter.

User action: Check the service description and determine which key identifier parameter must be a null
token.

813 (2067) TKE: A key part register is in an invalid state. This includes the case where an attempt is made to load
a FIRST key part, but a register already contains a key or key part with the same key name.

User action: Supply a different label name for the key part register or clear the existing key part register
with the same label name.

814 (2068) You supplied a key identifier or token to the key generate, key import, multiple secure key import, key
export, or CKDS key record write callable service. This key identifier holds an importer or exporter key,
and the NOCV bit is on in the token. Only programs running in supervisor state or in a system key
(key 0–7) may provide a key identifier with this bit set on. Your program was not running in supervisor
state or a system key.

User action: Either use a different key identifier, or else run in supervisor state or a system key.

815 (2069) TKE: The control vector in the key part register does not match the control vector in the key structure.

816 (2070) TKE: All key part registers are already in use.

User action: Either free existing key part registers by loading keys from ICSF or clearing selected key
part registers from TKE or select another coprocessor for loading the key part register.

Appendix A. ICSF and TSS Return and Reason Codes 771

|

|
|

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

817 (2071) TKE: The key part hash pattern supplied does not match the hash pattern of the key part currently in
the register.

81B (2075) TKE: The length of the key part received is different from the length of the accumulated value already
in the key part register.

81C (2076) A request was made to the key import callable service to import a single-length key. However, the right
half of the key in the source_key_identifier parameter is not zeros. Therefore, it appears to identify the
right half of a double-length key. This combination is not valid. This error does not occur if you are
using the word TOKEN in the key_type parameter.

User action: Check that you specified the value in the key_type parameter correctly, and that you are
using the correct or corresponding source_key_identifier parameter.

81D (2077) TKE: An error occurred storing or retrieving the key part register data.

User action: Verify that the selected coprocessor is functioning correctly and retry the operation.

81F (2079) An encrypted symmetric key token was passed to the service. Either an encrypted key token is not
supported for this service (CSNDPKE) or the required hardware is not present (CSNBSYD and
CSNBSYE).

829 (2089) The algorithm does not match the algorithm of the key identifier.

User action: Make sure the rule_array keywords specified are valid for the type of key specified. Refer
to the rule_array parameter described in this publication under the appropriate callable service for the
valid values.

82D (2093) Key identifiers contain a version number. The version number in a supplied key identifier (internal or
external) is inconsistent with one or more fields in the key identifier, making the key identifier
unusable.

User action: Use a token containing the required version number.

82F (2095) The value in the key_form parameter is incompatible with the value in the key_type parameter.

User action: Ensure compatibility of the selected parameters.

831 (2097) The value in the key_identifier_length parameter is incompatible with the value in the key_type parameter.

User action: Ensure compatibility of the selected parameters.

832 (2098) Either a key bit length that was not valid was found in an AES key token (length not 128, 192, or 256
bits) or a version X'01' DES token had a token-marks field that was not valid.

833 (2099) Encrypted key length in an AES key token was not valid when an encrypted key is present in the
token.

834 (2100) You supplied a pad_character that is not valid for a Transaction Security System compatibility parameter
for which ICSF supports only one value; or, you supplied a KEY keyword and a non-zero
master_key_version_number in the Key Token Build service; or, you supplied a non-zero regeneration data
length for a DSS key in the PKA Generate service.

User action: Check that you specified the valid value for the TSS compatibility parameter.

REASONCODES: TSS 2CB (715)

838 (2104) An input character is not in the code table.

User action: Correct the code table or the source text.

REASONCODES: TSS 02D (045)

83C (2108) An unused field must be binary zeros, and an unused key identifier field generally must be zeros.

User action: Correct the parameter list.

REASONCODES: TSS 02F (047)

83F (2111) There is an inconsistency between the wrapping information in the key token and the request to wrap a
key.

772 z/OS ICSF Application Programmer's Guide

|

|

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

840 (2112) The length is incorrect for the key type.

User action: Check the key length parameter. DATA keys may have a length of 8, 16, or 24. MAC keys
must have a length of 8. All other keys should have a length of 16. Also check that the parameters are
in the required sequence.

841 (2113) A key token contains invalid payload.

User action: Recreate the key token.

844 (2116) Parameter contents or a parameter value is not correct.

User action: Specify a valid value for the parameter.

REASONCODES: TSS 021 (033)

846 (2118) Invalid value(s) in TR-31 key block header.

User action: Check the TR-31 key block header for correctness. Also check that the PADDING optional
block is the last optional block in a set of optional blocks.

847 (2119) “Mode” value in the TR-31 header is invalid or is not acceptable in the chosen operation.

User action: Check the TR-31 key block header for correctness.

849 (2121) “Algorithm” value in the TR-31 header is invalid or is not acceptable in the chosen operation.

User action: Check the TR-31 key block header for correctness.

84A (2122) If importing a TR-31 key block, the exportability byte in the TR-31 header contains a value that is not
supported. If exporting a TR-31 key block, the requested exportability is inconsistent with the key block.
For example a ‘B’ Key Block Version ID key can only be wrapped by a KEK that is wrapped in CBC
mode, the ECB mode KEK violates ANSI X9.24.

User action: Check the TR-31 key block header for correctness.

84B (2123) The length of the cleartext key in the TR-31 block is invalid, for example the algorithm is “D” for
single-DES but the key length is not 64 bits.

User action: Check that the values in the TR-31 header are consistent with the key fields.

84D (2125) The Key Block Version ID in the TR-31 header contains an invalid value.

User action: Check the TR-31 key block header for correctness.

84E (2126) The key usage field in the TR-31 header contains a value that is not supported for import of the key
into CCA.

User action: Check the TR-31 key block header for correctness.

84F (2127) The key usage field in the TR-31 header contains a value that is not valid with the other parameters in
the header.

User action: Check the TR-31 key block header for correctness

851 (2129) A parameter to a TR-31 service such as a TR-31 key block, a set of optional blocks, or a single optional
block contains invalid characters. It may be that the parameter contains EBCDIC characters when ASCII
is expected or vice-versa, or the wrong characters were found in a field which only accepts a limited
range of characters. For example some length fields can be populated by characters '0' - '9' and 'A' - 'F',
while other length fields can only contain characters '0' - '9'.

User action: Check the TR-31 parameters for correctness

852 (2130) The CV carried in the TR-31 key block optional blocks is inconsistent with other attributes of the key

User action: Check the TR-31 key block header for correctness.

853 (2131) The MAC validate step failed for a parameter. This may result from tampering, corruption, or
attempting to use a different key to validate the MAC from the one used to generate it.

User action: Check each parameter which includes a MAC for correctness. If the parameter is wrapped
by a key-encrypting-key (KEK), ensure that the correct KEK is supplied.

Appendix A. ICSF and TSS Return and Reason Codes 773

|
|
|

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

856 (2134) The requested PIN decimalization table does not exist or no PIN decimalization tables have been stored
in the coprocessor.

857 (2135) The supplied PIN decimalization table is not in the list of active tables stored in the coprocessor.

85D (2141) The key verification pattern for the key-encrypting key is not valid.

85E (2142) A key-usage field setting in a supplied key token prevents operation. This may be due to:

v a conflict in key-usage setting between two key tokens

v a key-usage bit required for the operation is not enabled

v an enabled key-usage bit is disallowed for the key for the operation.

User action: Supply key tokens with allowed key-usage settings.

85F (2143) On a call to Key Translate2 using the REFORMAT Encipherment rule and providing a variable-length
AES token, the key management fields for input_key_token contain disallowed values or prohibit the
operation.

User action: Call Key Translate2 using a key token whose key-management fields contain allowed
values.

861 (2145)
The service failed because a key would have been wrapped by a weaker key (transport or master key).
This is disallowed by the "Prohibit weak wrapping - Transport keys" and "Prohibit weak wrapping -
Master keys" access control points.

User action: If weak key wrapping is to be allowed, disable access control point "Prohibit weak
wrapping - Transport keys" and "Prohibit weak wrapping - Master keys" using the TKE workstation.

863 (2147) The key type that was to be generated by this callable service is not valid.

User action: Refer to the parameters described in this publication under the appropriate callable service
for the correct parameter values.

865 (2149) The key that was to be generated by this callable service is stronger than the input material.

User action: Validate the key material is is at least as strong as the key to be generated.

86A (2154) At least one key token passed to this callable service does not have the required key type for the
specified function.

User action: Refer to the parameters described in this publication under the appropriate callable service
for the correct parameter values.

(2156) Multiple ECC tokens were passed to this callable service. The curve types of the all the token
parameters do not match.

User action: Check that the curve types of the input ECC tokens are the same.

86F (2159) A key-encrypting key passed to the service is not valid for the service.

User action: Check the requirements of the service and the key-encrypting keys you supplied,
determine which key is incorrect and supply a key that is correct.

871 (2161) The requested or default wrapping method conflicts with one or both input tokens.

User action: On the call to the CVV Key Combine service, make sure that the desired wrapping method
(either specified as a rule_array keyword or the default wrapping method) is consistent with the
wrapping method of the input token(s). For example, an input token that can only be wrapped in the
enhanced method (ENH-ONLY flag on in the CV) cannot produce an output token wrapped in the
original method (ECB mode).

873 (2163) A weak master key was detected when the final key part was loaded for the DES or RSA master key. A
key is weak if any of the three parts are the same as another part. For example, when the first and third
key parts are the same, the key is weak (effectively a double-length key).

User action: Create new key values for the new master key and retry master key entry.

875 (2165) The RSA key token contains a private section that is not valid with the service.

774 z/OS ICSF Application Programmer's Guide

||

|
|

||

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

897 (2199) A variable-length symmetric key-token (version X'05') contains invalid key-usage field data.

User action: Supply a valid key token

899 (2201) A variable-length symmetric key-token (version X'05') contains invalid key-management field data.

User action: Supply a valid key token

BB9 (3001) SET block decompose service was called with an encrypted OAEP block with a block contents identifier
that indicates a PIN block is present. No PIN encrypting key was supplied to process the PIN block.
The block contents identifier is returned in the block_contents_identifier parameter.

User action: Supply a PIN encrypting key and resubmit the job.

BBB (3003) An output parameter is too short to hold the output of the request. The length parameter for the output
parameter has been updated with the required length for the request.

User action: Update the size of the output parameter and length specified in the length field and
resubmit the request.

BBC (3004) A request was made to the Clear PIN generate or Encrypted PIN verify callable service, and the
PIN_length parameter has a value outside the valid range. The valid range is from 4 to 16, inclusive.

User action: Correct the value in the PIN_length parameter to be within the valid range from 4 to 16.

REASONCODES: TSS 064 (100)

BBE (3006) The UDX verb in the coprocessor is not authorized to be executed.

BC0 (3008) A request was made to the Clear PIN generate callable service, and the PIN_check_length parameter has
a value outside the valid range. The valid range is from 4 to 16, inclusive.

User action: Correct the value in the PIN_check_length parameter to be within the valid range from 4 to
16.

REASONCODES: TSS 065 (101)

BC1 (3009) For PKCS #11 attribute processing, an attribute has been specified in the template that is not consistent
with another attribute of the object being created or updated.

User action: Correct the template for the object.

BC3 (3011) The CRT value (p, q, Dp, Dq or U) is longer than the length allowed by the parameter block for clear
key processing on an accelerator. A modulus whose length is less than or equal to 1024 bits is 64 bytes
in length. A modulus whose length is greater than 1024 bits but less than or equal to 2048 bits is 128
bytes in length.

User action: Reconfigure the accelerator as a coprocessor to make use of the key (if the CRT value is
not in error and there is no coprocessor installed).

REASONCODES: TSS 065 (101)

BC4 (3012) A request was made to the Clear PIN generate callable service to generate a VISA-PVV PIN, and the
trans_sec_parm field has a value outside the valid range. The field being checked in the trans_sec_parm is
the key index, in the 12th byte. This trans_sec_parm field is part of the data_array parameter.

User action: Correct the value in the key index, held within the trans_sec_parm field in the data_array
parameter, to hold a number from the valid range.

REASONCODES: TSS 069 (105)

BC5 (3013) The AES clear key value LRC in the token failed validation.

User action: Correct the AES clear key value.

REASONCODES: TSS 06A (106)

Appendix A. ICSF and TSS Return and Reason Codes 775

||

|

|

|
|

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

BC8 (3016) A request was made to the Encrypted PIN Translate or the Encrypted PIN verify callable service, and
the PIN block value or PADDIGIT value in the input_PIN_profile or output_PIN_profile parameter has a
value that is not valid.

User action: Correct the PIN block value.

REASONCODES: TSS 06A (106)

BCB (3019) The call to insert or delete a z/OS PKCS #11 token object failed because the token was not found in the
TKDS data space or a request to delete a PKCS #11 session object failed because the token was not
found in the session data space.

BCC (3020) For a PKCS #11 callable service, the PKCS #11 object specified is the incorrect class for the request.

User action: Specify the correct class of object for the service.

BCD (3021) The call to add a z/OS PKCS #11 token failed because the token already exists in the TKDS data space
or a request to add a z/OS PKCS #11 token object failed because an object with the same handle
already exists.

BCE (3022) The call to add or update a z/OS PKCS #11 tokens object failed because the supplied attributes are too
large to be stored in the TKDS.

BD0 (3024) A request was made to the Encrypted PIN Translate callable service and the format control value in the
input_PIN_profile or output_PIN_profile parameter has a value that is not valid. The only valid value is
NONE.

User action: Correct the format control value to NONE.

REASONCODES: TSS 06B (107)

BD1 (3025) The call to create a list of z/OS PKCS #11 tokens, a list of objects of a z/OS PKCS #11 token, the
information for a z/OS PKCS #11 token or the attributes of a PKCS #11 object failed because the length
of the output field was insufficient to hold the data. The length field has been updated with the length
of a single list or entry, token information or object attributes.

BD2 (3026) The z/OS PKCS #11 token or object handle syntax is invalid.

BD3 (3027) The call to read or update a z/OS PKCS #11 token or token object failed because the token or object
was not found in the TKDS data space, or if the call to read or update a PKCS #11 session object failed
because the object was not found.

BD4 (3028) A request was made to the Clear PIN generate callable service. The clear_PIN supplied as part of the
data_array parameter for an GBP-PINO request begins with a zero (0). This value is not valid.

User action: Correct the clear_PIN value.

REASONCODES: TSS 074 (116)

BD5 (3029) For PKCS #11 attribute processing, an invalid attribute was specified in the template. The attribute is
neither a PKCS #11 or vendor-specified attribute supported by this implementation of PKCS #11.

User action: Correct the template by removing the invalid attribute or changing the attribute to a valid
attribute.

BD6 (3030) An invalid value was specified for a particular PKCS #11 attribute in a template when creating or
updating an object.

BD7 (3031) The certificate specified in creating a PKCS #11 certificate object was not properly encoded.

BD9 (3033) The attribute template for creating or updating a PKCS #11 object was incomplete. Required attributes
for the object class were not specified in the template.

BDA (3034) The call to modify PKCS #11 object attributes failed because the CKA_MODIFIABLE attribute was set to
false when the object was recreated.

BDB (3035) For PKCS #11 attribute processing, an attribute was specified in the template which can not be set or
updated by the application. See z/OS Cryptographic Services ICSF Writing PKCS #11 Applications for a
definition of attributes that can be set or updated by the application.

User action: Remove the offending attribute from the template.

776 z/OS ICSF Application Programmer's Guide

||
|
|

|

|

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

BDC (3036) A request was made to the Encrypted PIN Translate callable service. The sequence_number parameter
was required, but was not the integer value 99999.

User action: Specify the integer value 99999.

REASONCODES: TSS 06F (111)

BDE (3038) For a PKCS #11 callable service, the attributes of the PKCS #11 object specified do not permit the
requested function.

User action: Specify an object that permits the requested function.

BDF (3039) For a PKCS #11 callable service, where a PKCS #11 key object is required, the specified object is not of
the correct key type for the requested function.

User action: Specify an object that is the correct class of key.

BE0 (3040) The PAN, expiration date, service code, decimalization table data, validation data, or pad data is not
numeric (X'F0' through X'F9'). The parameter must be character representations of numerics or
hexadecimal data.

User action: Review the numeric parameters or fields required in the service that you called and change
to the format and values required.

REASONCODES: TSS 028 (040), TSS 02A (042), TSS 066 (102), TSS 067 (103), TSS 068 (104), TSS 069
(105), TSS 06E (110)

BE1 (3041) PKCS #11 wrap key callable service failed because the wrapping key object is not of the correct class to
wrap the key specified to be wrapped.

User action: Specify a wrapping key object of the correct class to wrap the key object.

BE3 (3043) PKCS #11 wrap key callable service failed because the key object to be wrapped does not exist or the
key class does not match the wrapping mechanism.

User action: Specify an existing key object that is correct for the wrapping mechanism.

BE4 (3044) A PKCS #11 session data space is full. The request to create or update an object failed and the object
was not created or updated.

User action: Delete unused session objects and cryptographic state objects from incomplete chained
operations to create space for new or updated objects.

BE5 (3045) PKCS #11 wrap key callable service failed because the key object to be wrapped has
CKA_EXTRACTABLE set to false.

User action: Specify another key object that can be extracted.

BE7 (3047) A clear key was provided when a secure key was required.

User action: Correct the appropriate key identifier.

BEA (3050) A caller is attempting to overwrite one token type with another (for example, AES over DES).

BEC (3052) A clear key token was supplied to a service where a secure token is required.

BED (3053) A service was called with no parameter list, but a parameter list was expected.

User action: Call the service with a parameter list.

BEE (3054) A request was made to a callable service with a key token wrapped with the enhanced X9.24 CBC
method. Tokens wrapped with the enhanced method are not supported by this release of ICSF.

User action: Contact your ICSF administrator to resolve which key token is to be used.

BF5 (3061) The provided asymmetric key identifier can not be used for the requested function. PKA Key
Management Extensions have been enabled by a CSF.PKAEXTNS.ENABLE profile in the XFACILIT
class. A CSFKEYS profile covering the key includes an ICSF segment, and the ASYMUSAGE field of
that segment restricts the key from being used for the specified function.

An SMF type 82 subtype 27 record is logged in the SMF database.

Appendix A. ICSF and TSS Return and Reason Codes 777

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

BF6 (3062) The provided symmetric key identifier can not be exported using the provided asymmetric key
identifier. PKA Key Management Extensions have been enabled by a CSF.PKAEXTNS.ENABLE profile
in the XFACILIT class. A CSFKEYS or XCSFKEY profile covering the symmetric key includes an ICSF
segment and the SYMEXPORTABLE field of that segment places restrictions on how the key can be
exported. The SYMEXPORTABLE field either specifies BYNONE, or else specifies BYLIST but the
provided asymmetric key identifier is not one of those permitted to export the symmetric key (as
identified by the SYMEXPORTCERTS or SYMEXPORTKEYS fields).

An SMF type 82 subtype 27 record is logged to the SMF database.

BF7 (3063) ICSF key store policy checking is active. The request failed the ICSF token policy check because the
caller is not authorized to the label for the token in the key data set (CKDS or PKDS). The request is
not allowed to continue because the token check policy is in FAIL mode.

SMF type 82 subtype 25 records are logged in the SMF dataset. An SMF type 80 with event code
qualifier of ACCESS is logged.

The policy is defined by the CSF.CKDS.TOKEN.CHECK.LABEL.FAIL resource or the
CSF.PKDS.TOKEN.CHECK.LABEL.FAIL resource in the XFACILIT class.

BF8 (3064) ICSF key store policy checking is active. The specified token does not exist in the key data set (CKDS or
PKDS as appropriate). The CSF-CKDS-DEFAULT or CSF-PKDS-DEFAULT resource in the CSFKEYS
class is either not defined or the caller is not authorized to the CSF-CKDS-DEFAULT or
CSF-PKDS-DEFAULT resource. The resource is not in WARNING mode, so the request is not allowed to
continue.

An SMF type 80 record with event qualifier ACCESS is logged indicating the request failed.

The policy is defined by the CSF.CKDS.TOKEN.CHECK.DEFAULT.LABEL or the
CSF.PKDS.TOKEN.CHECK.DEFAULT.LABEL resource in the XFACILIT class.

BF9 (3065) ICSF token policy checking is active. The caller is requesting to add a token to the key data set (CKDS
or PKDS as appropriate) that already exists within the key data set. The request fails.

The policy is defined by the CSF.CKDS.TOKEN.NODUPLICATES resource or the
CSF.PKDS.TOKEN.NODUPLICATES resource in the XFACILIT class.

BFB (3067) The provided symmetric key label refers to an encrypted CCA key token, and the CSFKEYS profile
covering it does not allow its use in high performance encrypted key operations.

User action: Contact your ICSF or RACF administrator if you need to use this key in calls to Symmetric
Key Encipher (CSNBSYE) or Symmetric Key Decipher (CSNBSYD). Otherwise, use Encipher
(CSNBENC) or Decipher (CSNBDEC) instead.

BFC (3068) A cryptographic operation using a specific PKCS #11 key object is being requested. The key object has
exceeded its useful life for the operation requested. The request is not processed.

User action: Use a different key.

BFE (3070) A cryptographic operation that requires FIPS 140-2 compliance is being requested. The desired
algorithm, mode, or key size is not approved for FIPS 140-2. The request is not processed.

User action: Repeat the request using an algorithm, mode, and/or key size approved for FIPS 140-2.
Refer to z/OS Cryptographic Services ICSF Writing PKCS #11 Applications for this list of approved
algorithms, modes, and key sizes.

BFF (3071) An application using a z/OS PKCS #11 token that is marked ‘Write Protected’ is attempting to do one
of the following:

v Store a persistent object in the token.

v Delete the token.

v Reinitialize the token.

ICSF always marks the session object only omnipresent token as ‘Write Protected.’ ICSF will also mark
an ordinary token ‘Write Protected’ if it contains objects not supported by this release of ICSF.

User action: Use a z/OS PKCS #11 token that is not marked ‘Read Only’ or, if this is an ordinary token
(not the omnipresent token), attempt the delete or reinitialization from a different member of the
sysplex.

778 z/OS ICSF Application Programmer's Guide

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

C04 (3076) A symmetric key token was supplied in a key identifier parameter which is wrapped using the
enhanced X9.24 key wrapping method. The token can not be rewrapped to the original method because
the wrapping flag in the control vector prohibits this wrapping.

C07 (3079) A request was made to use a key token wrapped with the X9.24 enhanced wrapping method
introduced in HCR7780. Key tokens wrapped with the enhanced method can not be used on this
release. Also, key tokens wrapped with the enhanced method can not be updated or deleted from the
CKDS on this release.

User Action: Run your application on a release that support the enhanced wrapping method.

C08 (3080) Use of an ECC token has been attempted. The usage of this type of token is not supported on the
release of ICSF currently running.

User Action: Check the ICSF release for support of this token type.

C0B (3083) The specified key token buffer length is of insufficient size for the buffer to contain the output key
token.

User action: Specify a key token buffer that is sufficiently large enough to receive the output key token.

C0C (3084) The key token associated with the specified key label is not a DES or AES key token, but this callable
service is only compatible with DES and AES key tokens.

User action: Either modify the program logic to utilize only key labels for DES and/or AES key tokens,
or use an ICSF callable service that supports all of the symmetric key token types.

C0D (3085) Rule array keyword specifies a function not supported by this hardware. For example, ECC specified in
rule array for PKA Key Token Change callable service but request is being executed on a system that
does not support ECC keys.

User Action: Specify a different, supported, rule array keyword, or execute the service on a system that
supports the function.

C0E (3086) Specified token is not supported by this hardware. For example, an ECC token is being used but
request is being executed on a system that does not support ECC keys.

User Action: Specify a different, supported, token, or execute the request on a system that supports the
function.

C0F (3087) A coordinated KDS refresh was attempted to an empty KDS. The new KDS of a coordinated KDS
refresh must be initialized and must contain the same MKVP values as the active KDS.

User action: Perform a coordinated KDS refresh using a new KDS that is initialized and that contains
the same MKVP values as the active KDS.

C10 (3088) A coordinated KDS change master key was attempted and either the new KDS or backup KDS
contained a different LRECL attribute from the active KDS. The new KDS and optionally the backup
KDS must contain the same LRECL attribute as the active KDS during a coordinate KDS change master
key.

User action: Perform a coordinated KDS change master key using a new KDS and optionally a backup
KDS with the same LRECL attribute as the active KDS.

C11 (3089) The new KDS specified for a coordinated KDS change master key was not empty when the operation
began. The new KDS must be empty before performing a coordinated KDS change master key.

User action: Perform the coordinated KDS change master key with a new KDS that is empty.

C12 (3090) The backup KDS specified for a coordinated KDS change master key was not empty when the
operation began. When using the optional backup function, the backup KDS must be empty before
performing a coordinated KDS change master key.

User action: Perform the coordinated KDS change master key with a backup KDS that is empty.

C13 (3091) The new KDS specified for a coordinated KDS refresh contains different MKVPs than the active KDS. In
order to perform a coordinated KDS refresh, the new KDS specified must contain the same MKVPs as
the active KDS.

User action: Perform the coordinated KDS refresh with a new KDS that contains the same MKVPs as
the active KDS.

Appendix A. ICSF and TSS Return and Reason Codes 779

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

C1F (3103) The new KDS specified for either a coordinated KDS refresh or coordinated KDS change master key is
not a valid data set name.

User action: Specify a valid data set name for the new KDS when performing either a coordinated KDS
refresh or coordinated KDS change master key.

C20 (3104) The backup KDS specified for a coordinated KDS change master key is not a valid data set name.

User action: Specify a valid data set name for the backup KDS when performing a coordinated KDS
change master key.

C21 (3105) A coordinated KDS refresh or coordinated KDS change master key was attempted while at least one
ICSF instance in the sysplex was below the HCR7790 FMID level. The coordinated KDS refresh and
coordinated KDS change master key functions are only available when all ICSF instances in the sysplex,
regardless of active KDS, are running at the HCR7790 FMID level or higher.

User action: Remove or upgrade ICSF instances in the sysplex that are running below the HCR7790
FMID level and retry the function.

C22 (3106) Either a coordinated KDS refresh or coordinated KDS change master key was attempted while another
coordinated KDS refresh or coordinated KDS change master key was still in progress. The coordinated
KDS function was initiated by this ICSF instance. Only one coordinated KDS function may execute at a
time in the sysplex.

User action: Wait for the previous coordinated KDS function to complete and retry the function.

C23 (3107) A coordinated KDS change master key was attempted using a new KDS with the same name as the
active KDS. The new KDS name must be different from the active KDS when performing a coordinated
KDS change master key.

User action: Specify a new KDS with a different name from the active KDS and retry the function.
Coordinated KDS change master key requires the new KDS to be allocated and match the same VSAM
attributes as the active KDS.

C24 (3108) A coordinated KDS change master key was attempted using a backup KDS with the same name as the
active KDS. When using the backup function, the backup KDS name must be different from the active
KDS when performing a coordinated KDS change master key.

User action: Specify a backup KDS with a different name from the active KDS and retry the function.
Coordinated KDS change master key requires the backup KDS to be allocated and match the same
VSAM attributes as the active KDS.

C25 (3109) A coordinated KDS change master key was attempted using a new KDS with the same name as the
backup KDS. If a backup KDS is specified, its name must be different from the new KDS.

User action: Specify a backup KDS with a different name from the new KDS and retry the function. The
backup KDS is optional. Coordinated KDS change master key requires the new KDS, and optionally the
backup KDS, to be allocated and match the same VSAM attributes as the active KDS.

C26 (3110) A coordinated KDS refresh or coordinated KDS change master key was attempted using an archive
KDS name that is not valid.

User action: Specify a valid data set name for the archive KDS and retry the function. The archive data
set name is optional. The optional archive KDS name must not exist on the system prior to performing
a coordinated KDS refresh or a coordinated KDS change master key.

C27 (3111) A coordinated KDS change master key was attempted using an archive KDS with the same name as the
backup KDS. When using the archive and backup functions, the archive KDS name must be different
from the backup KDS.

User action: Specify an archive KDS with a different name from the backup KDS and retry the function.
The archive KDS name and the backup KDS are optional. The archive KDS name must not exist on the
system prior to performing a coordinated KDS refresh or a coordinated KDS change master key. The
backup KDS must be allocated and match the same VSAM attributes as the active KDS.

780 z/OS ICSF Application Programmer's Guide

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

C28 (3112) A coordinated KDS refresh or a coordinated KDS change master key was attempted using an archive
KDS with the same name as the active KDS. When using the archive function, the archive KDS name
must be different from the active KDS.

User action: Specify an archive KDS with a different name from the active KDS and retry the function.
The archive KDS name must not exist on the system prior to performing a coordinated KDS refresh or a
coordinated KDS change master key.

C29 (3113) A coordinated KDS refresh or a coordinated KDS change master key was attempted using an archive
KDS with the same name as the new KDS. When using the archive function, the archive KDS name
must be different from the new KDS.

User action: Specify an archive KDS with a different name than the new KDS and retry the function.
The archive KDS name must not exist on the system prior to performing a coordinated KDS refresh or a
coordinated KDS change master key.

C2A (3114) Either a coordinated KDS refresh or coordinated KDS change master key was attempted while another
coordinated KDS refresh or coordinated KDS change master key was still in progress. The coordinated
KDS function was initiated by another ICSF instance in the sysplex. Only one coordinated KDS function
may execute at a time in the sysplex.

User action: Wait for the previous coordinated KDS function to complete and retry the function.

C30 (3120) A coordinated KDS change master key was attempted on an active KDS that was not initialized. The
active KDS must be initialized before performing a coordinated KDS change master key.

User action: Initialize the active KDS and retry the function

C31 (3121) The archive option was specified for a coordinated KDS refresh of the active KDS. The archive option is
only valid for coordinated KDS refreshes to a new KDS or coordinated KDS change master key.

User action: Do not specify an archive data set when performing a coordinated KDS refresh of the
active KDS.

C3C (3132) The archive data set name specified for coordinated KDS refresh or coordinated KDS change master key
is too long. The archive data set name must allow enough space for renaming the KDS VSAM data and
index portions within 44 characters.

User action: Specify a shorter name for the archive data set name to allow enough space for renaming
the KDS VSAM data and index portions within 44 characters. The archive data set name is optional.
When specified, the archive data set name must not exist on the system prior to performing the
coordinated KDS function.

C3D (3133) During a coordinated KDS refresh or coordinated KDS change master key with the archive option
specified, the active KDS could not be renamed to the archive data set name. This failure occurred
because the active KDS VSAM data and index suffix names were not valid for performing the rename.

User action: Consider alternate names for the active KDS VSAM data and index suffixes. The archive
data set name is optional. When specified the archive data set name must not exist on the system prior
to performing the coordinated KDS function.

C3E (3134) A coordinated KDS change master key attempted to use a new KDS that is currently another sysplex
members active KDS. Performing a coordinated KDS change master key to another sysplex members
active KDS is not allowed as it would alter all sysplex members configured in that sysplex KDS cluster
(same active KDS).

User action: Specify a new KDS that is not currently the active KDS of another sysplex member and
retry the function.

C81 (3201) Operation requested requires a clear key, but a secure key was supplied.

User action: Use a different key, one that is clear.

F9F (3999) On a call to CKDS Key Record Delete or CKDS Key Record Write2, the label refers to a Variable-length
Symmetric key token with an unrecognized algorithm or key type in the associated data section. Only
key tokens with a recognized algorithm or key type can be managed on this release of ICSF.

User action: Call CKDS Key Record Delete or CKDS Key Record Write2 on a release of ICSF which
recognizes the algorithm and key type of this token.

Appendix A. ICSF and TSS Return and Reason Codes 781

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

FA0 (4000) The encipher and decipher callable services sometime require text (plaintext or ciphertext) to have a
length that is an exact multiple of 8 bytes. Padding schemes always create ciphertext with a length that
is an exact multiple of 8. If you want to decipher ciphertext that was produced by a padding scheme,
and the text length is not an exact multiple of 8, then an error has occurred. The CBC mode of
enciphering requires a text length that is an exact multiple of 8.

User action: Review the requirements of the service you are using. Either adjust the text you are
processing or use another process rule.

REASONCODES: TSS 033 (051)

1782 (6018) One or more of the parameters passed to this callable service are in error.

User action: Refer to the parameter descriptions in this publication under the appropriate callable
service to ensure the parameter values specified by your application are valid.

2710 (10000) A key identifier was passed to a service or token. It is checked in detail to ensure that it is a valid
token, and that the fields within it are valid values. There is a token validation value (TVV) in the
token, which is a non-cryptographic value. This value was again computed from the rest of the token,
and compared to the stored TVV. If these two values are not the same, this reason code is returned.

User action: The contents of the token have been altered because it was created by ICSF or TSS. Review
your program to see how this could have been caused.

REASONCODES: TSS 0C (12) and 1D (29)

2714 (10004) A key identifier was passed to a service. The master key verification pattern in the token shows that the
key was created with a master key that is neither the current master key nor the old master key.
Therefore, it cannot be reenciphered to the current master key.

User action: Re-import the key from its importable form (if you have it in this form), or repeat the
process you used to create the operational key form. If you cannot do one of these, you cannot repeat
any previous cryptographic process that you performed with this token.

REASONCODES: TSS 030 (048)

271C (10012) A key label was supplied for a key identifier parameter. This label is the label of a key in the in-storage
CKDS or the PKDS. Either the key could not be found, or a key record with that label and the specific
type required by the ICSF callable service could not be found. For a retained key label, this error code
is also returned if the key is not found in the CCA coprocessor specified in the PKDS record.

User action: Check with your administrator if you believe that this key should be in the in-storage
CKDS or the PKDS. The administrator may be able to bring it into storage. If this key cannot be in
storage, use a different label.

REASONCODES: TSS 01E (030)

2720 (10016) You specified a value for a key_type parameter that is not an ICSF-defined name.

User action: Review the ICSF key types and use the appropriate one.

REASONCODES: TSS 03D (061)

2724 (10020) You specified the word TOKEN for a key_type parameter, but the corresponding key identifier, which
implies the key type to use, has a value that is not valid in the control vector field. Therefore, a valid
key type cannot be determined.

User action: Review the value that you stored in the corresponding key identifier. Check that the value
for key_type is obtained from the appropriate key_identifier parameter.

REASONCODES: TSS 027 (039)

782 z/OS ICSF Application Programmer's Guide

|
|
|
|
|

|
|

|

|

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

272C (10028) Either the left half of the control vector in a key identifier (internal or external) equates to a key type
that is not valid for the service you are using, or the value is not that of any ICSF control vector. For
example, an exporter key-encrypting key is not valid in the key import callable service.

User action: Determine which key identifier is in error and use the key identifier that is required by the
service.

REASONCODES: TSS 027 (039)

2730 (10032) Either the right half of the control vector in a key identifier (internal or external) equates to a key type
that is not valid for the service you are using, or the value is not that of any ICSF control vector. For
example, an exporter key-encrypting key is not valid in the key import callable service.

User action: Determine which key identifier is in error and use the key identifier that is required by the
service.

REASONCODES: TSS 027 (039)

2734 (10036) Either the complete control vector (CV) in a key identifier (internal or external) equates to a key type
that is not valid for the service you are using, or the value is not that of any ICSF control vector.

The difference between this and reason codes 10028 and 10032 is that each half of the control vector is
valid, but as a combination, the whole is not valid. For example, the left half of the control vector may be
the importer key-encrypting key and the right half may be the input PIN-encrypting (IPINENC) key.

User action: Determine which key identifier is in error and use the key identifier that is required by the
service.

REASONCODES: TSS 027 (039)

2738 (10040) Key identifiers contain a version number. The version number in a supplied key identifier (internal or
external) is inconsistent with one or more fields in the key identifier, making the key identifier
unusable.

User action: Use a token containing the required version number.

REASONCODES: TSS 031 (049)

273C (10044) A cross-check of the control vector the key type implies has shown that it does not correspond with the
control vector present in the supplied internal key identifier.

User action: Change either the key type or key identifier.

REASONCODES: TSS 0B7 (183)

2740 (10048) The key_type parameter does not contain one of the valid types for the service or the keyword TOKEN.

User action: Check the supplied parameter with the ICSF key types. If you supplied the keyword
TOKEN, check that you have padded it on the right with blanks.

REASONCODES: TSS 03D (061)

2744 (10052) A null key identifier was supplied and the key_type parameter contained the word TOKEN. This
combination of parameters is not valid.

User action: Use either a null key identifier or the word TOKEN, not both.

REASONCODES: TSS 027 (039)

2748 (10056) You called the key import callable service. The importer key-encrypting key is a NOCV importer and
you specified TOKEN for the key_type parameter. This combination is not valid.

User action: Specify a value in the key_type parameter for the operational key form.

Appendix A. ICSF and TSS Return and Reason Codes 783

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

274C (10060) You called the key export callable service. A label was supplied in the key_identifier parameter for the
key to be exported and the key_type was TOKEN. This combination is not valid because the service
needs a key type in order to retrieve a key from the CKDS.

User action: Specify the type of key to be exported in the key_type parameter.

REASONCODES: TSS 03D (061)

2754 (10068) A flag in a key identifier indicates the master key verification pattern (MKVP) is not present in an
internal key token. This setting is not valid.

User action: Use a token containing the required flag values.

REASONCODES: TSS 02F (047)

2758 (10072) A flag in a key identifier indicates the encrypted key is not present in an external token. This setting is
not valid.

User action: Use a token containing the required flag values.

REASONCODES: TSS 02F (047)

275C (10076) A flag in a key identifier indicates the control vector is not present. This setting is not valid.

User action: Use a token containing the required flag values.

REASONCODES: TSS 02F (047)

2760 (10080) An ICSF private flag in a key identifier has been set to a value that is not valid.

User action: Use a token containing the required flag values. Do not modify ICSF or the reserved flags
for your own use.

2768 (10088) If you supplied a label in the key_identifier parameter, a record with the supplied label was found in the
CKDS, but the key type (CV) is not valid for the service. If you supplied an internal key token for the
key_identifier parameter, it contained a key type that is not valid.

User action: Check with your ICSF administrator if you believe that this key should be in the in-storage
CKDS. The administrator may be able to bring it into storage. If this key cannot be in storage, use a
different label.

REASONCODES: TSS 027 (039)

2788 (10120) The internal key token you supplied, or the key token that was retrieved by the label you supplied,
contains a flag setting or data encryption algorithm bit that is not valid for this service.

User action: Ensure that you supply a key token, or label, for a non-ANSI key type.

278C (10124) The key identifier you supplied cannot be exported because there is a prohibit-export restriction on the
key.

User action: Use the correct key for the service.

REASONCODES: TSS 027 (039)

2790 (10128) The keyword you supplied in the rule_array parameter is not consistent or not valid with another
parameter you specified. For example, the keyword SINGLE is not valid with the key type of
EXPORTER in the key token build callable service.

User action: Correct either the rule_array parameter or the other parameter.

REASONCODES: TSS 09C (156)

2791 (10129) NOCV KEKs are not permitted in the RKX service.

2AF8 (11000) The value specified for length parameter for a key token, key, or text field is not valid.

User action: Correct the appropriate length field parameter.

REASONCODES: TSS 048 (072)

784 z/OS ICSF Application Programmer's Guide

|

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

2AFC (11004) The hash value (of the secret quantities) in the private key section of the internal token failed
validation. The values in the token are corrupted. You cannot use this key.

User action: Recreate the token using the appropriate combination of the PKA key token build, PKA
key generate, and PKA key import callable services.

REASONCODES: TSS 02F (047)

2B00 (11008) The public or private key values are not valid. (For example, the modulus or an exponent is zero.) You
cannot use the key.

User action: You may need to recreate the token using the PKA key token build or PKA key import
callable service or regenerate the key values on another platform.

REASONCODES: TSS 302 (770)

2B04 (11012) The internal or external private key token contains flags that are not valid.

User action: You may need to recreate the token using the PKA key token build or PKA key import
callable service.

REASONCODES: TSS 02F (047)

2B08 (11016) The calculated hash of the public information in the PKA token does not match the hash in the private
section of the token. The values in the token are corrupted.

User action: Verify the public key section and the key name section of the token. If the token is still
rejected, then you need to recreate the token using the appropriate combination of the PKA key token
build, PKA key generate, and PKA key import callable services.

REASONCODES: TSS 02F (047)

2B0C (11020) The hash pattern of the master key in the supplied internal PKA private key token does not match the
current system's PKA master key. This indicates the master key has changed since the token was
created. You cannot use the token.

User action: Recreate the token using the appropriate combination of the PKA key token build, PKA
key generate, and PKA key import callable services.

REASONCODES: TSS 030 (048)

2B10 (11024) The PKA tokens have incomplete values, for example, a PKA public key token without modulus.

User action: Recreate the key.

REASONCODES: TSS 02F (047)

2B14 (11028) The modulus of the PKA key is too short for processing the hash or PKCS block.

User action: Either use a PKA key with a larger modulus size, use a hash algorithm that generates a
smaller hash (digital signature services), or specify a shorter DATA key size (symmetric key export,
symmetric key generate).

REASONCODES: TSS 048 (072)

2B18 (11032) The supplied private key can be used only for digital signature. Key management services are
disallowed.

User action: Supply a key with key management enabled.

REASONCODES: TSS 040 (064)

Appendix A. ICSF and TSS Return and Reason Codes 785

|
|
|

|
|

|

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

2B20 (11040) The recovered encryption block was not a valid PKCS-1.2 or zero-pad format. (The format is verified
according to the recovery method specified in the rule-array.) If the recovery method specified was
PKCS-1.2, refer to PKCS-1.2 for the possible error in parsing the encryption block. For the PKCS #11
services CSFPUWK and CSFPSKD, this reason could also indicate a non-RSA encryption block length
problem.

User action: Ensure that the parameters passed to CSNDSYI or CSNFSYI are correct. Possible causes for
this error are incorrect values for the RSA private key or incorrect values in the RSA_enciphered_key
parameter, which must be formatted according to PKCS-1.2 or zero-pad rules when created.

REASONCODES: TSS 42 (66)

2B24 (11044) The first section of a supplied PKA token was not a private or public key section.

User action: Recreate the key.

REASONCODES: TSS 0B5(181)

2B28 (11048) The eyecatcher on the PKA internal private token is not valid.

User action: Reimport the private token using the PKA key import callable service.

2B2C (11052) An incorrect PKA token was supplied. One of the following situations is possible:

v The service requires a private key token of the correct type.

v The supplied token may be of a type that is not supported on this system.

User action: Check that the supplied token is:

v a PKA private key token of the correct type.

v a type supported by this system.

2B30 (11056) The input PKA token contains length fields that are not valid.

User action: Recreate the key token.

2B38 (11064) The RSA-OAEP block did not verify when it decomposed. The block type is incorrect (must be X'03').

User action: Recreate the RSA-OAEP block.

REASONCODES: TSS 2CF (719)

2B3C (11068) The RSA-OAEP block did not verify when it decomposed. The verification code is not correct (must be
all zeros).

User action: Recreate the RSA-OAEP block.

REASONCODES: TSS 2D1 (721)

2B40 (11072) The RSA-OAEP block did not verify when it decomposed. The random number I is not correct (must be
non-zero with the high-order bit equal to zero).

User action: Recreate the RSA-OAEP block.

REASONCODES: TSS 2D0 (720)

2B48 (11080) The RSA public or private key specified a modulus length that is incorrect for this service.

User action: Re-invoke the service with an RSA key with the proper modulus length.

REASONCODES: See reason codes 41 (65) and 2F8 (760)

2B4C (11084) This service requires an RSA public key and the key identifier specified is not a public key.

User action: Re-invoke the service with an RSA public key.

2B50 (11088) This service requires an RSA private key that is for signature use only.

User action: Re-invoke the service with a supported private key.

786 z/OS ICSF Application Programmer's Guide

|
|
|

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

2B54 (11092) There was an invalid subsection in the PKA token.

User action: Correct the PKA token.

2B58 (11096) This service requires an RSA private key that is for signature use. The specified key may be used for
key management purposes only.

User action: Re-invoke the service with a supported private key.

REASONCODES: TSS 040 (064)

3E80 (16000) RACF failed your request to use this service.

User action: Contact your ICSF or RACF administrator if you need this service.

3E84 (16004) RACF failed your request to use the key label. This may be caused by either CSFKEYS or XCSFKEY
class, depending on the setting of the Granular Keylabel Access Controls and the type of token
provided.

User action: Contact your ICSF or RACF administrator if you need this key.

3E88 (16008) Clear key generation denied by policy. Secure PKCS #11 services are not available and caller’s RACF
access to CRYPTOZ class resource CLEARKEY.token-label does not permit the generation of non-secure
(clear) PKCS #11 keys.

User action: Contact your ICSF administrator

ICSF administrator action: Either configure ICSF for secure PKCS #11 services or have your RACF
administrator grant the user authority to use clear keys

3E8C (16012) You requested the conversion service, but you are not running in an authorized state.

User action: You must be running in supervisor state to use the conversion service. Contact your ICSF
administrator.

3E90 (16016) The input/output field contained a valid internal token with the NOCV bit on or encryption algorithm
mark, but the key type was incorrect or did not match the type of the generated or imported key.
Processing failed.

User action: Correct the calling application.

REASONCODES: TSS 027 (039)

3E94 (16020) You requested dynamic CKDS update services for a system key, which is not allowed.

User action: Correct the calling application.

REASONCODES: TSS 0B5 (181)

3E98 (16024) You called the CKDS key record write callable service, but the key token you supplied is not valid.

User action: Check with your ICSF administrator if you believe that this key should be in the in-storage
CKDS. The administrator may be able to bring it into storage. If this key cannot be in storage, use a
different label.

3EA0 (16032) Invalid syntax for CKDS, PKDS or TKDS label name.

User action: Correct key_label syntax.

REASONCODES: TSS 020 (032)

3EA4 (16036) The CKDS key record create callable service requires that the key created not already exist in the CKDS
or PKDS. A key of the same label was found.

User action: Make sure the application specifies the correct label. If the label is correct, contact your
ICSF security administrator or system programmer.

REASONCODES: TSS 02C (044)

Appendix A. ICSF and TSS Return and Reason Codes 787

Table 342. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

3EA8 (16040) Data in the PKDS record did not match the expected data. This occurs if the record does not contain a
null PKA token and CHECK was specified.

User action: If the record is to be overwritten regardless of its content, specify OVERLAY.

3EAC (16044) One or more key labels specified as input to the PKA key generate or PKA key import service
incorrectly refer to a retained private key. If generating a retained private key, this error may result from
one of these conditions:

v The private key name of the retained private key being generated is the same as an existing PKDS
record, but the PKDS record label was not specified as the input skeleton (source) key identifier.

v The label specified in the generated_key_token parameter as the target for the retained private key was
not the same as the private key name

If generating or importing a non-retained key, this error occurs when the label specified as the target
key specifies a retained private key. The retained private key cannot be over-written.

User action: Make sure the application specifies the correct label. If the label is correct, contact your
ICSF security administrator or system programmer.

3EB0 (16048) Retained keys on the PKDS cannot be deleted or updated using the PKDS key record delete or PKDS
key record write callable services, respectively.

User action: Use the retained key delete callable service to delete retained keys.

Reason code 0, return
code 308 (776)

RACF failed your request to use this service.

User action: Contact your ICSF or RACF administrator if you need this service.

Reason code 1, return
code 308 (776)

RACF failed your request to use the key label.

User action: Contact your ICSF or RACF administrator if you need this key.

06E (110)-PAN, 028
(040)-ser. code, 02A
(042)-exp. date, 066
(102)-dec table, 067
(103)-val. table, 06C
(198)-pad data

The PAN, expiration date, service code, decimalization table data, validation data, or pad data is not
numeric (X'F0' through X'F9'). The parameter must be character representations of numerics or
hexadecimal data.

User action: Review the numeric parameters or fields required in the service that you called and change
to the format and values required.

Reason Codes for Return Code C (12)
Table 343 on page 789 lists reason codes returned from callable services that give
return code 12. These reason codes indicate that the call to the callable service was
not successful. Either cryptographic processing did not take place, or the last
cryptographic processor was switched offline. Therefore, no output parameters
were filled.

Note: The higher-order halfword of the reason code field for return code C (12)
may contain additional coding. See reason codes 1790, 273C, and 2740 in this table.
For example, in the reason code 42738, the 4 is an SVC 99 error code and the 2738
is listed in this table:

788 z/OS ICSF Application Programmer's Guide

|

Table 343. Reason Codes for Return Code C (12)

Reason Code Hex
(Decimal) Description

0 (0)
ICSF is not available. One of the following situations is possible:

v ICSF is not started

v ICSF is started, but the DES-MK, AES-MK, or ECC-MK is not defined.

v ICSF is started, but the requested function is not available. For instance, an ECC operation was
requested but the required hardware is not installed.

User action: Check the availability of ICSF with your ICSF administrator.

OR

CKDS Key Record Create2 or CKDS Key Record Write2 was called to add a variable-length key record
to a fixed-length CKDS. A variable-length symmetric key token can only be added to a CKDS that
supports variable-length records.

User action: Contact the security administrator or system programmer to activate (refresh) a CKDS that
supports variable-length records.

4 (4) The CKDS or PKDS management service you called is not available because it has been disallowed by
the ICSF User Control Functions panel.

User action: Contact the security administrator or system programmer to determine why the CKDS or
PKDS management services have been disallowed.

8 (8) The service or algorithm is not available on current hardware. Your request cannot be processed.

User action: Correct the calling program or run on applicable hardware.

C (12) The service that you called is unavailable because the installation exit for that service had previously
failed.

User action: Contact your ICSF administrator or system programmer.

10 (16) A requested installation service routine could not be found. Your request was not processed.

User action: Contact your ICSF administrator or system programmer.

1C (28) Cryptographic asynchronous processor failed.

User action: Contact your IBM support center.

28 (40) The callable service that you called is unsupported for AMODE(64) applications. Your request cannot
be processed.

2C (44) The callable service that you called was linked with the AMODE(64) stub. The application is not
running AMODE(64). Your request cannot be processed.

User action: Link your application with the service stub with the appropriate addressing mode.

0C5 (197) I/O error reading or writing to the DASD copy of the CKDS or PKDS in use by ICSF.

User action: Contact your ICSF security administrator or system programmer. The RPL feedback code
will be placed in the high-order halfword of the reason code field.

144 (324) There was insufficient coprocessor memory available to process your request. This could include the
Flash EPROM used to store keys, profiles and other application data.

User action: Contact your system programmer or the IBM Support Center.

2FC (764) The master key is not in a valid state.

User action: Contact your ICSF administrator.

REASONCODES: ICSF 2B08 (11016)

301 (769) A cryptographic internal device driver component detected data contained in a cryptographic request
that is not valid.

7D6 (2006) TKE: PCB service error.

7D7 (2007) TKE: Change type in PCB is not recognized.

Appendix A. ICSF and TSS Return and Reason Codes 789

|
|
|
|

Table 343. Reason Codes for Return Code C (12) (continued)

Reason Code Hex
(Decimal) Description

7DF (2015) Domain in CPRB not enabled by EMB mask.

7E1 (2017) MKVP mismatch on Set MK.

7E5 (2021) Cryptographic coprocessor adapter disabled.

7E9 (2025) Enforcement mask error.

7F3 (2035) Intrusion latch has been tripped. Services disabled.

7F5 (2037) The domain specified is not valid.

7FB (2043) OA certificate not found.

819 (2073) The coprocessor has been disabled on the Support Element. It must be enabled on the Support Element
prior to TKE accessing it.

User action: Permit the selected coprocessor for TKE Commands on the Support Element and then
re-open the Host on TKE.

835 (2101) AES flags in the function control vector are not valid.

BBD (3005) The KDS I/O subtask timed out waiting for an exclusive ENQ on the SYSZxKDS.xKDSdsn resource,
where x indicates the KDS type (C for CKDS, P for PKDS, and T for TKDS). A timeout will occur if one
or more members of the ICSF sysplex group has not relinquished its ENQ on the resource. The KDS
update operation has failed.

User action: Issue D GRS,RES=(nnnnn), where nnnnn is the KDS resource name from message
CSFM302A, to determine which system or systems hold the resource. Determine if action should be
taken to cause the holding system to release its ENQ on the KDS resource.

BBE (3006) Failure after exhausting retry attempts. IXCMSGO issued from CSFMIOST.

User action: Contact your system programmer or the IBM Support Center.

BBF (3007) The CKDS service failed due to unexpected termination of the ICSF Cross-System Services
environment. The termination of the ICSF Cross-System Services environment was caused by a failure
when ICSF issued the IXCMSGI macro. Message CSFM603 has been issued.

User action: Report the occurrence of this error to your ICSF system programmer.

BC6 (3014) There is an I/O error reading or writing to the DASD copy of the TKDS in use by ICSF.

User action: Report the occurrence of this error to your ICSF system programmer.

BC7 (3015) A bad header record is detected for the TKDS.

User action: Report the occurrence of this error to your ICSF system programmer.

BCF (3023) The PKCS #11 TKDS is not available for processing.

User action: Report the occurrence of this error to your ICSF system programmer.

BE6 (3046) An RSA retained key can no longer be generated with its key-usage flag set to allow key unwrapping
(KM-ONLY or KEY-MGMT). Key usage must be SIG-ONLY.

User action: None required.

BE8 (3048) The services using encrypted AES keys, encrypted DES, or encrypted ECC keys are not available
because the master key is required but not loaded or there is no access to any cryptographic
processors. Your request cannot be processed.

User action: Check the availability of ICSF with your ICSF administrator

C00 (3072) The serialization subtask terminated for an unexpected reason prior to completing the request. No
dynamic CKDS or PKDS update services are possible at this point.

User action: Contact your system programmer who can investigate the problem and restart the I/O
subtask by stopping and restarting ICSF.

C01 (3073) An error occurred attempting to obtain the system ENQ for a key data set update.

User action: If the error is common and persistent, contact your system programmer or the IBM
Support Center.

790 z/OS ICSF Application Programmer's Guide

|
|

|
|

|

|

|

Table 343. Reason Codes for Return Code C (12) (continued)

Reason Code Hex
(Decimal) Description

C03 (3075) A symmetric key token was supplied in a key identifier parameter which is wrapped using the
enhanced X9.24 key wrapping method. The cryptographic coprocessors available to process the request
don't support the enhanced key wrapping.

User action: Contact system personnel to get coprocessors installed on your system which will support
the enhanced X9.24 key wrapping.

C06 (3078) The CKDS was created with an unsupported LRECL.

C09 (3081) An attempt was made to load a PKDS that only uses the ECC master key on a pre-HCR7780 release of
ICSF. Pre-HCR7780 systems do not support the ECC master key and use of an ECC MK-only PKDS is
not allowed.

User Action: Change the PKDS selected. Specify a PKDS that is empty, uses an RSA master key, or
uses both RSA and ECC master keys.

C0A (3082) A callable service generated or updated a symmetric key token and the X9.24 enhanced wrapping
method was used to wrap the key. This key token is not usable on your system and ICSF will not
allow the key to be generated. The key was wrapped with the enhanced wrapping method because a
CEX3C or CEX4C coprocessor has the default wrapping configuration set to enhanced. This was most
likely done by TKE changing the configuration.

User Action: Have the ICSF administrator set the default wrapping configuration to original for the
LPAR that this system is running in.

C17 (3095) The sysplex KDS cluster members' new AES master key registers were loaded with different values
during a coordinated KDS change master key. All sysplex KDS cluster members' (same active KDS)
new AES master key registers must be loaded with the same value or all must be empty when
performing a coordinated KDS change master key.

User action: Ensure all sysplex KDS cluster members' new AES master key registers are loaded with
the same value or all are empty and retry the function.

C18 (3096) One or more sysplex KDS cluster members' new DES master key registers were loaded and others
were empty during a coordinated KDS change master key. All sysplex KDS cluster members' (same
active KDS) new DES master key registers must be loaded with the same value or all must be empty
when performing a coordinated KDS change master key.

User action: Ensure all sysplex KDS cluster members' new DES master key registers are loaded with
the same value or all are empty and retry the function.

C19 (3097) The sysplex KDS cluster members' new DES master key registers were loaded with different values
during a coordinated KDS change master key. All sysplex KDS cluster members' (same active KDS)
new DES master key registers must be loaded with the same value or all must be empty when
performing a coordinated KDS change master key.

User action: Ensure all sysplex KDS cluster members' new DES master key registers are loaded with
the same value or all are empty and retry the function.

C1A (3098) A coordinated KDS change master key was attempted with empty new master key registers. At least
one of the new master key registers must be loaded with a value to perform a coordinated KDS change
master key.

User action: Load at least one of the new master key registers on all sysplex KDS cluster members
with the same value and retry the function.

C1B (3099) An ICSF subtask terminated during coordinated KDS refresh or coordinated KDS change master key
processing.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for information on
recovering from a coordinated KDS administration failure. The function can be retried. If the error is
common and persistent, contact your system programmer or the IBM Support Center.

C1C (3100) An error occurred attempting to obtain an ENQ for performing either a coordinated KDS refresh or
coordinated KDS change master key.

User action: The function can be retried. If the error is common and persistent, contact your system
programmer or the IBM Support Center.

Appendix A. ICSF and TSS Return and Reason Codes 791

Table 343. Reason Codes for Return Code C (12) (continued)

Reason Code Hex
(Decimal) Description

C1D (3101) A target system (member of the sysplex KDS cluster) was unable to open the new KDS for either a
coordinated KDS refresh or coordinated KDS change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for information on
recovering from a coordinated KDS administration failure. The function can be retried. If the error is
common and persistent, contact your system programmer or the IBM Support Center.

C1E (3102) One or more sysplex KDS cluster members' new AES master key registers were loaded and others
were empty during a coordinated KDS change master key. All sysplex KDS cluster members' (same
active KDS) new AES master key registers must be loaded with the same value or all must be empty
when performing a coordinated KDS change master key.

User action: Ensure all sysplex KDS cluster members new AES master key registers are loaded with
the same value or all are empty and retry the function.

C2B (3115) Either a coordinated KDS refresh or coordinated KDS change master key was cancelled.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for information on
recovering from a coordinated KDS administration failure. The function can be retried. If the error is
common and persistent, contact your system programmer or the IBM Support Center.

C2C (3116) A catalog problem occurred during either a coordinated KDS refresh or coordinated KDS change
master key. The problem occurred when looking up either the active KDS or new KDS in the catalog.

User action: Ensure both the active KDS and new KDS are cataloged and retry the function.

C2D (3117) A coordinated KDS refresh or coordinated KDS change master key was attempted on a system with a
level of hardware that is not supported by the function. This reason code is also used if the licensed
internal code (LIC) level on the originating system is lower then the licensed internal code (LIC) level
on 1 or more of the other sysplex KDS cluster members.

User action: Refer to “Coordinated KDS Administration (CSFCRC and CSFCRC6)” on page 611 for a
list of supported hardware levels. Perform the coordinated KDS function from the system running the
highest level of licensed internal code (LIC).

C2E (3118) A coordinated KDS change master key was attempted with the DES new master key register loaded
but with no current DES master key set. In order to perform a coordinated KDS change master key to
a new DES master key, a valid DES master key must have previously been set.

User action: Set a valid DES master key and then use the coordinated KDS change master key to
change the DES master key.

C2F (3119) A coordinated KDS change master key was attempted with the AES new master key register loaded
but with no current AES master key set. In order to perform a coordinated KDS change master key to a
new AES master key, a valid AES master key must have previously been set.

User action: Set a valid AES master key and then use the coordinated KDS change master key to
change the AES master key.

C32 (3122) A sysplex communication failure occurred during either coordinated KDS refresh or coordinated KDS
change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for information on
recovering from a coordinated CKDS administration failure. The function can be retried. If the error is
common and persistent, contact your system programmer or the IBM Support Center.

C33 (3123) A failure occurred processing KDS updates during a coordinated KDS change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for information on
recovering from a coordinated KDS administration failure. The function can be retried. If the error is
common and persistent, contact your system programmer or the IBM Support Center.

C34 (3124) An internal failure occurred in a coordinated KDS subtask while performing either a coordinated KDS
refresh or a coordinated KDS change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for information on
recovering from a coordinated KDS administration failure. The function can be retried. If the error is
common and persistent, contact your system programmer or the IBM Support Center.

792 z/OS ICSF Application Programmer's Guide

Table 343. Reason Codes for Return Code C (12) (continued)

Reason Code Hex
(Decimal) Description

C35 (3125) An internal failure occurred in a coordinated KDS subtask while performing either a coordinated KDS
refresh or a coordinated KDS change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for information on
recovering from a coordinated KDS administration failure. The function can be retried. If the error is
common and persistent, contact your system programmer or the IBM Support Center.

C36 (3126) An internal failure occurred in the sysplex subtask while performing either a coordinated KDS refresh
or coordinated KDS change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for information on
recovering from a coordinated KDS administration failure. The function can be retried. If the error is
common and persistent, contact your system programmer or the IBM Support Center.

C37 (3127) An internal failure occurred in the serialization subtask while performing either a coordinated KDS
refresh or coordinated KDS change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for information on
recovering from a coordinated KDS administration failure. The function can be retried. If the error is
common and persistent, contact your system programmer or the IBM Support Center.

C38 (3128) An internal failure occurred in the I/O subtask while performing a coordinated KDS change master
key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for information on
recovering from a coordinated KDS administration failure. The function may be retried. If the error is
common and persistent, contact your system programmer or the IBM Support Center.

C3A (3130) A target system (member of the sysplex KDS cluster) is not being responsive to a system that is
originating either a coordinated KDS refresh or coordinated KDS change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for information on
recovering from a coordinated KDS administration failure. The function can be retried. If the error is
common and persistent, contact your system programmer or the IBM Support Center.

C3B (3131) The active KDS could not be reenciphered to the new KDS during a coordinated KDS change master
key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for information on
recovering from a coordinated KDS administration failure. The function can be retried. If the error is
common and persistent, contact your system programmer or the IBM Support Center.

C3E (3134) A failure occurred either renaming the active KDS to the archive KDS or renaming the new KDS to the
active KDS during a coordinated KDS refresh or coordinated KDS change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for information on
recovering from a coordinated KDS administration failure. The function can be retried. If the error is
common and persistent, contact your system programmer or the IBM Support Center.

C40 (3136) A coordinated KDS refresh or coordinated KDS change master key was originated from a system at a
lower ICSF FMID release level than one or more of the target systems (sysplex KDS cluster members).
The coordinated KDS functions must be originated from a system running the highest ICSF FMID
level.

User action: Retry the function from a sysplex KDS cluster member running the highest ICSF FMID
level.

C41 (3137) An internal failure occurred during the set master key step of a coordinated KDS change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for information on
recovering from a coordinated KDS administration failure. The function can be retried. If the error is
common and persistent, contact your system programmer or the IBM Support Center.

C42 (3138) A failure occurred trying to back out from a failed rename of the active KDS to the archive KDS or a
failed rename of the new KDS to the active KDS during a coordinated KDS refresh or coordinated KDS
change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for information on
recovering from a coordinated KDS administration failure. The function can be retried. If the error is
common and persistent, contact your system programmer or the IBM Support Center.

Appendix A. ICSF and TSS Return and Reason Codes 793

Table 343. Reason Codes for Return Code C (12) (continued)

Reason Code Hex
(Decimal) Description

C43 (3139) A failure occurred switching the new KDS to the active KDS during either a coordinated KDS refresh
or a coordinated KDS change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for information on
recovering from a coordinated KDS administration failure. The function can be retried. If the error is
common and persistent, contact your system programmer or the IBM Support Center.

C44 (3140) A coordinated KDS refresh or a coordinated KDS change master key failed because one of the target
systems (sysplex KDS cluster members) had not finished ICSF initialization.

User action: Allow all sysplex KDS cluster members to finish ICSF initialization and retry the function.

C45 (3141) A coordinated KDS change master key was attempted with the RSA new master key register loaded
but with no current RSA master key set. In order to perform a coordinated KDS change master key to
a new RSA master key, a valid RSA master key must have previously been set.

User action: Set a valid RSA master key and then use the coordinated KDS change master key to
change the RSA master key.

C46 (3142) A coordinated KDS change master key was attempted with the ECC new master key register loaded
but with no current ECC master key set. In order to perform a coordinated KDS change master key to
a new ECC master key, a valid ECC master key must have previously been set.

User action: Set a valid ECC master key and then use the coordinated KDS change master key to
change the ECC master key.

C47 (3143) A coordinated KDS change master key was attempted with the PKCS #11 new master key register
loaded but with no current PKCS #11 master key set. In order to perform a coordinated KDS change
master key to a new PKCS #11 master key, a valid PKCS #11 master key must have previously been
set.

User action: Set a valid PKCS #11 master key and then use the coordinated KDS change master key to
change the PKCS #11 master key.

C48 (3144) The sysplex KDS cluster members' new RSA master key registers were loaded with different values
during a coordinated KDS change master key. All sysplex KDS cluster members' (same active KDS)
new RSA master key registers must be loaded with the same value or all must be empty when
performing a coordinated KDS change master key.

User action: Ensure all sysplex KDS cluster members' new RSA master key registers are loaded with
the same value or are all empty, and retry the function.

C49 (3145) The sysplex KDS cluster members' new ECC master key registers were loaded with different values
during a coordinated KDS change master key. All sysplex KDS cluster members' (same active KDS)
new ECC master key registers must be loaded with the same value or all must be empty when
performing a coordinated KDS change master key.

User action: Ensure all sysplex KDS cluster members' new ECC master key registers are loaded with
the same value or are all empty, and retry the function.

C4A (3146) One or more sysplex KDS cluster members' new RSA master key registers were loaded and others
were empty during a coordinated KDS change master key. All sysplex KDS cluster members' (same
active KDS) new RSA master key registers must be loaded with the same value or all must be empty
when performing a coordinated KDS change master key.

User action: Ensure all sysplex KDS cluster members' new RSA master key registers are loaded with
the same value or all are empty and retry the function.

C4B (3147) One or more sysplex KDS cluster members' new ECC master key registers were loaded and others
were empty during a coordinated KDS change master key. All sysplex KDS cluster members' (same
active KDS) new ECC master key registers must be loaded with the same value or all must be empty
when performing a coordinated KDS change master key.

User action: Ensure all sysplex KDS cluster members' new ECC master key registers are loaded with
the same value or are all empty and retry the function.

794 z/OS ICSF Application Programmer's Guide

Table 343. Reason Codes for Return Code C (12) (continued)

Reason Code Hex
(Decimal) Description

C4C (3148) The sysplex KDS cluster members' new PKCS #11 master key registers were loaded with different
values during a coordinated KDS change master key. All sysplex KDS cluster members' (same active
KDS) new PKCS #11 master key registers must be loaded with the same value or all must be empty
when performing a coordinated KDS change master key.

User action: Ensure all sysplex KDS cluster members' new PKCS #11 master key registers are loaded
with the same value or are all empty and retry the function.

C4D (3149) One or more sysplex KDS cluster members' new P11 master key registers were loaded and others were
empty during a coordinated KDS change master key. All sysplex KDS cluster members' (same active
KDS) new P11 master key registers must be loaded with the same value or all must be empty when
performing a coordinated KDS change master key.

User action: Ensure all sysplex KDS cluster members' new P11 master key registers are loaded with the
same value or are all empty and retry the function.

C80 (3200) Key object’s compliance mode is different than current setting of the Enterprise PKCS #11 coprocessors

User action: Contact your ICSF administrator or system programmer.

ICSF administrator action: The compliance mode setting on the Enterprise PKCS #11 coprocessors
must be set to a value at least as restrictive as the key object that failed. Using the PKCS #11 Token
Browser ISPF panels, examine the IBM CARD COMPLIANCE value for the key that failed. Set each
Enterprise PKCS #11 coprocessor to this value using TKE.

C82 (3202) A PKCS #11 Service found an error in DER encoded data returned from the Enterprise PKCS#11
Coprocessor.

User action: Contact your system programmer or the IBM Support Center.

1779 (6009) One or more target systems (sysplex KDS cluster members) did not successfully load the new KDS
during a coordinated KDS refresh or coordinated KDS change master key. This a common result of an
unresponsive target system.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for information on
recovering from a coordinated CKDS administration failure. If the error is common and persistent,
contact your system programmer or the IBM Support Center.

1780 (6016) A DASD IO error was encountered during access of the CKDS, PKDS, or TKDS.

User action: Contact your ICSF security administrator or system programmer. The SVC 99 error code
will be placed in the high-order halfword of the reason code field.

178C (6028) ESTAE could not be established in common I/O routines.

User action: Contact your system programmer or the IBM Support Center.

1790 (6032) The dynamic allocation of the DASD copy of the CKDS, PKDS, or TKDS in use by ICSF failed.

User action: Contact your ICSF security administrator or system programmer. The SVC 99 error code
will be placed in the high-order halfword of the reason code field.

1794 (6036) A dynamic deallocation error occurred when closing and deallocating a CKDS, PKDS, or TKDS.

User action: Contact your security administrator or system programmer. The SVC 99 error code will be
placed in the high-order halfword of the reason code field.

1795 (6037) A failure occurred routing KDS updates to the originating system of a coordinated KDS change master
key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for information on
recovering from a coordinated KDS administration failure. The function can be retried. If the error is
common and persistent, contact your system programmer or the IBM Support Center.

1796 (6038) The I/O subtask became out of sync with the sysplex KDS cluster during a coordinated KDS change
master key. The I/O subtask will be restarted to get back in sync with the sysplex KDS cluster.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for information on
recovering from a coordinated KDS administration failure. The function can be retried. If the error is
common and persistent, contact your system programmer or the IBM Support Center.

Appendix A. ICSF and TSS Return and Reason Codes 795

||
|

|

Table 343. Reason Codes for Return Code C (12) (continued)

Reason Code Hex
(Decimal) Description

1797 (6039) ICSF was unable to attach a coordinated KDS subtask for either a coordinated KDS refresh or
coordinated KDS change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for information on
recovering from a coordinated KDS administration failure. The function can be retried. If the error is
common and persistent, contact your system programmer or the IBM Support Center.

2724 (10020) A key retrieved from the in-storage CKDS failed the MAC verification (MACVER) check and is
unusable.

User action: Contact your ICSF administrator.

2728 (10024) A key retrieved from the in-storage CKDS or a key to be written to the PKDS was rejected for use by
the installation exit.

User action: Contact your ICSF administrator or system programmer.

272C (10028) You cannot use the secure key import or multiple secure key import callable services because the
cryptographic processor is not enabled for processing. The cryptographic coprocessor is not in special
secure mode.

User action: Contact your ICSF administrator (your administrator can enable the processing mode).

2734 (10036) More than one key with the same label was found in the CKDS or PKDS. This function requires a
unique key per label. The probable cause may be the use of an incorrect label pointing to a key type
that allows multiple keys per label.

User action: Make sure the application specifies the correct label. If the label is correct, contact your
ICSF security administrator or system programmer to verify the contents of the CKDS or PKDS.

273C (10044) OPEN of the PKDS in use by ICSF failed.

User action: Contact your ICSF security administrator or system programmer.

2740 (10048) I/O error reading or writing to the DASD copy of the CKDS or PKDS in use by ICSF.

User action: Contact your ICSF security administrator or system programmer. The RPL feedback code
will be placed in the high-order halfword of the reason code field.

REASONCODES: TSS 0C5 (197)

274C (10060) The I/O subtask terminated for an unexpected reason prior to completing the request. No dynamic
CKDS or PKDS update services are possible at this point.

User action: Contact your system programmer who can investigate the problem and restart the I/O
subtask by stopping and restarting ICSF.

2B08 (11016) The master key is not in a valid state.

User action: Contact your ICSF administrator.

REASONCODES: TSS 2FC (764)

2B0C (11020) The modulus of the public or private key is larger than allowed and configured in the CCC or FCV.
You cannot use this key on this system.

User action: Regenerate the key with a smaller modulus size.

2B10 (11024) The system administrator has used the ICSF User Control Functions panel to disable the RSA
functions.

User action: Wait until administrator functions are complete and the RSA functions are again enabled.

2B1C (11036) A PKDS is not available for processing.

User action: Contact your ICSF administrator.

2B20 (11040) The PKDS Control Record hash pattern is not valid.

User action: Contact your ICSF administrator.

796 z/OS ICSF Application Programmer's Guide

|
|
|

|

Table 343. Reason Codes for Return Code C (12) (continued)

Reason Code Hex
(Decimal) Description

2B24 (11044) The PKDS could not be accessed.

User action: Contact your ICSF administrator.

2B28 (11048) The coprocessor failed.

User action: Contact your IBM support center.

2B2C (11052) The specific coprocessor requested for service is temporarily unavailable. PKDS could not be accessed.
The specific coprocessor may be attempting some recovery action. If recovery action is successful, the
coprocessor will be made available. If the recovery action fails, the coprocessor will be made
permanently unavailable.

User action: Retry the function.

2B30 (11056) The coprocessor failed. The response from the processor was incomplete.

User action: Contact your IBM support center.

2B34 (11060) The service could not be performed because the required coprocessor was not active, or did not have a
master key set.

User action: If the service required a specific coprocessor, verify that the value specified is correct.
Reissue the request when the required coprocessor is available, and has the master key set.

2B38 (11064) Service could not be performed because of a hardware error on the coprocessor.

2B40 (11072) Coprocessor configuration change. A CCA or EP11 coprocessor has been configured as an accelerator.
TKE does not recognize coprocessors configured as accelerators.

2B41 (11073) Coprocessor configuration change. Either a CCA coprocessor has been reconfigured to be a EP11
coprocessor, or a PKCS #11 coprocessor has been reconfigured to be a CCA coprocessor.

8CA2 (36002) CSFPCI was called to set the RSA master key in a PCIXCC, CEX2C, CEX3C or CEX4C. This function is
disabled because dynamic RSA master key change is enabled and the RSA master key can only be
changed from the ICSF TSO Change asymmetric master key utility.

8CB4 (36020) A refresh of the CKDS failed because the DASD copy of the CKDS is enciphered under the wrong
master key. This may have resulted from an automatic refresh during processing of the CKDS key
record create callable service.

User action: Contact your ICSF administrator.

8CE4 (36068) A failure occurred during a coordinated KDS change master key operation because the DASD copy of
the CKDS is enciphered under the wrong master key.

User action: Contact your ICSF administrator.

8CE5 (36069) A failure occurred during a coordinated KDS change master key operation because the DASD copy of
the TKDS is enciphered under the wrong master key.

User action: Contact your ICSF administrator.

8D14 (36116) The PKDS specified for refresh, reencipher or activate has an incorrect dataset attribute.

User action: Create a larger PKDS. See z/OS Cryptographic Services ICSF System Programmer's Guide.

8D3C (36156) A PKCS #11 service is being requested. The service is disabled due to an ICSF FIPS self test failure. The
request is not processed.

User action: Report the problem to your IBM support center

8D40 (36160) The attempt to reencipher the CKDS failed because there is an enhanced wrapped token in the CKDS.

User Action: Reencipher the CKDS on a system that supports the enhanced wrapping method.

8D4D (36173) A failure occurred during a coordinated KDS change master key operation because the DASD copy of
the PKDS is enciphered under the wrong master key.

User Action: Contact your ICSF administrator.

Appendix A. ICSF and TSS Return and Reason Codes 797

|

|

|
|
|
|

|

|

|

||
|

|
|

|

||
|

|

||
|

|

Table 343. Reason Codes for Return Code C (12) (continued)

Reason Code Hex
(Decimal) Description

8D4E (36174) A failure occurred during a coordinated KDS change master key operation because the DASD copy of
the PKDS is enciphered under the wrong master key.

User Action: Contact your ICSF administrator.

8D56 (36182) A coprocessor failure was detected during initialization.

User action: The error is accompanied by the CSFM540I message. Follow instructions associated with
that message.

8D5A (36186) A request was made to reencipher a CKDS. The CKDS specified cannot be reenciphered on this release
of ICSF because the CKDS contains Variable-length Symmetric key tokens with an unrecognized
algorithm or key type in the associated data section. Only key tokens with a recognized algorithm or
key type can be managed on this release of ICSF.

User action: Perform the reencipher operation on a release of ICSF which recognizes the algorithm and
key type of all tokens in the specified CKDS.

8D5D (36189) The TKDS has an incorrect dataset attribute.

User action: Create a TKDS with valid dataset attributes. See z/OS Cryptographic Services ICSF System
Programmer's Guide

8D73 (36211) A request was made to load a key data set (CKDS, PKDS or TKDS) which has records which are in
KDSR format. This level of ICSF does not support KDSR format records.

User Action: Contact your ICSF administrator.

Reason Codes for Return Code 10 (16)
Table 344 lists reason codes returned from callable services that give return code
16.

Table 344. Reason Codes for Return Code 10 (16)

Reason Code Hex
(Decimal) Description

4 (4) ICSF: Your call to an ICSF callable service resulted in an abnormal ending.

User action: Contact your system programmer or the IBM Support Center.

150 (336) An error occurred in the cryptographic hardware component.

User action: Contact your system programmer or the IBM Support Center.

REASONCODES: ICSF 4 (4)

22C (556) The request parameter block failed consistency checking.

User action: Contact your system programmer or the IBM Support Center.

REASONCODES: ICSF 4 (4)

2C4 (708) Inconsistent data was returned from the cryptographic engine.

User action: Contact your system programmer or the IBM Support Center.

REASONCODES: ICSF 4 (4)

2C5 (709) Cryptographic engine internal error; could not access the master key data.

User action: Contact your system programmer or the IBM Support Center.

REASONCODES: ICSF 4 (4)

798 z/OS ICSF Application Programmer's Guide

||
|

|

||
|

|

Table 344. Reason Codes for Return Code 10 (16) (continued)

Reason Code Hex
(Decimal) Description

2C8 (712) An unexpected error occurred in the Master Key manager.

User action: Contact your system programmer or the IBM Support Center.

REASONCODES: ICSF 4 (4)

Appendix A. ICSF and TSS Return and Reason Codes 799

800 z/OS ICSF Application Programmer's Guide

Appendix B. Key Token Formats

For debugging purposes, this appendix provides the formats for AES, DES internal,
external, and null key tokens and for PKA key tokens.
v “AES Internal Key Token” on page 802
v “DES Internal Key Token” on page 803
v “DES External Key Token” on page 804
v “External RKX DES Key Token” on page 805
v “DES Null Key Token” on page 806
v “Variable-length Symmetric Key Token” on page 807
v “Variable-length Symmetric Null Key Token” on page 819
v “PKA Null Key Token” on page 819
v “RSA Public Key Token” on page 819
v “RSA Private External Key Token” on page 820

– “RSA Private Key Token, 1024-bit Modulus-Exponent External Form” on page
829

– “RSA private key token, 4096-bit Modulus-Exponent external form” on page
829

– “RSA private key, 4096-bit Modulus-Exponent format with AES encrypted
OPK section external form” on page 830

– “RSA private key, 4096-bit Chinese Remainder Theorem format with AES
encrypted OPK section external form” on page 832

– “RSA Private Key Token, 4096-bit Chinese Remainder Theorem External
Form” on page 834

v “RSA Private Internal Key Token” on page 835
– “RSA Private Key Token, 1024-bit Modulus-Exponent Internal Form” on page

837
– “RSA Private Key Token, 1024-bit Modulus-Exponent internal form with

encrypted blinding” on page 838
– “RSA private key, 4096-bit Modulus-Exponent format with AES encrypted

OPK section internal form” on page 839
– “RSA private key, 4096-bit Chinese Remainder Theorem format with AES

encrypted OPK section internal form” on page 841
– “RSA Private Key Token, 4096-bit Chinese Remainder Theorem Internal

Form” on page 843
v “ECC Key Token Format” on page 845
v “Trusted Block Key Token” on page 848

© Copyright IBM Corp. 1997, 2013 801

AES Key Token Formats

AES Internal Key Token
Table 345 shows the format for an AES internal key token.

Table 345. Internal Key Token Format

Bytes Description

0 X'01' (flag indicating this is an internal key token)

1–3 Implementation-dependent bytes (X'000000' for ICSF)

4 Key token version number (X'04')

5 Reserved - must be set to X'00'

6 Flag byte

Bit Meaning When Set On

0 Encrypted key and master key verification pattern (MKVP) are present.

Off for a clear key token, on for an encrypted key token.

1 Control vector (CV) value in this token has been applied to the key.

2 No key is present or the AES MKVP is not present if the key is encrypted.

3- 7 Reserved. Must be set to 0.

7 1-byte LRC checksum of clear key value.

8–15 Master key verification pattern (MKVP)

(For a clear AES key token this value will be hex zeros.)

16–47 Key value, if present. Contains either:

v A 256-bit encrypted-key value. The clear key value is padded on the right with binary zeros,
and the entire 256-bit value is encrypted under the AES master-key using AES CBC mode with
an initialization vector of binary zeros.

v A 128-bit, 192-bit, or 256-bit clear-key value left-aligned and padded on the right with binary
zeros for the entire 256-bit field.

48–55 8-byte control vector.

(For a clear AES key token this value will be hex zeros.)

56–57 2-byte integer specifying the length in bits of the clear key value.

58–59 2-byte integer specifying the length in bytes of the encrypted key value.

(For a clear AES key token this value will be hex zeros.)

60–63 Token validation value (TVV). See“Token Validation Value” for more information.

Token Validation Value
ICSF uses the token validation value (TVV) to verify that a token is valid. The TVV
prevents a key token that is not valid or that is overlaid from being accepted by
ICSF. It provides a checksum to detect a corruption in the key token.

When an ICSF callable service generates a key token, it generates a TVV and stores
the TVV in bytes 60-63 of the key token. When an application program passes a
key token to a callable service, ICSF checks the TVV. To generate the TVV, ICSF
performs a twos complement ADD operation (ignoring carries and overflow) on
the key token, operating on four bytes at a time, starting with bytes 0-3 and ending
with bytes 56-59.

802 z/OS ICSF Application Programmer's Guide

||

|
|
|

|
|

DES Key Token Formats

DES Internal Key Token
Table 346 shows the format for a DES internal key token.

Table 346. Internal Key Token Format

Bytes Description

0 X'01' (flag indicating this is an internal key token)

1–3 Implementation-dependent bytes (X'000000' for ICSF)

4 Key token version number (X'00' or X'01')

5 Reserved (X'00')

6 Flag byte

Bit Meaning When Set On

0 Encrypted key and master key verification pattern (MKVP) are present.

1 Control vector (CV) value in this token has been applied to the key.

2 Key is used for no control vector (NOCV) processing. Valid for transport keys only.

3 Reserved

4 Reserved

5 Reserved

6 Reserved

7 Export prohibited.

7
Bit Meaning When Set On

0-2 Key value encryption method.

v 000 - the key is encrypted using the original CCA method (ECB).

v 001 - the key is encrypted using the X9.24 enhanced method (CBC).

These bits are ignored if the token contains no key or a clear key.

3-7 Reserved.

8–15 Master key verification pattern (MKVP)

16–23 A single-length key, the left half of a double-length key, or Part A of a triple-length key. The value
is encrypted under the master key when flag bit 0 is on, otherwise it is in the clear.

24–31 X'0000000000000000' if a single-length key, or the right half of a double-length operational key, or
Part B of a triple-length operational key. The right half of the double-length key or Part B of the
triple-length key is encrypted under the master key when flag bit 0 is on, otherwise it is in the
clear.

32–39 The control vector (CV) for a single-length key or the left half of the control vector for a
double-length key.

40–47 X'0000000000000000' if a single-length key or the right half of the control vector for a
double-length operational key.

48–55 X'0000000000000000' if a single-length key or double-length key, or Part C of a triple-length
operational key. Part C of a triple-length key is encrypted under the master key when flag bit 0 is
on, otherwise it is in the clear.

56-58 Reserved (X'000000')

59 bits 0 and 1
B'00' Indicates DES for DATA keys or the system default algorithm for a KEK.

Appendix B. Key Token Formats 803

||

||

||

||

||

Table 346. Internal Key Token Format (continued)

Bytes Description

59 bits 2 and 3
B'00' Indicates single-length key (version 0 only).

B'01' Indicates double-length key (version 1 only).

B'10' Indicates triple-length key (version 1 only).

59 bits 4 –7 B'0000'

60–63 Token validation value (TVV).

Note: key token stored in a non-KDSR CKDS will not have an MKVP or TVV.
Before such a key token is used, the MKVP is copied from the CKDS header record
and the TVV is calculated and placed in the token. See “Token Validation Value”
on page 802 for more information.

DES External Key Token
Table 347 shows the format for a DES external key token.

Table 347. Format of External Key Tokens

Bytes Description

0 X'02' (flag indicating an external key token)

1 Reserved (X'00')

2–3 Implementation-dependent bytes (X'0000' for ICSF)

4 Key token version number (X'00' or X'01')

5 Reserved (X'00')

6 Flag byte

Bit Meaning When Set On

0 Encrypted key is present.

1 Control vector (CV) value has been applied to the key.

Other bits are reserved and are binary zeros.

7
Bit Meaning When Set On

0-2 Key value encryption method.

v 000 - the key is encrypted using the original CCA method (ECB).

v 001 - the key is encrypted using the X9.24 enhanced method (CBC).

These bits are ignored if the token contains no key or a clear key.

3-7 Reserved.

8–15 Reserved (X'0000000000000000')

16–23 Single-length key or left half of a double-length key, or Part A of a triple-length key. The value is
encrypted under a transport key-encrypting key when flag bit 0 is on, otherwise it is in the clear.

24–31 X'0000000000000000' if a single-length key or right half of a double-length key, or Part B of a
triple-length key. The right half of a double-length key or Part B of a triple-length key is
encrypted under a transport key-encrypting key when flag bit 0 is on, otherwise it is in the clear.

32–39 Control vector (CV) for single-length key or left half of CV for double-length key

40–47 X'0000000000000000' if single-length key or right half of CV for double-length key

804 z/OS ICSF Application Programmer's Guide

|
|
|
|

Table 347. Format of External Key Tokens (continued)

Bytes Description

48–55 X'0000000000000000' if a single-length key, double-length key, or Part C of a triple-length key.
This key part is encrypted under a transport key-encrypting key when flag bit 0 is on, otherwise
it is in the clear.

56–58 Reserved (X'000000')

59 bits 0 and 1 B'00'

59 bits 2 and 3
B'00' Indicates single-length key (version 0 only).

B'01' Indicates double-length key (version 1 only).

B'10' Indicates triple-length key (version 1 only).

59 bits 4–7 B'0000'

60-63 Token validation value (see “Token Validation Value” on page 802 for a description).

External RKX DES Key Token
Table 348 defines an external DES key-token called an RKX key-token. An RKX
key-token is a special token used exclusively by the Remote Key Export
(CSNDRKX and CSNFRKX) and DES key-storage callable services (for example,
CKDS Key Record Write). No other callable services use or reference an RKX
key-token or key-token record. For additional information about the usage of RKX
key tokens, see “Remote Key Loading” on page 32.

Note: Callable services other than the Remote Key Export and the DES key-storage
callable services do not support RKX key tokens or RKX key token records.

As can be seen in the table, RKX key tokens are 64 bytes in length, have a token
identifier flag (X'02'), a token version number (X'10'), and room for encrypted keys
like normal CCA DES key tokens. Unlike normal CCA DES key-tokens, RKX key
tokens do not have a control vector, flag bits, and a token-validation value. In
addition, they have a confounder value, a MAC value, and room for a third
encrypted key.

Table 348. External RKX DES key-token format, version X'10'

Offset Length Meaning

00 1 X'02' (a token identifier flag that indicates an external key-token)

01 3 Reserved, binary zero

04 1 The token version number (X'10')

05 2 Reserved, binary zero

07 1 Key length in bytes, including confounder

08 8 Confounder

16 8 Key left

24 8 Key middle (binary zero if not used)

32 8 Key right (binary zero if not used)

Appendix B. Key Token Formats 805

Table 348. External RKX DES key-token format, version X'10' (continued)

Offset Length Meaning

40 8 Rule ID

The trusted block rule identifier used to create this key token. A
subsequent call to Remote Key Export (CSNDRKX or CSNFRKX)
can use this token with a trusted block rule that references the
rule ID that must have been used to create this token. The
trusted block rule can be compared with this rule ID for
verification purposes.

The Rule ID is an 8-byte string of ASCII characters, left justified
and padded on the right with space characters. Acceptable
characters are A...Z, a...z, 0...9, - (X'2D'), and _ (X'5F'). All other
characters are reserved for future use.

48 8 Reserved, binary zero

56 8 MAC value

ISO 16609 TDES CBC-mode MAC, computed over the 56 bytes
starting at offset 0 and including the encrypted key value and
the rule ID using the same MAC key that is used to protect the
trusted block itself.

This MAC value guarantees that the key and the rule ID cannot
be modified without detection, providing integrity and binding
the rule ID to the key itself. This MAC value must verify with
the same trusted block used to create the key, thus binding the
key structure to that specific trusted block.

Note:

1. A fixed, randomly derived variant is exclusive-ORed with the MAC key before
it is used to encipher the generated or exported key and confounder.

2. The MAC key is located within a trusted block (internal format) and can be
recovered by decipherment under a variant of the PKA master key.

3. The trusted block is originally created in external form by the Trusted Block
Create callable service and then converted to internal form by the PKA Key
Import callable service prior to the Remote Key Export call.

DES Null Key Token
Table 349 shows the format for a fixed length DES null key token.

Table 349. Format of Null Key Tokens

Bytes Description

0 X'00' (flag indicating this is a null key token).

1–15 Reserved (set to binary zeros).

16–23 Single-length encrypted key, or left half of double-length encrypted key, or Part A of triple-length
encrypted key.

24–31 X'0000000000000000' if a single-length encrypted key, the right half of double-length encrypted
key, or Part B of triple-length encrypted key.

32–39 X'0000000000000000' if a single-length encrypted key or double-length encrypted key.

40–47 Reserved (set to binary zeros).

48–55 Part C of a triple-length encrypted key.

806 z/OS ICSF Application Programmer's Guide

|

Table 349. Format of Null Key Tokens (continued)

Bytes Description

56–63 Reserved (set to binary zeros).

Variable-length Symmetric Key Token Formats

Variable-length Symmetric Key Token
The following table presents the presents the format for a variable-length
symmetric key token. The length of the token depends on the key type and
algorithm.

Table 350. Variable-length Symmetric Key Token

Offset
(Dec)

Length of
Field
(Bytes) Description

Header

0 1 Token flag

X'00' for null tokens

X'01' for internal tokens

X'02' for external tokens

1 1 Reserved (X'00')

2 2 Length of the token in bytes

4 1 Token version number X'05' (May be X'00' for null tokens)

5 3 Reserved (X'000000')

Wrapping information

8 1 Key material state.

X'00' no key present (internal or external)

X'01' key is clear (internal)

X'02' key is encrypted under a key-encrypting key (external)

X'03' key is encrypted under the master key (internal)

9 1 Key verification pattern (KVP) type.

X'00' No KVP

X'01' AES master key verification pattern

X'02' key-encrypting key verification pattern

10 16 Verification pattern of the key used to wrap the payload. Value is left
justified.

26 1 Wrapping method - This value indicates the wrapping method used
to protect the data in the encrypted section.

X'00' key is in the clear

X'02' AESKW

X'03' PKOAEP2

Appendix B. Key Token Formats 807

|

Table 350. Variable-length Symmetric Key Token (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

27 1 Hash algorithm used in wrapping algorithm.

v For wrapping method X'00'

X'00' None. For clear key tokens.

v For wrapping method X'02'

X'02' SHA-256

v For wrapping method X'03'

X'01' SHA-1

X'02' SHA-256

X'04' SHA-384

X'08' SHA-512

28 1 Payload version

X'00' Variable-length payload

X'01' Fixed-length payload
All other values are reserved

29 1 Reserved (X'00')

AESKW Components: Associated data and clear key or encrypted AESKW payload

Associated data section

30 1 Associated data version (X'01')

31 1 Reserved (X'00')

32 2 Length of the associated data in bytes: adl

34 1 Length of the key name in bytes: kl

35 1 Length of the IBM extended associated data in bytes: iead

36 1 Length of the installation-definable associated data in bytes: uad

37 1 Reserved (X'00')

38 2 Length of the payload in bits: pl

40 1 Reserved (X'00')

41 1 Type of algorithm for which the key can be used

X'01' DES

X'02' AES

X'03' HMAC

808 z/OS ICSF Application Programmer's Guide

|||

||

||
|

|||

|

Table 350. Variable-length Symmetric Key Token (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

42 2 Key type:

For algorithm AES:

X'0001' CIPHER

X'0003' EXPORTER

X'0004' IMPORTER

For algorithm HMAC:

X'0002' MAC

For algorithm DES:

X'0008' DESUSECV

44 1 Key-usage field count (kuf) - (1 byte)

45 kuf * 2 Key-usage fields (kuf * 2 bytes)

v For HMAC algorithm keys, refer to Table 352 on page 810.

v For AES algorithm Key-Encrypting keys (Exporter or Importer),
refer to Table 353 on page 811.

v For AES algorithm Cipher keys, refer to Table 354 on page 814.

v For DESUSECV keys, refer to Table 351 on page 810

45 + kuf
* 2

1 Key-management field count (kmf) - (2 byte):

v For AES and HMAC keys: 2 (no pedigree information) or 3 (has
pedigree information)

v For DESUSECV keys: 1

46 + kuf
* 2

kuf * 2 Key-management fields (kmf * 2 bytes):

v For AES and HMAC algorithm keys, refer to Table 355 on page 816

v For DESUSECV keys, refer to Table 356 on page 819

46 + kuf
* 2 +
kmf * 2

kl Key name

46 + kuf
* 2 +
kmf * 2
+ kl

iead IBM extended associated data

46 + kuf
* 2 +
kmf * 2
+ kl +
iead

uad Installation-defined associated data

Clear key or encrypted payload

Appendix B. Key Token Formats 809

|

||

|

|
|
||

|
|

|

||

|

|

Table 350. Variable-length Symmetric Key Token (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

30 + adl (pl+7)/8
Encrypted AESKW payload (internal keys): The encrypted AESKW
payload is created from the unencrypted AESKW payload which is
made up of the ICV/pad length/hash options and hash length/hash
options/hash of the associated data/key material/padding. See
unencrypted AESKW payload below.

Encrypted PKOAEP2 payload (external keys): The encrypted
PKOAEP2 payload is created using the PKCS #1 v1.2 encoding
method for a given hash algorithm. The message (M) inside the
encoding contains: [2 bytes: bit length of key] || [clear HMAC key].
M is encoded using OAEP and then encrypted with an RSA public
key according to the standard.

Clear key payload: When the key is clear, only the key material will
be in the payload padded to the nearest byte with binary zeros.

30 + adl
+
(pl+7)/8

End of AESKW components

Table 351. DESUSECV Key-usage fields

Offset
(Dec)

Length
of Field
(Bytes) Description

44 1 Key-usage field count (kuf): 1

45 2 Key-usage field 1

High-order byte:

B'0000 0000'
Reserved

All unused bits are reserved and must be zero.

Low-order byte:

B'0000 0000'
Reserved

All unused bits are reserved and must be zero.

Table 352. HMAC Algorithm Key-usage fields

Offset
(Dec)

Length of
Field
(Bytes) Description

44 1 Key-usage field count (kuf): 2

810 z/OS ICSF Application Programmer's Guide

||

|
|

|
|
||

|||

|||

|

|
|

|

|

|
|

|
|

Table 352. HMAC Algorithm Key-usage fields (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

45 2 Key-usage field 1

High-order byte:

1xxx xxxx
Key can be used for generate.

x1xx xxxx
Key can be used for verify.

All unused bits are reserved and must be zero.

Low-order byte:

xxxx 1xxx
The key can only be used in UDXs (used in KGN, KIM,
KEX).

xxxx 0xxx
The key can be used in both UDXs and CCA.

xxxx xuuu
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

47 2 Key-usage field 2

High-order byte:

1xxx xxxx
SHA-1 hash method is allowed for the key.

x1xx xxxx
SHA-224 hash method is allowed for the key.

xx1x xxxx
SHA-256 hash method is allowed for the key.

xxx1 xxxx
SHA-384 hash method is allowed for the key.

xxxx 1xxx
SHA-512 hash method is allowed for the key.

All unused bits are reserved and must be zero.

Low-order byte:

All bits are reserved and must be zero.

Table 353. AES Algorithm KEK Key-usage fields

Offset
(Dec)

Length of
Field
(Bytes) Description

44 1 Key-usage field count (kuf): 4

Appendix B. Key Token Formats 811

Table 353. AES Algorithm KEK Key-usage fields (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

45 2 Key-usage field 1

High-order byte for EXPORTER:

1xxx xxxx
Key can be used for EXPORT.

x1xx xxxx
Key can be used for TRANSLAT.

xx1x xxxx
Key can be used for GENERATE-OPEX.

xxx1 xxxx
Key can be used for GENERATE-IMEX.

xxxx 1xxx
Key can be used for GENERATE-EXEX.

xxxx x1xx
Key can be used for GENERATE-PUB.

All unused bits are reserved and must be zero.

High-order byte for IMPORTER:

1xxx xxxx
Key can be used for IMPORT.

x1xx xxxx
Key can be used for TRANSLAT.

xx1x xxxx
Key can be used for GENERATE-OPIM.

xxx1 xxxx
Key can be used for GENERATE-IMEX.

xxxx 1xxx
Key can be used for GENERATE-IMIM.

xxxx x1xx
Key can be used for GENERATE-PUB.

All unused bits are reserved and must be zero.

Low-order byte:

xxxx 1xxx
The key can only be used in UDXs (used in KGN, KIM,
KEX).

xxxx 0xxx
The key can be used in both UDXs and CCA.

xxxx xuuu
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

812 z/OS ICSF Application Programmer's Guide

Table 353. AES Algorithm KEK Key-usage fields (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

47 2 Key-usage field 2

High-order byte:

1xxx xxxx
Key can wrap a TR-31 key.

All unused bits are reserved and must be zero.

Low-order byte:

xxxx xxx1
This KEK can export a key in RAW format.

All unused bits are reserved and must be zero

49 2
Key-usage field 3

High-order byte:

1xxx xxxx
Key can wrap DES keys

x1xx xxxx
Key can wrap AES keys

xx1x xxxx
Key can wrap HMAC keys

xxx1 xxxx
Key can wrap RSA keys

xxxx 1xxx
Key can wrap ECC keys

All unused bits are reserved and must be zero.

Low-order byte:

All bits are reserved and must be zero.

Appendix B. Key Token Formats 813

Table 353. AES Algorithm KEK Key-usage fields (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

51 2
Key-usage field 4

High-order byte:

1xxx xxxx
Key can wrap DATA class keys

x1xx xxxx
Key can wrap KEK class keys

xx1x xxxx
Key can wrap PIN class keys

xxx1 xxxx
Key can wrap DERIVATION class keys

xxxx 1xxx
Key can wrap CARD class keys

xxxx x1xx
Key can wrap CVAR class keys

All unused bits are reserved and must be zero.

Low-order byte:

All bits are reserved and must be zero.

Table 354. AES Algorithm Cipher Key Associated Data

Offset
(Dec)

Length of
Field
(Bytes) Description

44 1 Key-usage field count (kuf): 2

814 z/OS ICSF Application Programmer's Guide

|
|

Table 354. AES Algorithm Cipher Key Associated Data (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

45 2
Key-usage field 1

High-order byte:

1xxx xxxx
Key can be used for encryption.

x1xx xxxx
Key can be used for decryption.

xx1x xxxx
Key can be used for cipher text translate only.

All unused bits are reserved and must be zero.

Low-order byte:

xxxx 1xxx
The key can only be used in UDXs (used in KGN, KIM,
KEX).

xxxx 0xxx
The key can be used in both UDXs and CCA.

xxxx xuuu
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

47 2
Key-usage field 2

High-order byte:

X'00' Key can be used for Cipher Block Chaining (CBC).

X'01' Key can be used for Electronic Code Book (ECB).

X'02' Key can be used for Cipher Feedback (CFB).

X'03' Key can be used for Output Feedback (OFB).

X'04' Key can be used for Galois/Counter Mode (GCM)

X'05' Key can be used for XEX-based Tweaked CodeBook Mode
with CipherText Stealing (XTS)

All unused values are reserved and must not be used.

Low-order byte:

All bits are reserved and must be zero.

Appendix B. Key Token Formats 815

Table 355. AES and HMAC algorithm key-management fields

Offset
(Dec)

Length
of Field
(Bytes) Description

48 2 Key-management field 1

High-order byte:

1xxx xxxx
Allow export using symmetric key.

x1xx xxxx
Allow export using unauthenticated asymmetric key.

xx1x xxxx
Allow export using authenticated asymmetric key.

xxx1 xxxx
Allow export in RAW format.

All other bits are reserved and must be zero.

Low-order byte:

--symmetric--

1xxx xxxx
Prohibit export using DES key.

x1xx xxxx
Prohibit export using AES key.

--asymmetric--

xxxx 1xxx
Prohibit export using RSA key.

All other bits are reserved and must be zero.

816 z/OS ICSF Application Programmer's Guide

||

|
|

|
|
||

|||

|

|
|

|
|

|
|

|
|
|

|

|

|
|

|
|
|

|
|
|

Table 355. AES and HMAC algorithm key-management fields (continued)

Offset
(Dec)

Length
of Field
(Bytes) Description

48 + kuf
* 2

2 Key-management field 2

High-order byte:

11xx xxxx
Key, if present, is incomplete. Key requires at least 2 more
parts.

10xx xxxx
Key, if present, is incomplete. Key requires at least 1 more
part.

01xx xxxx
Key, if present, is incomplete. Key can be completed or have
more parts added.

00xx xxxx
Key, if present, is complete. No more parts can be added.

All other bits are reserved and must be zero.

Low-order byte (Security History):

xxx1 xxxx
Key was encrypted with an untrusted KEK.

xxxx 1xxx
Key was in a format without type/usage attributes.

xxxx x1xx
Key was encrypted with key weaker than itself.

xxxx xx1x
Key was in a non-CCA format.

xxxx xxx1
Key was encrypted in ECB mode.

All other bits are reserved and must be zero.

50 + kuf
* 2

2 Key-management field 3 - Pedigree (this field may or may not be
present)

Indicates how key was originally created and how it got into the
current system.

High-order byte: Pedigree Original

X'00' Unknown (Key Token Build2, Key Translate2)

X'01' Other - method other than those defined here, probably used
in UDX

X'02' Randomly Generated (Key Generate2)

X'03' Established by key agreement (ECC Diffie-Hellman)

X'04' Created from cleartext key components (Key Part Import2)

X'05' Entered as a cleartext key value (Key Part Import2, Secure
Key Import2)

X'06' Derived from another key

X'07' Cleartext keys or key parts that were entered at TKE and
secured from there to the target card (operational key load)

All unused values are reserved and undefined.

Appendix B. Key Token Formats 817

|

|
|

|
|
||

|
|
||

|

|
|
|

|
|
|

|
|
|

|
|
|

|

|
|

|
|

|
|

|
|

|
|
|

|
|
||
|

|
|

|

||

||
|

||

||

||

||
|

||

||
|
|

Table 355. AES and HMAC algorithm key-management fields (continued)

Offset
(Dec)

Length
of Field
(Bytes) Description

50 + kuf
* 2
(cont’d)

2 (cont’d)
X'00' Unknown (Key Token Build2)

X'01' Other - method other than those defined here, probably used
in UDX

X'02' Randomly Generated (Key Generate2)

X'03' Established by key agreement (ECC Diffie-Hellman)

X'04' Created from cleartext key components (Key Part Import2)

X'05' Entered as a cleartext key value (Key Part Import2, Secure
Key Import2)

X'06' Derived from another key

X'07' Imported from a CCA 05 variable length token with pedigree
field (Symmetric Key Import2)

X'08' Imported from a CCA 05 variable length token with no
pedigree field (Symmetric Key Import2)

X'09' Imported from a CCA token that had a CV

X'0A' Imported from a CCA token that had no CV or a zero CV

X'0B' Imported from a TR-31 key block that contained a CCA CV
(ATTR-CV option) (TR-31 Import)

X'0C' Imported from a TR-31 key block that did not contain a CCA
CV (TR-31 Import)

X'0D' Imported using PKCS 1.2 RSA encryption (Symmetric Key
Import2)

X'0E' Imported using PKCS OAEP encryption (Symmetric Key
Import2)

X'0F' Imported using PKA92 RSA encryption (Symmetric Key
Import2)

X'10' Imported using RSA ZERO-PAD encryption (Symmetric Key
Import2)

X'11' Converted from a CCA token that had a CV (Key Translate2)

X'12' Converted from a CCA token that had no CV or a zero CV
(Key Translate2)

X'13' Cleartext keys or key parts that were entered at TKE and
secured from there to the target card (operational key load)

X'14' Exported from a CCA 05 variable length token with pedigree
field (Symmetric Key Export)

X'15' Exported from a CCA 05 variable length token with no
pedigree field (Symmetric Key Export)

X'16' Exported using PKCS OAEP encryption (Symmetric Key
Export)

All unused values are reserved and undefined.

818 z/OS ICSF Application Programmer's Guide

|

|
|

|
|
||

|
|
|

|
||

||
|

||

||

||

||
|

||

||
|

||
|

||

||

||
|

||
|

||
|

||
|

||
|

||
|

||

||
|

||
|

||
|

||
|

||
|
|
|

Table 356. DESUSECV key-management fields

Offset
(Dec)

Length
of Field
(Bytes) Description

47 1 Key-management field count (kmf): 1

48 2 Key-management field 1

High-order byte:

B'0000 0000'
Reserved

All unused bits are reserved and must be zero.

Low-order byte:

B'0000 0000'
Reserved

All unused bits are reserved and must be zero.

Variable-length Symmetric Null Key Token
The following table shows the format for a variable-length symmetric null key
token.

Table 357. Variable-length Symmetric Null Token

Bytes Description

0 X'00' Token identifier (indicates that this is a null key token).

1 Version, X'00'.

2-3 X'0008' Length of the key token structure.

4-7 Ignored (zero).

PKA Key Token Formats

PKA Null Key Token
Table 358 shows the format for a PKA null key token.

Table 358. Format of PKA Null Key Tokens

Bytes Description

0 X'00' Token identifier (indicates that this is a null key token).

1 Version, X'00'

2–3 X'0008' Length of the key token structure.

4–7 Ignored (should be zero).

RSA Key Token Formats

RSA Public Key Token
An RSA public key token contains the following sections:
v A required token header, starting with the token identifier X'1E'
v A required RSA public key section, starting with the section identifier X'04'

Appendix B. Key Token Formats 819

||

|
|

|
|
||

|||

|||

|

|
|
|

|

|
|
|
|

Table 359 presents the format of an RSA public key token. All length fields are in
binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first.

Table 359. RSA Public Key Token

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1E' indicates an external token.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

RSA Public Key Section (required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12+xxx+yyy.

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, “xxx”.

008 002 Public key modulus length in bits.

010 002 RSA public key modulus field length in bytes, “yyy”.

012 xxx Public key exponent (this is generally a 1-, 3-, or 64- to 512-byte quantity), e.
e must be odd and 1<e<n. (Frequently, the value of e is 216+1)

12+xxx yyy Modulus, n.

RSA Private External Key Token
An RSA private external key token contains the following sections:
v A required PKA token header starting with the token identifier X'1E'
v A required RSA private key section starting with one of the following section

identifiers:
– X'02' which indicates a modulus-exponent form RSA private key section (not

optimized) with modulus length of up to 1024.
– X'08' which indicates an optimized Chinese Remainder Theorem form private

key section with modulus bit length of up to 4096.
– X'09' which indicates a modulus-exponent form RSA private key section (not

optimized) with modulus length of up to 4096 bits.
– X'30' which indicates a modulus-exponent form RSA private key section with

modulus length of up to 4096 bits with an AES object protection key.
– X'31' which indicates an Chinese Remainder Theorem form private key

section with modulus bit length of up to 4096 bits with an AES object
protection key.

v A required RSA public key section, starting with the section identifier X'04'
v An optional private key name section, starting with the section identifier X'10'

Table 360 on page 821 presents the basic record format of an RSA private external
key token. All length fields are in binary. All binary fields (exponents, lengths, and
so on) are stored with the high-order byte first. All binary fields (exponents,
modulus, and so on) in the private sections of tokens are right-justified and
padded with zeros to the left.

820 z/OS ICSF Application Programmer's Guide

|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|

Table 360. RSA Private External Key Token Basic Record Format

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1E' indicates an external token. The private key is
either in cleartext or enciphered with a transport key-encrypting key.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

RSA Private Key Section (required)

v For 1024-bit Modulus-Exponent form refer to “RSA Private Key Token, 1024-bit Modulus-Exponent external
format.”

v For 4096-bit Modulus-Exponent form refer to “RSA Private Key Token, 1024-bit Modulus-Exponent external
format” on page 822.

v For 4096-bit Chinese Remainder Theorem form refer to “RSA Private Key Token, 4096-bit Chinese Remainder
Theorem external format” on page 823.

v For 4096-bit Modulus-Exponent form with AES OPK refer to “RSA private key, 4096-bit Modulus-Exponent
format with AES encrypted OPK section (X'30') external form” on page 825.

v For 4096-bit Chinese Remainder Theorem form with AES OPK refer to “RSA private key, 4096-bit Chinese
Remainder Theorem format with AES encrypted OPK section (X'31') external form” on page 826.

RSA Public Key Section (required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12+xxx.

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, “xxx”.

008 002 Public key modulus length in bits.

010 002 RSA public key modulus field length in bytes, which is zero for a private
token.
Note: In an RSA private key token, this field should be zero. The RSA
private key section contains the modulus.

012 xxx Public key exponent, e (this is generally a 1-, 3-, or 64- to 512-byte
quantity). e must be odd and 1<e<n. (Frequently, the value of e is 216+1
(=65,537).

Private Key Name (optional)

000 001 X'10', section identifier, private key name.

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

004 064 Private key name (in ASCII), left-justified, padded with space characters
(X'20'). An access control system can use the private key name to verify
that the calling application is entitled to use the key.

RSA Private Key Token, 1024-bit Modulus-Exponent external format

Table 361. RSA Private Key Token, 1024-bit Modulus-Exponent external format

Offset (Dec) Number of Bytes Description

000 001 X'02', section identifier, RSA private key, modulus-exponent format
(RSA-PRIV)

Appendix B. Key Token Formats 821

|
|

|
|

Table 361. RSA Private Key Token, 1024-bit Modulus-Exponent external format (continued)

Offset (Dec) Number of Bytes Description

001 001 X'00', version.

002 002 Length of the RSA private key section X'016C' (364 decimal).

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is
deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key format and security:

X'00' Unencrypted RSA private key subsection identifier.

X'82' Encrypted RSA private key subsection identifier.

029 001 Reserved, binary zero.

030 020 SHA-1 hash of the optional key-name section. If there is no key-name
section, then 20 bytes of X'00'.

050 004 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

6 The key is translatable.

All other bits reserved, set to binary zero.

054 006 Reserved; set to binary zero.

060 024 Reserved; set to binary zero.

084 Start of the optionally-encrypted secure subsection.

084 024 Random number, confounder.

108 128 Private-key exponent, d. d=e-1 mod((p-1)(q-1)), and 1<d<n where e is the
public exponent.

End of the optionally-encrypted subsection; the confounder field and the private-key exponent
field are enciphered for key confidentiality when the key format and security flags (offset 28)
indicate that the private key is enciphered. They are enciphered under a double-length transport
key using the ede2 algorithm.

236 128 Modulus, n. n=pq where p and q are prime and 1<n<21024.

RSA Private Key Token, 1024-bit Modulus-Exponent external format

This RSA private key token and the external X'09' token is supported on a CCA
Crypto Express coprocessor.

Table 362. RSA Private Key Token, 4096-bit Modulus-Exponent external format

Offset (Dec) Number of Bytes Description

000 001 X'09', section identifier, RSA private key, modulus-exponent format
(RSAMEVAR).

001 001 X'00', version.

002 002 Length of the RSA private key section 132+ddd+nnn+xxx.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is
deciphered for use.

822 z/OS ICSF Application Programmer's Guide

Table 362. RSA Private Key Token, 4096-bit Modulus-Exponent external format (continued)

Offset (Dec) Number of Bytes Description

024 002 Length of the encrypted private key section 8+ddd+xxx.

026 002 Reserved; set to binary zero.

028 001 Key format and security:

X'00' Unencrypted RSA private key subsection identifier.

X'82' Encrypted RSA private key subsection identifier.

029 001 Reserved, set to binary zero.

030 020 SHA-1 hash of the optional key-name section. If there is no key-name
section, then 20 bytes of X'00'.

050 001 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

6 The key is translatable

All other bits reserved, set to binary zero.

051 001 Reserved; set to binary zero.

052 048 Reserved; set to binary zero.

100 016 Reserved; set to binary zero.

116 002 Length of private exponent, d, in bytes: ddd.

118 002 Length of modulus, n, in bytes: nnn.

120 002 Length of padding field, in bytes: xxx.

122 002 Reserved; set to binary zero.

124 Start of the optionally-encrypted secure subsection.

124 008 Random number, confounder.

132 ddd Private-key exponent, d. d=e-1 mod((p-1)(q-1)), and 1<d<n where e is the
public exponent.

132+ddd xxx X'00' padding of length xxx bytes such that the length from the start of
the random number above to the end of the padding field is a multiple
of eight bytes.

End of the optionally-encrypted subsection; the confounder field and the private-key exponent
field are enciphered for key confidentiality when the key format and security flags (offset 28)
indicate that the private key is enciphered. They are enciphered under a double-length transport
key using the ede2 algorithm.

132+ddd+xxx nnn Modulus, n. n=pq where p and q are prime and 1<n<24096.

RSA Private Key Token, 4096-bit Chinese Remainder Theorem external
format

This RSA private key token with up to 2048-bit modulus is supported on all
coprocessors. The modulus size is increased to 4096-bit on the z9 EC, z9 BC, z10
EC, z10 BC, or later machines with the Nov. 2007 or later version of the licensed
internal code installed on the CCA Crypto Express coprocessor.

Appendix B. Key Token Formats 823

|
|
|
|

Table 363. RSA Private Key Token, 4096-bit Chinese Remainder Theorem external format

Offset (Dec) Number of Bytes Description

000 001 X'08', section identifier, RSA private key, CRT format (RSA-CRT)

001 001 X'00', version.

002 002 Length of the RSA private-key section, 132 + ppp + qqq + rrr + sss + uuu
+ xxx + nnn.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
end of the modulus.

024 004 Reserved; set to binary zero.

028 001 Key format and security:

X'40' Unencrypted RSA private-key subsection identifier, Chinese
Remainder form.

X'42' Encrypted RSA private-key subsection identifier, Chinese
Remainder form.

029 001 Reserved; set to binary zero.

030 020 SHA-1 hash of the optional key-name section and any following optional
sections. If there are no optional sections, then 20 bytes of X'00'.

050 004 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

6 The key is translatable.

All other bits reserved, set to binary zero.

054 002 Length of prime number, p, in bytes: ppp.

056 002 Length of prime number, q, in bytes: qqq.

058 002 Length of dp, in bytes: rrr.

060 002 Length of dq, in bytes: sss.

062 002 Length of U, in bytes: uuu.

064 002 Length of modulus, n, in bytes: nnn.

066 004 Reserved; set to binary zero.

070 002 Length of padding field, in bytes: xxx.

072 004 Reserved, set to binary zero.

076 016 Reserved, set to binary zero.

092 032 Reserved; set to binary zero.

124 Start of the optionally-encrypted secure subsection.

124 008 Random number, confounder.

132 ppp Prime number, p.

132 + ppp qqq Prime number, q

132 + ppp + qqq rrr dp = d mod(p - 1)

132 + ppp + qqq
+ rrr

sss dq = d mod(q - 1)

132 + ppp + qqq
+ rrr + sss

uuu U = q –1mod(p).

824 z/OS ICSF Application Programmer's Guide

Table 363. RSA Private Key Token, 4096-bit Chinese Remainder Theorem external format (continued)

Offset (Dec) Number of Bytes Description

132 + ppp + qqq
+ rrr + sss + uuu

xxx X'00' padding of length xxx bytes such that the length from the start of
the random number above to the end of the padding field is a multiple
of eight bytes.

End of the optionally-encrypted secure subsection; all of the fields starting with the confounder
field and ending with the variable length pad field are enciphered for key confidentiality when
the key format-and-security flags (offset 28) indicate that the private key is enciphered. They are
enciphered under a double-length transport key using the TDES (CBC outer chaining) algorithm.

132 + ppp + qqq
+ rrr + sss + uuu
+ xxx

nnn Modulus, n. n = pq where p and q are prime and 1<n<24096.

RSA private key, 4096-bit Modulus-Exponent format with AES
encrypted OPK section (X'30') external form

This RSA private key token is supported on the Crypto Express3 Coprocessor and
Crypto Express4 Coprocessor.

Table 364. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') external form

Offset (bytes) Length (bytes) Description

000 001 Section identifier:

X'30' RSA private key, ME format with AES encrypted OPK.

001 001 Section version number (X'00').

002 002 Section length: 122 + nnn + ppp

004 002 Length of “Associated Data” section

006 002 Length of payload data: ppp

008 002 Reserved, binary zero.

Start of Associated Data

010 001 Associated Data Version:

X'02' Version 2

011 001 Key format and security flag:

X'00' Unencrypted ME RSA private-key subsection identifier

X'82' Encrypted ME RSA private-key subsection identifier

012 001 Key source flag:

Reserved, binary zero.

013 001 Reserved, binary zeroes.

014 001 Hash type:

X'00' Clear key

X'02' SHA-256

015 032 SHA-256 hash of all optional sections that follow the public key section, if any;
else 32 bytes of X'00'.

047 003 Reserved, binary zero.

Appendix B. Key Token Formats 825

Table 364. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') external
form (continued)

Offset (bytes) Length (bytes) Description

050 001 Key-usage flag:

B'11xx xxxx'
Only key unwrapping (KM-ONLY)

B'10xx xxxx'
Both signature generation and key unwrapping (KEY-MGMT)

B'01xx xxxx'
Undefined

B'00xx xxxx'
Only signature generation (SIG-ONLY)

Translation control:

B'xxxx xx1x'
Private key translation is allowed (XLATE-OK)

B'xxxx xx0x'
Private key translation is not allowed (NO-XLATE)

051 001 Reserved, binary zero.

052 002 Length of modulus: nnn bytes

054 002 Length of private exponent: ddd bytes

End of Associated Data

056 048 16 byte confounder + 32-byte Object Protection Key.

OPK used as an AES key.

encrypted with an AES KEK.

104 016 Key verification pattern

v For an encrypted private key, KEK verification pattern (KVP)

v For a clear private key, binary zeros

v For a skeleton, binary zeros

120 002 Reserved, binary zeros.

122 nnn Modulus

122+nnn ppp Payload starts here and includes:

When this section is unencrypted:

v Clear private exponent d.

v Length ppp bytes : ddd + 0

When this section is encrypted:

v Private exponent d within the AESKW-wrapped payload.

v Length ppp bytes : ddd + AESKW format overhead

RSA private key, 4096-bit Chinese Remainder Theorem format with
AES encrypted OPK section (X'31') external form

This RSA private key token is supported on the Crypto Express3 Coprocessor and
Crypto Express4 Coprocessor.

826 z/OS ICSF Application Programmer's Guide

Table 365. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31')
external form

Offset (bytes) Length (bytes) Description

000 001 Section identifier:

X'31' RSA private key, CRT format with AES encrypted OPK

001 001 Section version number (X'00').

002 002 Section length: 134 + nnn + xxx

004 002 Length of “Associated Data” section

006 002 Length of payload data: xxx

008 002 Reserved, binary zero.

Start of Associated Data

010 001 Associated Data Version:

X'03' Version 3

011 001 Key format and security flag:

X'40' Unencrypted RSA private-key subsection identifier

X'42' Encrypted RSA private-key subsection identifier

012 001 Key source flag:

Reserved, binary zero.

013 001 Reserved, binary zeroes.

014 001 Hash type:

X'00' Clear key

X'01' SHA-256

015 032 SHA-256 hash of all optional sections that follow the public key section, if any;
else 32 bytes of X'00'.

047 003 Reserved, binary zero.

050 001 Key-usage flag:

B'11xx xxxx'
Only key unwrapping (KM-ONLY)

B'10xx xxxx'
Both signature generation and key unwrapping (KEY-MGMT)

B'01xx xxxx'
Undefined

B'00xx xxxx'
Only signature generation (SIG-ONLY)

Translation control:

B'xxxx xx1x'
Private key translation is allowed (XLATE-OK)

B'xxxx xx0x'
Private key translation is not allowed (NO-XLATE)

051 001 Reserved, binary zero.

052 002 Length of the prime number, p, in bytes: ppp.

054 002 Length of the prime number, q, in bytes: qqq

056 002 Length of dp : rrr.

Appendix B. Key Token Formats 827

Table 365. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31')
external form (continued)

Offset (bytes) Length (bytes) Description

058 002 Length of dq : sss.

060 002 Length of U: uuu.

062 002 Length of modulus, nnn.

064 002 Reserved, binary zero.

066 002 Reserved, binary zero.

End of Associated Data

068 048 16 byte confounder + 32-byte Object Protection Key.

OPK used as an AES key.

External tokens:

encrypted with an AES KEK.

Internal tokens:

encrypted with the ECC master key.

116 016 Key verification pattern

v For an encrypted private key, KEK verification pattern (KVP)

v For a clear private key, binary zeros

v For a skeleton, binary zeros

132 002 Reserved, binary zeros

134 nnn Modulus, n, n=pq, where p and q are prime.

134+nnn xxx Payload starts here and includes:

When this section is unencrypted:

v Clear prime number p

v Clear prime number q

v Clear dp

v Clear dq

v Clear U

v Length xxx bytes: ppp + qqq + rrr + sss +uuu + 0

When this section is encrypted:

v prime number p

v prime number q

v dp

v dq

v U

v within the AESKW-wrapped payload.

Length xxx bytes : ppp + qqq + rrr + sss +uuu + AESKW format overhead

828 z/OS ICSF Application Programmer's Guide

|

RSA Private Key Token, 1024-bit Modulus-Exponent External Form:

Table 366. RSA Private Key Token, 1024-bit Modulus-Exponent External Format

Offset (Dec) Number of Bytes Description

000 001 X'02', section identifier, RSA private key, modulus-exponent format
(RSA-PRIV)

001 001 X'00', version.

002 002 Length of the RSA private key section X'016C' (364 decimal).

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is
deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key format and security:

X'00' Unencrypted RSA private key subsection identifier.

X'82' Encrypted RSA private key subsection identifier.

029 001 Reserved, binary zero.

030 020 SHA-1 hash of the optional key-name section. If there is no key-name
section, then 20 bytes of X'00'.

050 004 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

6 The key is translatable.

All other bits reserved, set to binary zero.

054 006 Reserved; set to binary zero.

060 024 Reserved; set to binary zero.

084 Start of the optionally-encrypted secure subsection.

084 024 Random number, confounder.

108 128 Private-key exponent, d. d=e-1 mod((p-1)(q-1)), and 1<d<n where e is the
public exponent.

End of the optionally-encrypted subsection; the confounder field and the private-key exponent
field are enciphered for key confidentiality when the key format and security flags (offset 28)
indicate that the private key is enciphered. They are enciphered under a double-length transport
key using the ede2 algorithm.

236 128 Modulus, n. n=pq where p and q are prime and 1<n<21024.

RSA private key token, 4096-bit Modulus-Exponent external form: This RSA
private key token and the external X'09' token is supported on a CCA Crypto
Express coprocessor.

Table 367. RSA Private Key Token, 4096-bit Modulus-Exponent External Format

Offset (Dec) Number of Bytes Description

000 001 X'09', section identifier, RSA private key, modulus-exponent format
(RSAMEVAR).

001 001 X'00', version.

002 002 Length of the RSA private key section 132+ddd+nnn+xxx.

Appendix B. Key Token Formats 829

Table 367. RSA Private Key Token, 4096-bit Modulus-Exponent External Format (continued)

Offset (Dec) Number of Bytes Description

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is
deciphered for use.

024 002 Length of the encrypted private key section 8+ddd+xxx.

026 002 Reserved; set to binary zero.

028 001 Key format and security:

X'00' Unencrypted RSA private key subsection identifier.

X'82' Encrypted RSA private key subsection identifier.

029 001 Reserved, set to binary zero.

030 020 SHA-1 hash of the optional key-name section. If there is no key-name
section, then 20 bytes of X'00'.

050 001 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

6 The key is translatable

All other bits reserved, set to binary zero.

051 001 Reserved; set to binary zero.

052 048 Reserved; set to binary zero.

100 016 Reserved; set to binary zero.

116 002 Length of private exponent, d, in bytes: ddd.

118 002 Length of modulus, n, in bytes: nnn.

120 002 Length of padding field, in bytes: xxx.

122 002 Reserved; set to binary zero.

124 Start of the optionally-encrypted secure subsection.

124 008 Random number, confounder.

132 ddd Private-key exponent, d. d=e-1 mod((p-1)(q-1)), and 1<d<n where e is the
public exponent.

132+ddd xxx X'00' padding of length xxx bytes such that the length from the start of
the random number above to the end of the padding field is a multiple
of eight bytes.

End of the optionally-encrypted subsection; the confounder field and the private-key exponent
field are enciphered for key confidentiality when the key format and security flags (offset 28)
indicate that the private key is enciphered. They are enciphered under a double-length transport
key using the ede2 algorithm.

132+ddd+xxx nnn Modulus, n. n=pq where p and q are prime and 1<n<24096.

RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK
section external form: This RSA private key token is supported on the Crypto
Express3 Coprocessor and Crypto Express4 Coprocessor.

830 z/OS ICSF Application Programmer's Guide

Table 368. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') external form

Offset (bytes) Length (bytes) Description

000 001 Section identifier:

X'30' RSA private key, ME format with AES encrypted OPK.

001 001 Section version number (X'00').

002 002 Section length: 122 + nnn + ppp

004 002 Length of “Associated Data” section

006 002 Length of payload data: ppp

008 002 Reserved, binary zero.

Start of Associated Data

010 001 Associated Data Version:

X'02' Version 2

011 001 Key format and security flag:

X'00' Unencrypted ME RSA private-key subsection identifier

X'82' Encrypted ME RSA private-key subsection identifier

012 001 Key source flag:

Reserved, binary zero.

013 001 Reserved, binary zeroes.

014 001 Hash type:

X'00' Clear key

X'02' SHA-256

015 032 SHA-256 hash of all optional sections that follow the public key section, if any;
else 32 bytes of X'00'.

047 003 Reserved, binary zero.

050 001 Key-usage flag:

B'11xx xxxx'
Only key unwrapping (KM-ONLY)

B'10xx xxxx'
Both signature generation and key unwrapping (KEY-MGMT)

B'01xx xxxx'
Undefined

B'00xx xxxx'
Only signature generation (SIG-ONLY)

Translation control:

B'xxxx xx1x'
Private key translation is allowed (XLATE-OK)

B'xxxx xx0x'
Private key translation is not allowed (NO-XLATE)

051 001 Reserved, binary zero.

052 002 Length of modulus: nnn bytes

054 002 Length of private exponent: ddd bytes

End of Associated Data

Appendix B. Key Token Formats 831

Table 368. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') external
form (continued)

Offset (bytes) Length (bytes) Description

056 048 16 byte confounder + 32-byte Object Protection Key.

OPK used as an AES key.

encrypted with an AES KEK.

104 016 Key verification pattern

v For an encrypted private key, KEK verification pattern (KVP)

v For a clear private key, binary zeros

v For a skeleton, binary zeros

120 002 Reserved, binary zeros.

122 nnn Modulus

122+nnn ppp Payload starts here and includes:

When this section is unencrypted:

v Clear private exponent d.

v Length ppp bytes : ddd + 0

When this section is encrypted:

v Private exponent d within the AESKW-wrapped payload.

v Length ppp bytes : ddd + AESKW format overhead

RSA private key, 4096-bit Chinese Remainder Theorem format with AES
encrypted OPK section external form: This RSA private key token is supported
on the Crypto Express3 Coprocessor and Crypto Express4 Coprocessor.

Table 369. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31')
external form

Offset (bytes) Length (bytes) Description

000 001 Section identifier:

X'31' RSA private key, CRT format with AES encrypted OPK

001 001 Section version number (X'00').

002 002 Section length: 134 + nnn + xxx

004 002 Length of “Associated Data” section

006 002 Length of payload data: xxx

008 002 Reserved, binary zero.

Start of Associated Data

010 001 Associated Data Version:

X'03' Version 3

011 001 Key format and security flag:

X'40' Unencrypted RSA private-key subsection identifier

X'42' Encrypted RSA private-key subsection identifier

012 001 Key source flag:

Reserved, binary zero.

013 001 Reserved, binary zeroes.

832 z/OS ICSF Application Programmer's Guide

Table 369. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31')
external form (continued)

Offset (bytes) Length (bytes) Description

014 001 Hash type:

X'00' Clear key

X'01' SHA-256

015 032 SHA-256 hash of all optional sections that follow the public key section, if any;
else 32 bytes of X'00'.

047 003 Reserved, binary zero.

050 001 Key-usage flag:

B'11xx xxxx'
Only key unwrapping (KM-ONLY)

B'10xx xxxx'
Both signature generation and key unwrapping (KEY-MGMT)

B'01xx xxxx'
Undefined

B'00xx xxxx'
Only signature generation (SIG-ONLY)

Translation control:

B'xxxx xx1x'
Private key translation is allowed (XLATE-OK)

B'xxxx xx0x'
Private key translation is not allowed (NO-XLATE)

051 001 Reserved, binary zero.

052 002 Length of the prime number, p, in bytes: ppp.

054 002 Length of the prime number, q, in bytes: qqq

056 002 Length of dp : rrr.

058 002 Length of dq : sss.

060 002 Length of U: uuu.

062 002 Length of modulus, nnn.

064 002 Reserved, binary zero.

066 002 Reserved, binary zero.

End of Associated Data

068 048 16 byte confounder + 32-byte Object Protection Key.

OPK used as an AES key.

External tokens:

encrypted with an AES KEK.

Internal tokens:

encrypted with the ECC master key.

116 016 Key verification pattern

v For an encrypted private key, KEK verification pattern (KVP)

v For a clear private key, binary zeros

v For a skeleton, binary zeros

Appendix B. Key Token Formats 833

|

Table 369. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31')
external form (continued)

Offset (bytes) Length (bytes) Description

132 002 Reserved, binary zeros

134 nnn Modulus, n, n=pq, where p and q are prime.

134+nnn xxx Payload starts here and includes:

When this section is unencrypted:

v Clear prime number p

v Clear prime number q

v Clear dp

v Clear dq

v Clear U

v Length xxx bytes: ppp + qqq + rrr + sss +uuu + 0

When this section is encrypted:

v prime number p

v prime number q

v dp

v dq

v U

v within the AESKW-wrapped payload.

Length xxx bytes : ppp + qqq + rrr + sss +uuu + AESKW format overhead

RSA Private Key Token, 4096-bit Chinese Remainder Theorem External Form:
This RSA private key token with up to 2048-bit modulus is supported on all
coprocessors. The modulus size is increased to 4096-bit on the z9 EC, z9 BC, z10
EC, z10 BC, or later machines with the Nov. 2007 or later version of the licensed
internal code installed on the CCA Crypto Express coprocessor.

Table 370. RSA Private Key Token, 4096-bit Chinese Remainder Theorem External Format

Offset (Dec) Number of Bytes Description

000 001 X'08', section identifier, RSA private key, CRT format (RSA-CRT)

001 001 X'00', version.

002 002 Length of the RSA private-key section, 132 + ppp + qqq + rrr + sss + uuu
+ xxx + nnn.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
end of the modulus.

024 004 Reserved; set to binary zero.

028 001 Key format and security:

X'40' Unencrypted RSA private-key subsection identifier, Chinese
Remainder form.

X'42' Encrypted RSA private-key subsection identifier, Chinese
Remainder form.

029 001 Reserved; set to binary zero.

030 020 SHA-1 hash of the optional key-name section and any following optional
sections. If there are no optional sections, then 20 bytes of X'00'.

834 z/OS ICSF Application Programmer's Guide

|
|
|
|

Table 370. RSA Private Key Token, 4096-bit Chinese Remainder Theorem External Format (continued)

Offset (Dec) Number of Bytes Description

050 004 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

6 The key is translatable.

All other bits reserved, set to binary zero.

054 002 Length of prime number, p, in bytes: ppp.

056 002 Length of prime number, q, in bytes: qqq.

058 002 Length of dp, in bytes: rrr.

060 002 Length of dq, in bytes: sss.

062 002 Length of U, in bytes: uuu.

064 002 Length of modulus, n, in bytes: nnn.

066 004 Reserved; set to binary zero.

070 002 Length of padding field, in bytes: xxx.

072 004 Reserved, set to binary zero.

076 016 Reserved, set to binary zero.

092 032 Reserved; set to binary zero.

124 Start of the optionally-encrypted secure subsection.

124 008 Random number, confounder.

132 ppp Prime number, p.

132 + ppp qqq Prime number, q

132 + ppp + qqq rrr dp = d mod(p - 1)

132 + ppp + qqq
+ rrr

sss dq = d mod(q - 1)

132 + ppp + qqq
+ rrr + sss

uuu U = q –1mod(p).

132 + ppp + qqq
+ rrr + sss + uuu

xxx X'00' padding of length xxx bytes such that the length from the start of
the random number above to the end of the padding field is a multiple
of eight bytes.

End of the optionally-encrypted secure subsection; all of the fields starting with the confounder
field and ending with the variable length pad field are enciphered for key confidentiality when
the key format-and-security flags (offset 28) indicate that the private key is enciphered. They are
enciphered under a double-length transport key using the TDES (CBC outer chaining) algorithm.

132 + ppp + qqq
+ rrr + sss + uuu
+ xxx

nnn Modulus, n. n = pq where p and q are prime and 1<n<24096.

RSA Private Internal Key Token
An RSA private internal key token contains the following sections:
v A required PKA token header, starting with the token identifier X'1F'
v basic record format of an RSA private internal key token. All length fields are in

binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (left, low-address, S/390 format). All binary fields

Appendix B. Key Token Formats 835

(exponents, modulus, and so on) in the private sections of tokens are
right-justified and padded with zeros to the left.

Table 371. RSA Private Internal Key Token Basic Record Format

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1F' indicates an internal token. The private key is
enciphered with a PKA master key.

001 001 Version, X'00'.

002 002 Length of the key token structure excluding the internal information
section.

004 004 Ignored; should be zero.

RSA Private Key Section and Secured Subsection (required)

v For 1024-bit X'02' Modulus-Exponent form refer to “RSA Private Key Token, 1024-bit Modulus-Exponent Internal
Form” on page 837

v For 1024-bit X'06' Modulus-Exponent form refer to “RSA Private Key Token, 1024-bit Modulus-Exponent internal
form with encrypted blinding” on page 838

v For 4096-bit X'08' Chinese Remainder Theorem form refer to “RSA Private Key Token, 4096-bit Chinese
Remainder Theorem Internal Form” on page 843

v For 4096-bit X'30' Modulus-Exponent form with AES OPK refer to Table 374 on page 839 with AES encrypted
OPK section internal form

v For 4096-bit X'31' Chinese Remainder Theorem form with AES OPK refer to Table 375 on page 841 with AES
encrypted OPK section internal form

RSA Public Key Section (required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12+xxx.

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, “xxx”.

008 002 Public key modulus length in bits.

010 002 RSA public key modulus field length in bytes, which is zero for a private
token.

012 xxx Public key exponent (this is generally a 1, 3, or 64 to 512 byte quantity),
e. e must be odd and 1<e<n. (Frequently, the value of e is 216+1
(=65,537).

Private Key Name (optional)

000 001 X'10', section identifier, private key name.

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

004 064 Private key name (in ASCII), left-justified, padded with space characters
(X'20'). An access control system can use the private key name to verify
that the calling application is entitled to use the key.

Internal Information Section (required)

000 004 Eye catcher 'PKTN'.

836 z/OS ICSF Application Programmer's Guide

Table 371. RSA Private Internal Key Token Basic Record Format (continued)

Offset (Dec) Number of Bytes Description

004 004 PKA token type.

Bit Meaning When Set On

0 RSA key.

1 DSS key.

2 Private key.

3 Public key.

4 Private key name section exists.

5 Private key unenciphered.

6 Blinding information present.

7 Retained private key.

008 004 Address of token header.

012 002 Total length of total structure including this information section.

014 002 Count of number of sections.

016 016 RSA master key hash pattern.

032 001 Domain of retained key.

033 008 Serial number of processor holding retained key.

041 007 Reserved.

RSA Private Key Token, 1024-bit Modulus-Exponent Internal Form:

Table 372. RSA Private Internal Key Token, 1024-bit ME Form

Offset (Dec) Number of Bytes Description

000 001 X'02', section identifier, RSA private key.

001 001 X'00', version.

002 002 Length of the RSA private key section X'016C' (364 decimal).

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is
deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key format and security:

X'02' RSA private key.

029 001 Format of external key from which this token was derived:

X'21' External private key was specified in the clear.

X'22' External private key was encrypted.

030 020 SHA-1 hash of the key token structure contents that follow the public
key section. If no sections follow, this field is set to binary zeros.

Appendix B. Key Token Formats 837

|

Table 372. RSA Private Internal Key Token, 1024-bit ME Form (continued)

Offset (Dec) Number of Bytes Description

050 001 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

All other bits reserved, set to binary zero.

051 009 Reserved; set to binary zero.

060 048 Object Protection Key (OPK) encrypted under the RSAmaster key.

108 128 Secret key exponent d, encrypted under the OPK. d=e-1 mod((p-1)(q-1))

236 128 Modulus, n. n=pq where p and q are prime and 1<n<21024.

RSA Private Key Token, 1024-bit Modulus-Exponent internal form with
encrypted blinding:

Table 373. RSA Private Internal Key Token, 1024-bit ME internal form with encrypted blinding

Offset (Dec) Number of Bytes Description

000 001 X'06', section identifier, RSA private key modulus-exponent format
(RSA-PRIV).

001 001 X'00', version.

002 002 Length of the RSA private key section X'0198' (408 decimal) + rrr + iii +
xxx.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to and
including the modulus at offset 236.

024 004 Reserved; set to binary zero.

028 001 Key format and security:

X'02' RSA private key.

029 001 Format of external key from which this token was derived:

X'21' External private key was specified in the clear.

X'22' External private key was encrypted.

X'23' Private key was generated using regeneration data.

X'24' Private key was randomly generated.

030 020 SHA-1 hash of the optional key-name section and any following optional
sections. If there are no optional sections, this field is set to binary zeros.

050 004 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

All other bits reserved, set to binary zeros.

054 006 Reserved; set to binary zero.

060 048 Object Protection Key (OPK) encrypted under the RSA Master Key using
the ede3 algorithm.

838 z/OS ICSF Application Programmer's Guide

|

|
|

Table 373. RSA Private Internal Key Token, 1024-bit ME internal form with encrypted blinding (continued)

Offset (Dec) Number of Bytes Description

108 128 Private key exponent d, encrypted under the OPK using the ede5
algorithm. d=e-1mod((p-1)(q-1)), and 1<d<n where e is the public
exponent.

236 128 Modulus, n. n=pq where p and q are prime and 2512<n<21024.

364 016 RSA Master Key hash pattern.

380 020 SHA-1 hash value of the blinding information subsection cleartext, offset
400 to the end of the section.

400 002 Length of the random number r, in bytes: rrr.

402 002 Length of the random number r–1, in bytes: iii.

404 002 Length of the padding field, in bytes: xxx.

406 002 Reserved; set to binary zeros.

408 Start of the encrypted blinding subsection

408 rrr Random number r (used in blinding).

408 + rrr iii Random number r–1 (used in blinding).

408 + rrr + iii xxx X'00' padding of length xxx bytes such that the length from the start of
the encrypted blinding subsection to the end of the padding field is a
multiple of eight bytes.

End of the encrypted blinding subsection; all of the fields starting with the random number r and
ending with the variable length pad field are encrypted under the OPK using TDES (CBC outer
chaining) algorithm.

RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK
section internal form: This RSA private key token is supported on the Crypto
Express3 Coprocessor and Crypto Express4 Coprocessor.

Table 374. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') internal form

Offset (bytes) Length (bytes) Description

000 001 Section identifier:

X'30' RSA private key, ME format with AES encrypted OPK.

001 001 Section version number (X'00').

002 002 Section length: 122 + nnn + ppp

004 002 Length of “Associated Data” section

006 002 Length of payload data: ppp

008 002 Reserved, binary zero.

Start of Associated Data

010 001 Associated Data Version:

X'02' Version 2

011 001 Key format and security flag:

X'02' Encrypted ME RSA private-key subsection identifier

Appendix B. Key Token Formats 839

Table 374. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') internal
form (continued)

Offset (bytes) Length (bytes) Description

012 001 Key source flag:

Internal tokens:

X'21' Imported from cleartext

X'22' Imported from ciphertext

X'23' Generated using regeneration data

X'24' Randomly generated

013 001 Reserved, binary zeroes.

014 001 Hash type:

X'00' Clear key

X'02' SHA-256

015 032 SHA-256 hash of all optional sections that follow the public key section, if any;
else 32 bytes of X'00'.

047 003 Reserved, binary zero.

050 001 Key-usage flag:

B'11xx xxxx'
Only key unwrapping (KM-ONLY)

B'10xx xxxx'
Both signature generation and key unwrapping (KEY-MGMT)

B'01xx xxxx'
Undefined

B'00xx xxxx'
Only signature generation (SIG-ONLY)

Translation control:

B'xxxx xx1x'
Private key translation is allowed (XLATE-OK)

B'xxxx xx0x'
Private key translation is not allowed (NO-XLATE)

051 001 Reserved, binary zero.

052 002 Length of modulus: nnn bytes

054 002 Length of private exponent: ddd bytes

End of Associated Data

056 048 16 byte confounder + 32-byte Object Protection Key.

OPK used as an AES key.

encrypted with the ECC master key.

104 016 Key verification pattern

v For an encrypted private key, ECC master-key verification pattern (MKVP)

v For a skeleton, binary zeros

120 002 Reserved, binary zeros.

122 nnn Modulus

840 z/OS ICSF Application Programmer's Guide

Table 374. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') internal
form (continued)

Offset (bytes) Length (bytes) Description

122+nnn ppp Payload starts here and includes:

When this section is unencrypted:

v Clear private exponent d.

v Length ppp bytes : ddd + 0

When this section is encrypted:

v Private exponent d within the AESKW-wrapped payload.

v Length ppp bytes : ddd + AESKW format overhead

RSA private key, 4096-bit Chinese Remainder Theorem format with AES
encrypted OPK section internal form: This RSA private key token is supported
on the Crypto Express3 Coprocessor and Crypto Express4 Coprocessor.

RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted
OPK section (X'31') external form

Table 375. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31')
internal form

Offset (bytes) Length (bytes) Description

000 001 Section identifier:

X'31' RSA private key, CRT format with AES encrypted OPK

001 001 Section version number (X'00').

002 002 Section length: 134 + nnn + xxx

004 002 Length of “Associated Data” section

006 002 Length of payload data: xxx

008 002 Reserved, binary zero.

Start of Associated Data

010 001 Associated Data Version:

X'03' Version 3

011 001 Key format and security flag:

X'08' Unencrypted RSA private-key subsection identifier

012 001 Key source flag:

X'21' Imported from cleartext

X'22' Imported from ciphertext

X'23' Generated using regeneration data

X'24' Randomly generated

013 001 Reserved, binary zeroes.

014 001 Hash type:

X'00' Clear key

X'01' SHA-256

015 032 SHA-256 hash of all optional sections that follow the public key section, if any;
else 32 bytes of X'00'.

Appendix B. Key Token Formats 841

Table 375. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31')
internal form (continued)

Offset (bytes) Length (bytes) Description

047 003 Reserved, binary zero.

050 001 Key-usage flag:

B'11xx xxxx'
Only key unwrapping (KM-ONLY)

B'10xx xxxx'
Both signature generation and key unwrapping (KEY-MGMT)

B'01xx xxxx'
Undefined

B'00xx xxxx'
Only signature generation (SIG-ONLY)

Translation control:

B'xxxx xx1x'
Private key translation is allowed (XLATE-OK)

B'xxxx xx0x'
Private key translation is not allowed (NO-XLATE)

051 001 Reserved, binary zero.

052 002 Length of the prime number, p, in bytes: ppp.

054 002 Length of the prime number, q, in bytes: qqq

056 002 Length of dp : rrr.

058 002 Length of dq : sss.

060 002 Length of U: uuu.

062 002 Length of modulus, nnn.

064 002 Reserved, binary zero.

066 002 Reserved, binary zero.

End of Associated Data

068 048 16 byte confounder + 32-byte Object Protection Key.

OPK used as an AES key.

encrypted with the ECC master key.

116 016 Key verification pattern

v For an encrypted private key, ECC master-key verification pattern (MKVP)

v For a skeleton, binary zeros

132 002 Reserved, binary zeros

134 nnn Modulus, n, n=pq, where p and q are prime.

842 z/OS ICSF Application Programmer's Guide

|

|

Table 375. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31')
internal form (continued)

Offset (bytes) Length (bytes) Description

134+nnn xxx Payload starts here and includes:

When this section is unencrypted:

v Clear prime number p

v Clear prime number q

v Clear dp

v Clear dq

v Clear U

v Length xxx bytes: ppp + qqq + rrr + sss +uuu + 0

When this section is encrypted:

v prime number p

v prime number q

v dp

v dq

v U

v within the AESKW-wrapped payload.

Length xxx bytes : ppp + qqq + rrr + sss +uuu + AESKW format overhead

RSA Private Key Token, 4096-bit Chinese Remainder Theorem Internal Form:
This RSA private key token with up to 2048-bit modulus is supported on all
coprocessors. The modulus size is increased to 4096-bit on the z9 EC, z9 BC, z10
EC, z10 BC, or later machines with the Nov. 2007 or later version of the licensed
internal code installed on the CCA Crypto Express coprocessor.

Table 376. RSA Private Internal Key Token, 4096-bit Chinese Remainder Theorem Internal Format

Offset (Dec) Number of Bytes Description

000 001 X'08', section identifier, RSA private key, CRT format (RSA-CRT)

001 001 X'00', version.

002 002 Length of the RSA private-key section, 132 + ppp + qqq + rrr + sss + uuu
+ ttt + iii + xxx + nnn.

004 020 SHA-1 hash value of the private-key subsection cleartext, offset 28 to the
end of the modulus.

024 004 Reserved; set to binary zero.

028 001 Key format and security:

X'08' Encrypted RSA private-key subsection identifier, Chinese
Remainder form.

029 001 Key derivation method:

X'21' External private key was specified in the clear.

X'22' External private key was encrypted.

X'23' Private key was generated using regeneration data.

X'24' Private key was randomly generated.

030 020 SHA-1 hash of the optional key-name section and any following sections.
If there are no optional sections, then 20 bytes of X'00'.

Appendix B. Key Token Formats 843

|
|
|
|

Table 376. RSA Private Internal Key Token, 4096-bit Chinese Remainder Theorem Internal Format (continued)

Offset (Dec) Number of Bytes Description

050 004 Key use flag bits:

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

All other bits reserved, set to binary zero.

054 002 Length of prime number, p, in bytes: ppp.

056 002 Length of prime number, q, in bytes: qqq.

058 002 Length of dp, in bytes: rrr.

060 002 Length of dq, in bytes: sss.

062 002 Length of U, in bytes: uuu.

064 002 Length of modulus, n, in bytes: nnn.

066 002 Length of the random number r, in bytes: ttt.

068 002 Length of the random number r–1, in bytes: iii.

070 002 Length of padding field, in bytes: xxx.

072 004 Reserved, set to binary zero.

076 016 RSA Master Key hash pattern.

092 032 Object Protection Key (OPK) encrypted under the RSA Master Key using
the TDES (CBC outer chaining) algorithm.

124 Start of the encrypted secure subsection, encrypted under the OPK using TDES (CBC outer
chaining).

124 008 Random number, confounder.

132 ppp Prime number, p.

132 + ppp qqq Prime number, q

132 + ppp + qqq rrr dp = d mod(p - 1)

132 + ppp + qqq
+ rrr

sss dq = d mod(q - 1)

132 + ppp + qqq
+ rrr + sss

uuu U = q–1mod(p).

132 + ppp + qqq
+ rrr + sss + uuu

ttt Random number r (used in blinding).

132 + ppp + qqq
+ rrr + sss + uuu
+ ttt

iii Random number r–1 (used in blinding).

132 + ppp + qqq
+ rrr + sss + uuu
+ ttt + iii

xxx X'00' padding of length xxx bytes such that the length from the start of
the confounder at offset 124 to the end of the padding field is a multiple
of eight bytes.

End of the encrypted secure subsection; all of the fields starting with the confounder field and
ending with the variable length pad field are encrypted under the OPK using TDES (CBC outer
chaining) for key confidentiality.

132 + ppp + qqq
+ rrr + sss + uuu
+ ttt + iii + xxx

nnn Modulus, n. n = pq where p and q are prime and 1<n<24096.

844 z/OS ICSF Application Programmer's Guide

|

|

ECC Key Token Format
The following table presents the format of the ECC Key Token.

Table 377. ECC Key Token Format

Offset (Dec) Number of Bytes Description

Token Header

000 001 Token identifier.

X'00' Null token

X'1E' External token

X'1F' Internal token; the private key is protected by the master key

001 001 Version, X'00'.

002 002 Length of the key token structure excluding the internal information
section.

004 004 Ignored; should be zero.

ECC Token Private section

000 001 X'20', section identifier, ECC private key

001 001 X'00', version.

002 002 Section length.

004 001 Wrapping Method: This value indicates the wrapping method used to
protect the data in the encrypted section. It is not the method used to
protect the Object Protection Key (OPK).

X'00' Clear – section is unencrypted.

X'01' AESKW

X'02' CBC Wrap - Other

005 001 Hash used for Wrapping

X'01' SHA224

X'02' SHA256

X'04' Reserved.

X'08 ' Reserved

006 002 Reserved Binary Zero

008 001 Key Usage:

X'C0' Key Agreement

X'80' Both signature generation and key agreement

X'00' Signature generation only

X'02' Translate allowed
The two high-order bits indicate permitted key usage in the decryption
of symmetric keys and in the generation of digital signatures. The bit in
the second nibble indicates if the key is translatable. A key is translatable
if it can be re-encrypted from one key encrypting key to another.

009 001 Curve type:

X'00' Prime curve

X'01' Brainpool curve

Appendix B. Key Token Formats 845

Table 377. ECC Key Token Format (continued)

Offset (Dec) Number of Bytes Description

010 001 Key Format and Security Flag.

External Token:

X'40' Unencrypted ECC private key identifier

X'42' Encrypted ECC private key identifier

Internal Token:

X'08' Encrypted ECC private key identifier

011 001 Reserved Binary Zero

012 002 Length of p in bits

X'00C0' Prime P-192

X'00E0' Prime P-224

X'0100' Prime P-256

X'0180' Prime P-384

X'0209' Prime P-521

X'00A0' Brainpool p-160

X'00C0' Brainpool P-192

X'00E0' Brainpool P-224

X'0100' Brainpool P-256

X'0140' Brainpool P-320

X'0180' Brainpool P-384

X'0200' Brainpool P-512)

014 002 IBM Associated Data length. The length of this field must be greater than
or equal to 16

016 008 External Token:

v Unencrypted – Reserved Binary 0x’00’

v Encrypted – KVP of the AESKEK

Internal Token: MKVP of the ECC-MK

024 048 External Token: reserved binary zeros.

Internal Token: Object Protection Key (OPK), ICV (Integrity Check
value), 8 byte confounder and a 256-bit AES key used with the AESKW
algorithm to encrypt the ECC private key.

The OPK is encrypted by the AES master key using AESKW as well.
Example format for OPK data passed to AESKW:

v 8 bytes = A6A6A6A6A6A60000

v 40 bytes = Confounder(8)/Key(32)

072 002 Associated data length, aa

074 002 Length of formatted section in bytes, bb

076 aa Associated data (See Table 378 on page 848 for the Associated Data
format).

846 z/OS ICSF Application Programmer's Guide

Table 377. ECC Key Token Format (continued)

Offset (Dec) Number of Bytes Description

076 + aa Start of formatted
section

If this section is in the clear it contains private key d.

If it is encrypted it contains the AESKW wrapped payload.

76 + aa bb Formatted section which includes Private key d

See Table 379 on page 848 for the format of the AESKW Wrapped
Payload

76 + aa + bb End of formatted
section

ECC Token Public Section

000 001 X'21', section identifier

001 001 X'00', version.

002 002 Section length

004 004 Reserved field, binary zero

008 001 Curve type

X'00' Prime curve

X'01' Brainpool curve

009 001 Reserved field, binary zero

010 002 Length of p in bits:

X'00C0' Prime P-192

X'00E0' Prime P-224

X'0100' Prime P-256

X'0180' Prime P-384

X'0209' Prime P-521

X'00A0' Brainpool P-160

X'00C0' Brainpool P-192

X'00E0' Brainpool P-224

X'0100' Brainpool P-256

X'0140' Brainpool P-320

X'0180' Brainpool P-384

X'0200' Brainpool P-512

012 002 This field is the length of the public key q value in bytes, the maximum
value could be up to 133 bytes, cc. The value includes the key material
length and one byte to indicate if the key material is compressed or
uncompressed.

014 cc Public Key , q field

Associated Data Format for ECC Token
The table below defines the associated data as it is stored in the ECC token in the
clear. Associated data is data whose integrity but not confidentiality is protected by
a key wrap mechanism.

Appendix B. Key Token Formats 847

Table 378. Associated Data Format for ECC Private Key Token

Offset (Dec) Number of Bytes Description

000 001 Associated Data Version. 0 for ECC

001 001 Length of Key Label, kl

002 002 IBM Associated Data length, 16 + kl + xxx

004 002 IBM Extended Associated Data length, xxx

006 001 User Definable Associated Data length, yyy. User
definable lengths are from 0 bytes to 100 bytes.

007 001 Curve Type

008 002 Length of p in bits

010 001 Usage flag

011 001 Format and Security flag

012 004 reserved

016 kl Key Label (optional)

016 + kl xxx IBM Extended Associated Data

016 + kl +
xxx

yyy User-definable Associated Data

AESKW Wrapped Payload Format for ECC Private Key Token
This table defines the contents of the AESKW payload: data will be copied into this
format, then encrypted with the OPK according to the AESKW specification, and
the result will be stored in the encrypted data section.

Table 379. AESKW Wrapped Payload Format for ECC Private Key Token

Offset (Dec) Number of Bytes Description

000 006 ICV (‘A6’....)

006 001 Length of padding in bits

007 001 Length of the hash of the associated data in bytes, ii

008 004 Hash options

012 ii Hash of Associated Data

12+ii mm Key data

12+ii+mm 0-7 Padding to a multiple of 8 bytes

Trusted Block Key Token
A trusted block key-token (trusted block) is an extension of CCA PKA key tokens
using new section identifiers. They are an integral part of a remote key-loading
process.

Trusted blocks contain various items, some of which are optional, and some of
which can be present in different forms. Tokens are composed of concatenated
sections that, unlike CCA PKA key tokens, occur in no prescribed order.

As with other CCA key-tokens, both internal and external forms are defined:
v An external trusted block contains a randomly generated confounder and a

triple-length MAC key enciphered under a DES IMP-PKA transport key. The
MAC key is used to calculate an ISO 16609 CBC mode TDES MAC of the

848 z/OS ICSF Application Programmer's Guide

|
|
|

trusted block contents. An external trusted block is created by the
Trusted_Block_Create verb. This verb can:
1. Create an inactive external trusted block
2. Change an external trusted block from inactive to active

v An internal trusted block contains a confounder and triple-length MAC key
enciphered under a variant of the PKA master key. The MAC key is used to
calculate a TDES MAC of the trusted block contents. A PKA master key
verification pattern is also included to enable determination that the proper
master key is available to process the key. The Remote_Key_Export verb only
operates on trusted blocks that are internal. An internal trusted block must be
imported from an external trusted block that is active using the
PKA_Key_Import verb.

Note: Trusted blocks do not contain a private key section.

Trusted block sections
A trusted block is a concatenation of a header followed by an unordered set of
sections. The data structures of these sections are summarized in the following
table:

Table 380. Trusted block sections

Section Reference Usage

Header Table 381 on page 851 Trusted block token header

X'11' Table 382 on page 851 Trusted block public key

X'12' Table 383 on page 853 Trusted block rule

X'13' Table 390 on page 860 Trusted block name (key label)

X'14' Table 391 on page 860 Trusted block information

X'15' Table 395 on page 863 Trusted block application-defined data

Every trusted block starts with a token header. The first byte of the token header
determines the key form:
v An external header (first byte X'1E'), created by the Trusted Block Create callable

service.
v An internal header (first byte X'1F'), imported from an active external trusted

block by the PKA Key Import callable service.

Following the token header of a trusted block is an unordered set of sections. A
trusted block is formed by concatenating these sections to a trusted block header:
v An optional public-key section (trusted block section identifier X'11')

The trusted block trusted RSA public-key section includes the key itself in
addition to a key-usage flag. No multiple sections are allowed.

v An optional rule section (trusted block section identifier X'12')
A trusted block may have zero or more rule sections.
1. A trusted block with no rule sections can be used by the PKA Key

Token_Change and PKA Key Import callable services. A trusted block with
no rule sections can also be used by the Digital Signature Verify callable
service, provided there is an RSA public-key section that has its key-usage
flag bits set to allow digital signature operations.

2. At least one rule section is required when the Remote Key Export callable
service is used to:
– Generate an RKX key-token

Appendix B. Key Token Formats 849

|
|

|
|

|
|
|
|
|

|
|

|

– Export an RKX key-token
– Export a CCA DES key-token
– Encrypt the clear generated or exported key using the provided vendor

certificate
3. If a trusted block has multiple rule sections, each rule section must have a

unique 8-character Rule ID.
v An optional name (key label) section (trusted block section identifier X'13')

The trusted block name section provides a 64-byte variable to identify the
trusted block, just as key labels are used to identify other CCA keys. This name,
or label, enables a host access-control system such as RACF to use the name to
verify that the application has authority to use the trusted block. No multiple
sections are allowed.

v A required information section (trusted block section identifier X'14')
The trusted block information section contains control and security information
related to the trusted block. The information section is required while the others
are optional. This section contains the cryptographic information that guarantees
its integrity and binds it to the local system. No multiple sections are allowed.

v An optional application-defined data section (trusted block section identifier
X'15')
The trusted block application-defined data section can be used to include
application-defined data in the trusted block. The purpose of the data in this
section is defined by the application. CCA does not examine or use this data in
any way. No multiple sections are allowed.

Trusted block integrity
An enciphered confounder and triple-length MAC key contained within the
required information section of the trusted block is used to protect the integrity of
the trusted block. The randomly generated MAC key is used to calculate an ISO
16609 CBC mode TDES MAC of the trusted block contents. Together, the MAC key
and MAC value provide a way to verify that the trusted block originated from an
authorized source, and binds it to the local system.

An external trusted block has its MAC key enciphered under an IMP-PKA
key-encrypting key. An internal trusted block has its MAC key enciphered under a
variant of the PKA master key, and the master key verification pattern is stored in
the information section.

Number representation in trusted blocks
v All length fields are in binary
v All binary fields (exponents, lengths, and so forth) are stored with the

high-order byte first; thus the least significant bits are to the right and preceded
with zero-bits to the width of a field

v In variable-length binary fields that have an associated field-length value,
leading bytes that would otherwise contain X'00' can be dropped and the field
shortened to contain only the significant bits

Format of trusted block sections
At the beginning of every trusted block is a trusted block header. The header
contains the following information:
v A token identifier, which specifies if the token contains an external or internal

key-token
v A token version number to allow for future changes
v A length in bytes of the trusted block, including the length of the header

850 z/OS ICSF Application Programmer's Guide

|

|

|
|

The trusted block header is defined in the following table:

Table 381. Trusted block header

Offset
(bytes)

Length
(bytes) Description

000 001 Token identifier (a flag that indicates token type)

X'1E' External trusted block token

X'1F' Internal trusted block token

001 001 Token version number (X'00').

002 002 Length of the key-token structure in bytes.

004 004 Reserved, binary zero.

Note: See “Number representation in trusted blocks” on page 850.

Following the header, in no particular order, are trusted block sections. There are
five different sections defined, each identified by a one-byte section identifier (X'11'
- X'15'). Two of the five sections have subsections defined. A subsection is a
tag-length-value (TLV) object, identified by a two-byte subsection tag.

Only sections X'12' and X'14' have subsections defined; the other sections do not. A
section and its subsections, if any, are one contiguous unit of data. The subsections
are concatenated to the related section, but are otherwise in no particular order.
Section X'12' has five subsections defined (X'0001' - X'0005'), and section X'14' has
two (X'0001' and X'0002'). Of all the subsections, only subsection X'0001' of section
X'14' is required. Section X'14' is also required.

The trusted block sections and subsections are described in detail in the following
sections.

Note: See “Number representation in trusted blocks” on page 850.

Trusted block section X'11': Trusted block section X'11' contains the trusted RSA
public key in addition to a key-usage flag indicating whether the public key is
usable in key-management operations, digital signature operations, or both.

Section X'11' is optional. No multiple sections are allowed. It has no subsections
defined.

This section is defined in the following table:

Table 382. Trusted block trusted RSA public-key section (X'11')

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:

X'11' Trusted block trusted RSA public key

001 001 Section version number (X'00').

002 002 Section length (16+xxx+yyy).

004 002 Reserved, must be binary zero.

006 002 RSA public-key exponent field length in bytes, xxx.

008 002 RSA public-key modulus length in bits.

010 002 RSA public-key modulus field length in bytes, yyy.

Appendix B. Key Token Formats 851

Table 382. Trusted block trusted RSA public-key section (X'11') (continued)

Offset
(bytes)

Length
(bytes)

Description

012 xxx
Public-key exponent, e (this field length is
typically 1, 3, or 64 - 512 bytes). e must be
odd and 1≤e<n. (e is frequently
valued to 3 or 216+1 (=65537),
otherwise e is of the same order of magnitude
as the modulus).
Note: Although the current product implementation does not generate
such a public key, you can import an RSA public key having an
exponent valued to two (2). Such a public key (a Rabin key) can correctly
validate an ISO 9796-1 digital signature.

012+xxx yyy

RSA public-key modulus, n. n=pq, where p and q
are prime and 2512≤
n<24096.
The field length is 64 - 512 bytes.

012
+xxx+yyy

004 Flags:

X'00000000'
Trusted block public key can be used in digital signature
operations only

X'80000000'
Trusted block public key can be used in both digital signature
and key management operations

X'C0000000'
Trusted block public key can be used in key management
operations only

Note: See “Number representation in trusted blocks” on page 850.

Trusted block section X'12': Trusted block section X'12' contains information that
defines a rule. A trusted block may have zero or more rule sections.
1. A trusted block with no rule sections can be used by the PKA Key Token

Change and PKA Key Import callable services. A trusted block with no rule
sections can be used by the Digital Signature Verify callable service, provided
there is an RSA public-key section that has its key-usage flag set to allow
digital signature operations.

2. At least one rule section is required when the Remote Key Export callable
service is used to:
v Generate an RKX key-token
v Export an RKX key-token
v Export a CCA DES key-token
v Generate or export a key encrypted by a public key. The public key is

contained in a vendor certificate (section X'11'), and is the root certification
key for the ATM vendor. It is used to verify the digital signature on
public-key certificates for specific individual ATMs.

3. If a trusted block has multiple rule sections, each rule section must have a
unique 8-character Rule ID.

Section X'12' is the only section allowed to have multiple sections. Section X'12' is
optional. Multiple sections are allowed.

852 z/OS ICSF Application Programmer's Guide

Note: The overall length of the trusted block may not exceed its maximum size of
3500 bytes.

Five subsections (TLV objects) are defined.

This section is defined in the following table:

Table 383. Trusted block rule section (X'12')

Offset
(bytes)

Length
(bytes)

Description

Offset
(bytes)

Length (bytes) Description

000 001 Section identifier:

X'12' Trusted block rule

001 001 Section version number (X'00').

002 002 Section length in bytes (20+yyy).

004 008 Rule ID (in ASCII).

An 8-byte character string that uniquely identifies the rule within the
trusted block.

Valid ASCII characters are: A...Z, a...z, 0...9, - (hyphen), and _
(underscore), left justified and padded on the right with space
characters.

012 004 Flags (undefined flag bits are reserved and must be zero).

X'00000000'
Generate new key

X'00000001'
Export existing key

016 001 Generated key length.

Length in bytes of key to be generated when flags value (offset 012) is
set to generate a new key; otherwise ignore this value. Valid values are
8, 16, or 24; return an error if not valid.

017 001 Key-check algorithm identifier (all others are reserved and must not be
used):
Value Meaning
X'00' Do not compute key-check value. In a call to CSNDRKX or

CSNFRKX, set the key_check_length variable to zero.
X'01' Encrypt an 8-byte block of binary zeros with the key. In a call

to CSNDRKX or CSNFRKX, set the key_check_length variable
to 8.

X'02' Compute the MDC-2 hash of the key. In a call to CSNDRKX or
CSNFRKX, set the key_check_length variable to 16.

018 001 Symmetric encrypted output key format flag (all other values are
reserved and must not be used).

Return the indicated symmetric key-token using the
sym_encrypted_key_identifier parameter.
Value Meaning
X'00' Return an RKX key-token encrypted under a variant of the

MAC key.
Note: This is the only key format permitted when the flags
value (offset 012) is set to generate a new key.

X'01' Return a CCA DES key-token encrypted under a transport key.
Note: This is the only key format permitted when the flags
value (offset 012) is set to export an existing key.

Appendix B. Key Token Formats 853

Table 383. Trusted block rule section (X'12') (continued)

Offset
(bytes)

Length
(bytes)

Description

019 001 Asymmetric encrypted output key format flag (all other values are
reserved and must not be used).

Return the indicated asymmetric key-token in the asym_encrypted_key
variable.
Value Meaning
X'00' Do not return an asymmetric key. Set the

asym_encrypted_key_length variable to zero.
X'01' Output in PKCS1.2 format.
X'02' Output in RSAOAEP format.

020 yyy Rule section subsections (tag-length-value objects). A series of 0 - 5
objects in TLV format.

Note: See “Number representation in trusted blocks” on page 850.

Section X'12' has five rule subsections (tag-length-value objects) defined. These
subsections are summarized in the following table:

Table 384. Summary of trusted block rule subsection

Rule
subsection
tag

TLV object Optional or
required

Comments

X'0001' Transport
key variant

Optional Contains variant to be exclusive-ORed into the
cleartext transport key.

X'0002' Transport
key rule
reference

Optional; required
to use an RKX
key-token as a
transport key

Contains the rule ID for the rule that must have been
used to create the transport key.

X'0003' Common
export key
parameters

Optional for key
generation; required
for key export of an
existing key

Contains the export key and source key minimum
and maximum lengths, an output key variant length
and variant, a CV length, and a CV to be
exclusive-ORed with the cleartext transport key to
control usage of the key.

X'0004' Source key
reference

Optional; required if
the source key is an
RKX key-token

Contains the rule ID for the rule used to create the
source key.
Note: Include all rules that will ever be needed when
a trusted block is created. A rule cannot be added to
a trusted block after it has been created.

X'0005' Export key
CCA token
parameters

Optional; used for
export of CCA DES
key tokens only

Contains mask length, mask, and CV template to
limit the usage of the exported key. Also contains the
template length and template which defines which
source key labels are allowed.

The key type of a source key input parameter can be
"filtered" by using the export key CV limit mask
(offset 005) and limit template (offset 005+yyy) in this
subsection.

Note: See “Number representation in trusted blocks” on page 850.

Trusted block section X'12' subsection X'0001': Subsection X'0001' of the trusted
block rule section (X'12') is the transport key variant TLV object. This subsection is
optional. It contains a variant to be exclusive-ORed into the cleartext transport key.

This subsection is defined in the following table:

854 z/OS ICSF Application Programmer's Guide

Table 385. Transport key variant subsection (X'0001' of trusted block rule section (X'12')

Offset
(bytes)

Length (bytes) Description

000 002 Subsection tag:

X'0001' Transport key variant TLV object

002 002 Subsection length in bytes (8+nnn).

004 001 Subsection version number (X'00').

005 002 Reserved, must be binary zero.

007 001 Length of variant field in bytes (nnn).

This length must be greater than or equal to the length of the transport
key that is identified by the transport_key_identifier parameter. If the
variant is longer than the key, truncate it on the right to the length of
the key prior to use.

008 nnn Transport key variant.

Exclusive-OR this variant into the cleartext transport key, provided: (1)
the length of the variant field value (offset 007) is not zero, and (2) the
symmetric encrypted output key format flag (offset 018 in section
X'12') is X'01'.
Note: A transport key is not used when the symmetric encrypted
output key is in RKX key-token format.

Note: See “Number representation in trusted blocks” on page 850.

Trusted block section X'12' subsection X'0002': Subsection X'0002' of the trusted
block rule section (X'12') is the transport key rule reference TLV object. This
subsection is optional. It contains the rule ID for the rule that must have been used
to create the transport key. This subsection must be present to use an RKX
key-token as a transport key.

This subsection is defined in the following table:

Table 386. Transport key rule reference subsection (X'0002') of trusted block rule section
(X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0002' Transport key rule reference TLV object

002 002 Subsection length in bytes (14).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

006 008 Rule ID.

Contains the rule identifier for the rule that must have been used to
create the RKX key-token used as the transport key.

The Rule ID is an 8-byte string of ASCII characters, left justified and
padded on the right with space characters. Acceptable characters are
A...Z, a...z, 0...9, - (X'2D'), and _ (X'5F'). All other characters are reserved
for future use.

Trusted block section (X'12') subsection X'0003': Subsection X'0003' of the trusted
block rule section (X'12') is the common export key parameters TLV object. This
subsection is optional, but is required for the key export of an existing source key
(identified by the source_key_identifier parameter) in either RKX key-token format or

Appendix B. Key Token Formats 855

CCA DES key-token format. For new key generation, this subsection applies the
output key variant to the cleartext generated key, if such an option is desired. It
contains the input source key and output export key minimum and maximum
lengths, an output key variant length and variant, a CV length, and a CV to be
exclusive-ORed with the cleartext transport key.

This subsection is defined in the following table:

Table 387. Common export key parameters subsection (X'0003') of trusted block rule
section (X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0003' Common export key parameters TLV object

002 002 Subsection length in bytes (12+xxx+yyy).

004 001 Subsection version number (X'00').

005 002 Reserved, must be binary zero.

007 001 Flags (must be set to binary zero).

008 001 Export key minimum length in bytes. Length must be 8, 16, or 24.

Also applies to the source key.

009 001 Export key maximum length in bytes (yyy). Length must be 8, 16, or 24.

Also applies to the source key.

010 001 Output key variant length in bytes (xxx).

Valid values are 0 or 8 - 255. If greater than 0, the length must be at least
as long as the longest key ever to be exported using this rule. If the
variant is longer than the key, truncate it on the right to the length of the
key prior to use.
Note: The output key variant (offset 011) is not used if this length is
zero.

011 xxx Output key variant.

The variant can be any value. Exclusive-OR this variant into the cleartext
value of the output.

011+xxx 001 CV length in bytes (yyy).

v If the length is not 0, 8, or 16, return an error.

v If the length is 0, and if the source key is a CCA DES key-token,
preserve the CV in the symmetric encrypted output if the output is to
be in the form of a CCA DES key-token.

v If a non-zero length is less than the length of the key identified by the
source_key_identifier parameter, return an error.

v If the length is 16, and if the CV (offset 012+xxx) is valued to 16 bytes
of X'00' (ignoring the key-part bit), then:

1. Ignore all CV bit definitions

2. If CCA DES key-token format, set the flag byte of the symmetric
encrypted output key to indicate a CV value is present.

3. If the source key is 8 bytes in length, do not replicate the key to 16
bytes.

856 z/OS ICSF Application Programmer's Guide

Table 387. Common export key parameters subsection (X'0003') of trusted block rule
section (X'12') (continued)

Offset
(bytes)

Length
(bytes)

Description

012+xxx yyy CV.

Place this CV into the output exported key-token, provided that the
symmetric encrypted output key format selected (offset 018 in rule
section) is CCA DES key-token.

v If the symmetric encrypted output key format flag (offset 018 in
section X'12') indicates return an RKX key-token (X'00'), then ignore
this CV. Otherwise, exclusive-OR this CV into the cleartext transport
key.

v Exclusive-OR the CV of the source key into the cleartext transport key
if the CV length (offset 011+xxx) is set to 0. If a transport key to
encrypt a source key has equal left and right key halves, return an
error. Replicate the key halves of the key identified by the
source_key_identifier parameter whenever all of these conditions are
met:

1. The Replicate Key command (offset X'00DB') is enabled in the
active role

2. The CV length (offset 011+xxx) is 16, and both CV halves are
non-zero

3. The source_key_identifier parameter (contained in either a CCA DES
key-token or RKX key-token) identifies an 8-byte key

4. The key-form bits (40 - 42) of this CV do not indicate a
single-length key (are not set to zero)

5. Key-form bit 40 of this CV does not indicate the key is to have
guaranteed unique halves (is not set to 1).

Note: A transport key is not used when the symmetric encrypted output
key is in RKX key-token format.

Note: See “Number representation in trusted blocks” on page 850.

Trusted block section X'12' subsection X'0004': Subsection X'0004' of the trusted
block rule section (X'12') is the source key rule reference TLV object. This
subsection is optional, but is required if using an RKX key-token as a source key
(identified by source_key_identifier parameter). It contains the rule ID for the rule
used to create the export key. If this subsection is not present, an RKX key-token
format source key will not be accepted for use.

This subsection is defined in the following table:

Table 388. Source key rule reference subsection (X'0004' of trusted block rule section
(X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0004' Source key rule reference TLV object

002 002 Subsection length in bytes (14).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

Appendix B. Key Token Formats 857

Table 388. Source key rule reference subsection (X'0004' of trusted block rule section
(X'12') (continued)

Offset
(bytes)

Length
(bytes)

Description

006 008 Rule ID.

Rule identifier for the rule that must have been used to create the source
key.

The Rule ID is an 8-byte string of ASCII characters, left justified and
padded on the right with space characters. Acceptable characters are
A...Z, a...z, 0...9, - (X'2D'), and _ (X'5F'). All other characters are reserved
for future use.

Note: See “Number representation in trusted blocks” on page 850.

Trusted block section X'12' subsection X'0005': Subsection X'0005' of the trusted
block rule section (X'12') is the export key CCA token parameters TLV object. This
subsection is optional. It contains a mask length, mask, and template for the export
key CV limit. It also contains the template length and template for the source key
label. When using a CCA DES key-token as a source key input parameter, its key
type can be "filtered" by using the export key CV limit mask (offset 005) and limit
template (offset 005+yyy) in this subsection.

This subsection is defined in the following table:

Table 389. Export key CCA token parameters subsection (X'0005') of trusted block rule
section (X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0005' Export key CCA token parameters TLV object

002 002 Subsection length in bytes (10+yyy+yyy+zzz).

004 001 Subsection version number (X'00').

005 002 Reserved, must be binary zero.

007 001 Flags (must be set to binary zero).

008 001 Export key CV limit mask length in bytes (yyy).

Do not use CV limits if this CV limit mask length (yyy) is zero. Use CV
limits if yyy is non-zero, in which case yyy:

v Must be 8 or 16

v Must not be less than the export key minimum length (offset 008 in
subsection X'0003')

v Must be equal in length to the actual source key length of the key

Example: An export key minimum length of 16 and an export key CV
limit mask length of 8 returns an error.

009 yyy Export key CV limit mask (does not exist if yyy=0).

Indicates which CV bits to check against the source key CV limit
template (offset 009+yyy).

Examples: A mask of X'FF' means check all bits in a byte. A mask of
X'FE' ignores the parity bit in a byte.

858 z/OS ICSF Application Programmer's Guide

Table 389. Export key CCA token parameters subsection (X'0005') of trusted block rule
section (X'12') (continued)

Offset
(bytes)

Length
(bytes)

Description

009+yyy yyy Export key CV limit template (does not exist if yyy=0).

Specifies the required values for those CV bits that are checked based on
the export key CV limit mask (offset 009).

The export key CV limit mask and template have the same length, yyy.
This is because these two variables work together to restrict the
acceptable CVs for CCA DES key tokens to be exported. The checks
work as follows:

1. If the length of the key to be exported is less than yyy, return an
error

2. Logical AND the CV for the key to be exported with the export key
CV limit mask

3. Compare the result to the export key CV limit template

4. Return an error if the comparison is not equal

Examples: An export key CV limit mask of X'FF' for CV byte 1 (key
type) along with an export key CV limit template of X'3F' (key type
CVARENC) for byte 1 filters out all key types except CVARENC keys.
Note: Using the mask and template to permit multiple key types is
possible, but cannot consistently be achieved with one rule section. For
example, setting bit 10 to 1 in the mask and the template permits PIN
processing keys and cryptographic variable encrypting keys, and only
those keys. However, a mask to permit PIN-processing keys and
key-encrypting keys, and only those keys, is not possible. In this case,
multiple rule sections are required, one to permit PIN-processing keys
and the other to permit key-encrypting keys.

009+

yyy+
yyy

001 Source key label template length in bytes (zzz).

Valid values are 0 and 64. Return an error if the length is 64 and a
source key label is not provided.

010+

yyy+
yyy

zzz Source key label template (does not exist if zzz=0).

If a key label is identified by the source_key_identifier parameter, verify
that the key label name matches this template. If the comparison fails,
return an error. The source key label template must conform to the
following rules:

v The key label template must be 64 bytes in length

v The first character cannot be in the range X'00' - X'1F', nor can it be
X'FF'

v The first character cannot be numeric (X'30' - X'39')

v A key label name is terminated by a space character (X'20') on the
right and must be padded on the right with space characters

v The only special characters permitted are #, $, @, and * (X'23', X'24',
X'40', and X'2A')

v The wildcard X'2A' (*) is only permitted as the first character, the last
character, or the only character in the template

v Only alphanumeric characters (a...z, A...Z, 0...9), the four special
characters (X'23', X'24', X'40', and X'2A'), and the space character
(X'20') are allowed

Note: See “Number representation in trusted blocks” on page 850.

Trusted block section X'13': Trusted block section X'13' contains the name (key
label). The trusted block name section provides a 64-byte variable to identify the
trusted block, just as key labels are used to identify other CCA keys. This name, or

Appendix B. Key Token Formats 859

label, enables a host access-control system such as RACF to use the name to verify
that the application has authority to use the trusted block.

Section X'13' is optional. No multiple sections are allowed. It has no subsections
defined. This section is defined in the following table:

Table 390. Trusted block key label (name) section X'13'

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:

X'13' Trusted block name (key label)

001 001 Section version number (X'00').

002 002 Section length in bytes (68).

004 064 Name (key label).

Note: See “Number representation in trusted blocks” on page 850.

Trusted block section X'14': Trusted block section X'14' contains control and
security information related to the trusted block. This information section is
separate from the public key and other sections because this section is required
while the others are optional. This section contains the cryptographic information
that guarantees its integrity and binds it to the local system.

Section X'14' is required. No multiple sections are allowed. Two subsections are
defined. This section is defined in the following table:

Table 391. Trusted block information section X'14'

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:

X'14' Trusted block information

001 001 Section version number (X'00').

002 002 Section length in bytes (10+xxx).

004 002 Reserved, binary zero.

006 004 Flags:

X'00000000'
Trusted block is in the inactive state

X'00000001'
Trusted block is in the active state

010 xxx Information section subsections (tag-length-value objects).

One or two objects in TLV format.

Note: See “Number representation in trusted blocks” on page 850.

Section X'14' has two information subsections (tag-length-value objects) defined.
These subsections are summarized in the following table:

860 z/OS ICSF Application Programmer's Guide

Table 392. Summary of trusted block information subsections

Rule
subsection
tag

TLV object Optional or
required

Comments

X'0001' Protection
information

Required Contains the encrypted 8-byte confounder and
triple-length (24-byte) MAC key, the ISO 16609 TDES
CBC MAC value, and the MKVP of the PKA master
key (computed using MDC4).

X'0002' Activation and
expiration
dates

Optional Contains flags indicating whether or not the
coprocessor is to validate dates, and contains the
activation and expiration dates that are considered
valid for the trusted block.

Note: See “Number representation in trusted blocks” on page 850.

Trusted block section X'14' subsection X'0001': Subsection X'0001' of the trusted
block information section (X'14') is the protection information TLV object. This
subsection is required. It contains the encrypted 8-byte confounder and
triple-length (24-byte) MAC key, the ISO-16609 TDES CBC MAC value, and the
MKVP of the PKA master key (computed using MDC4).

This subsection is defined in the following table:

Table 393. Protection information subsection (X'0001') of trusted block information section
(X'14')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0001' Trusted block information TLV object

002 002 Subsection length in bytes (62).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

006 032 Encrypted MAC key.

Contains the encrypted 8-byte confounder and triple-length (24-byte)
MAC key in the following format:

Offset Description

00 - 07 Confounder

08 - 15 Left key

16 - 23 Middle key

24 - 31 Right key

038 008 MAC.

Contains the ISO-16609 TDES CBC message authentication code value.

046 016 MKVP.

Contains the PKA master key verification pattern, computed using
MDC4, when the trusted block is in internal form, otherwise contains
binary zero.

Note: See “Number representation in trusted blocks” on page 850.

Trusted block section X'14' subsection X'0002': Subsection X'0002' of the trusted
block information section (X'14') is the activation and expiration dates TLV object.

Appendix B. Key Token Formats 861

This subsection is optional. It contains flags indicating whether or not the
coprocessor is to validate dates, and contains the activation and expiration dates
that are considered valid for the trusted block.

This subsection is defined in the following table:

Table 394. Activation and expiration dates subsection (X'0002') of trusted block information
section (X'14')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0002' Activation and expiration dates TLV object

002 002 Subsection length in bytes (16).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

006 002 Flags:

X'0000' The coprocessor does not check dates.

X'0001' The coprocessor checks dates.

Compare the activation date (offset 008) and the expiration
date (offset 012) to the coprocessor's internal real-time clock.
Return an error if the coprocessor date is before the activation
date or after the expiration date.

008 004 Activation date.

Contains the first date that the trusted block can be used for generating
or exporting keys. Format of the date is YYMD, where:

YY Big-endian year (return an error if greater than 9999)

M Month (return an error if any value other than X'01' - X'0C')

D Day of month (return an error if any value other than X'01' -
X'1F'; day must be valid for given month and year, including
leap years)

Return an error if the activation date is after the expiration date or is not
valid.

012 004 Expiration date.

Contains the last date that the trusted block can be used. Same format as
activation date (offset 008). Return an error if date is not valid.

Note: See “Number representation in trusted blocks” on page 850.

Trusted block section X'15': Trusted block section X'15' contains
application-defined data. The trusted block application-defined data section can be
used to include application-defined data in the trusted block. The purpose of the
data in this section is defined by the application; it is neither examined nor used
by CCA in any way.

Section X'15' is optional. No multiple sections are allowed. It has no subsections
defined. This section is defined in the following table:

862 z/OS ICSF Application Programmer's Guide

Table 395. Trusted block application-defined data section X'15'

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:

X'15' Application-defined data

001 001 Section version number (X'00').

002 002 Section length (6+xxx)

004 002 Application data length (xxx)

The value of xxx can be from 0 bytes to a length that does not
cause the trusted block to exceed its maximum size of 3500
bytes.

006 xxx Application-defined data

May be used to hold a public-key certificate for the trusted
public key.

Appendix B. Key Token Formats 863

864 z/OS ICSF Application Programmer's Guide

Appendix C. Control Vectors and Changing Control Vectors
with the CVT Callable Service

This section contains a control vector table which displays the default value of the
control vector that is associated with each type of key. It also describes how to
change control vectors with the control vector translate callable service.

Control Vector Table

Note: The Control Vectors used in ICSF are exactly the same as documented in
CCA and the TSS documents.

The master key enciphers all keys operational on your system. A transport key
enciphers keys that are distributed off your system. Before a master key or
transport key enciphers a key, ICSF exclusive ORs both halves of the master key or
transport key with a control vector. The same control vector is exclusive ORed to
the left and right half of a master key or transport key.

Also, if you are entering a key part, ICSF exclusive ORs each half of the key part
with a control vector before placing the key part into the CKDS.

Each type of key on ICSF (except the master key) has either one or two unique
control vectors associated with it. The control vector that ICSF exclusive ORs the
master key or transport key with depends on the type of key the master key or
transport key is enciphering. For double-length keys, a unique control vector exists
for each half of a specific key type. For example, there is a control vector for the
left half of an input PIN-encrypting key, and a control vector for the right half of
an input PIN-encrypting key.

If you are entering a key part into the CKDS, ICSF exclusive ORs the key part with
the unique control vector(s) associated with the key type. ICSF also enciphers the
key part with two master key variants for a key part. One master key variant
enciphers the left half of the key part, and another master key variant enciphers
the right half of the key part. ICSF creates the master key variants for a key part
by exclusive ORing the master key with the control vectors for key parts. These
procedures protect key separation.

Table 396 displays the default value of the control vector that is associated with
each type of key. Some key types do not have a default control vector. For keys
that are double-length, ICSF enciphers a unique control vector on each half.

Table 396. Default Control Vector Values

Key Type Control Vector Value
(Hexadecimal Value for Left
Half of Double-length Key)

Control Vector Value
(Hexadecimal Value for
Right Half of Double-length
Key)

CIPHER 00 03 71 00 03 00 00 00

CIPHER (double length) 00 03 71 00 03 41 00 00 00 03 71 00 03 21 00 00

CIPHERXI 00 0C 50 00 03 C0 00 00 00 0C 50 00 03 A0 00 00

CIPHERXO 00 0C 60 00 03 C0 00 00 00 0C 60 00 03 A0 00 00

© Copyright IBM Corp. 1997, 2013 865

|
|
|

Table 396. Default Control Vector Values (continued)

Key Type Control Vector Value
(Hexadecimal Value for Left
Half of Double-length Key)

Control Vector Value
(Hexadecimal Value for
Right Half of Double-length
Key)

CIPHERXL 00 0C 71 00 03 C0 00 00 00 0C 71 00 03 A0 00 00

CVARDEC 00 3F 42 00 03 00 00 00

CVARENC 00 3F 48 00 03 00 00 00

CVARPINE 00 3F 41 00 03 00 00 00

CVARXCVL 00 3F 44 00 03 00 00 00

CVARXCVR 00 3F 47 00 03 00 00 00

DATA (external) 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

DATA (internal) 00 00 7D 00 03 41 00 00 00 00 7D 00 03 21 00 00

DATA 00 00 00 00 00 00 00 00

DATAC 00 00 71 00 03 41 00 00 00 00 71 00 03 21 00 00

DATAM generation key
(external)

00 00 4D 00 03 41 00 00 00 00 4D 00 03 21 00 00

DATAM key (internal) 00 05 4D 00 03 00 00 00 00 05 4D 00 03 00 00 00

DATAMV MAC verification
key (external)

00 00 44 00 03 41 00 00 00 00 44 00 03 21 00 00

DATAMV MAC verification
key (internal)

00 05 44 00 03 00 00 00 00 05 44 00 03 00 00 00

DECIPHER 00 03 50 00 03 00 00 00

DECIPHER (double-length) 00 03 50 00 03 41 00 00 00 03 50 00 03 21 00 00

DKYGENKY 00 71 44 00 03 41 00 00 00 71 44 00 03 21 00 00

ENCIPHER 00 03 60 00 03 00 00 00

ENCIPHER (double-length) 00 03 60 00 03 41 00 00 00 03 60 00 03 21 00 00

EXPORTER 00 41 7D 00 03 41 00 00 00 41 7D 00 03 21 00 00

IKEYXLAT 00 42 42 00 03 41 00 00 00 42 42 00 03 21 00 00

IMP-PKA 00 42 05 00 03 41 00 00 00 42 05 00 03 21 00 00

IMPORTER 00 42 7D 00 03 41 00 00 00 42 7D 00 03 21 00 00

IPINENC 00 21 5F 00 03 41 00 00 00 21 5F 00 03 21 00 00

MAC 00 05 4D 00 03 00 00 00

MAC (double-length) 00 05 4D 00 03 41 00 00 00 05 4D 00 03 21 00 00

MACVER 00 05 44 00 03 00 00 00

MACVER (double-length) 00 05 44 00 03 41 00 00 00 05 44 00 03 21 00 00

OKEYXLAT 00 41 42 00 03 41 00 00 00 41 42 00 03 21 00 00

OPINENC 00 24 77 00 03 41 00 00 00 24 77 00 03 21 00 00

PINGEN 00 22 7E 00 03 41 00 00 00 22 7E 00 03 21 00 00

PINVER 00 22 42 00 03 41 00 00 00 22 42 00 03 21 00 00

Note: The external control vectors for DATAC, DATAM MAC generation and
DATAMV MAC verification keys are also referred to as data compatibility control

866 z/OS ICSF Application Programmer's Guide

vectors.

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6

00000000 01000001 0EgksixP 00000000 0000001P fff0K00P 00000000 HT000u0P

00000000 01000001 0E00001P 00000000 0000001P fff0K00P 00000000 HT000u0P

00000000 01000010 0E00001P 00000000 0000001P fff0K00P 00000000 HT000u0P

00000000 01000010 0EgksixP 00000000 0000001P fff0K00P 00000000 HT000u0P

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2

.......PP .E.....P0P1PK..PP H....N.P

Control-Vector Base Bits

Most Significant Bit

E= XPORT-OK
P=Even Parity

EXPORTER

OKEYXLAT

IKEYXLAT

IMPORTER

Key-Encrypting Keys

K=KEY-PART

Common Bits

Anti-Variant Bits

Least Significant Bit

g=IMEX

k=OPEX

x=XLATE
i=IMPORT

s=IMIM
k=OPIM

g=IMEX

s=EXEX

i=EXPORT

x=XLATE

Key-Form

H=ENH-ONLY

N=NOT-CCA

Data operation keys

DATA
external

DATA
internal
00000000 00000000 .Eedmv0P 00000000 00000011 fffpK00P 00000000 H....N.P

00000000 00000000 .Eedmv0P 00000000 00000011 fffpK00P 00000000 H......P

e=ENCIPHER
d=DECIPHER
m=MACGEN

v=MACVER

Figure 8. Control Vector Base Bit Map (Common Bits and Key-Encrypting Keys)

Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service 867

00000000 00000000 0Eedmv0P 00000000 00000011 fff0K00P 00000000 HT000u0P

00000000 00000000 0E11000P 00000000 00000011 fff0K00P 00000000 HT000u0P

00000000 00000000 0E00110P 00000000 00000011 fff0K00P 00000000 HT000u0P

00000000 00000000 0E00010P 00000000 00000011 fff0K00P 00000000 HT000u0P

00000000 00000011 0E11000P 00000000 00000011 fff0K00P 00000000 HT000u0P

00000000 00000011 0E01000P 00000000 00000011 fff0K00P 00000000 HT000u0P

00000000 00000011 0E10000P 00000000 00000011 fff0K00P 00000000 HT000u0P

00000000 00001010 0E..000P 00000000 00000011 fff0K00P 00000000 HT000u0P

cccc0000 00000101 0E00110P 00000000 00000011 fff0K00P 00000000 HT000u0P

cccc0000 00000101 0E00010P 00000000 00000011 fff0K00P 00000000 HT000u0P

DATA

DATAC

DATAM

DATAMV

CIPHER

MACVER

SECMSG

MAC

ENCIPHER

DECIPHER

01 PIN encryption
10 Key encryption

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2

Control-Vector Base Bits

Most Significant Bit

Data Operation Keys

Least Significant Bit

Key-Form

e=ENCIPHER

d=DECIPHER

m=MACGEN

v=MACVER

0000 ANY

0001 ANSI X9.9

0010 CVV KEY-A

0011 CVV KEY-B

0100 AMEX-CSC

0000uu00 00001100 0E010001 00000000 00000011 fff0K00P 00000000 HT000u0P

0000uu00 00001100 0E100001 00000000 00000011 fff0K00P 00000000 HT000u0P

0000uu00 00001100 0E110001 00000000 00000011 fff0K00P 00000000 HT000u0P

CIPHERXI

CIPHERXO

CIPHERXI

XDout
Xdin

Figure 9. Control Vector Base Bit Map (Data Operation Keys)

868 z/OS ICSF Application Programmer's Guide

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6

aaaa000P 00100010 0E.....P 00000000 00000o1P fff0K00P 00000000 HT000u0P

aaaa000P 00100010 0E00001P 00000000 00000o1P fff0K00P 00000000 HT000u0P

00000000 00100001 0E0..trP 00000000 00000011 fff0K00P 00000000 HT000u0P

00000000 00100100 0E..0trP 00000000 00000011 fff0K00P 00000000 HT000u0P

00000000 00111111 0EvvvvvP 00000000 00000011 fff0K00P 00000000 HT000u0P

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2

Control-Vector Base Bits

Most Significant Bit

Prohibit offsets:

NOOFFSET

PINGEN

PINVER

IPINENC

OPINENC

PIN Processing Keys

Cryptographic Variable-Encrypting Keys

Least Significant Bit

0000 NO-SPEC

CPINGEN

EPINVER

REFORMAT

Key-form

00000 CVARPINE
00001 CVARDEC
00010 CVARXCVL
00011 CVARXCVR
00100 CVARENC

CPINENC

EPINGEN TRANSLAT

CPINGENA

EPINGENA

EPINGEN

CPINGENA

EPINVER

0001 IBM-PIN/IBM-PINO

0010 VISA-PVV

0011 INBK-PIN

0100 GBP-PIN/GBP-PINO

0101 NL-PIN-1

Figure 10. Control Vector Base Bit Map (PIN Processing Keys and Cryptographic Variable-Encrypting Keys)

Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service 869

Key Form Bits, 'fff' - The key form bits, 40-42, and for a double-length key, bits
104-106, are designated 'fff' in the preceding illustration. These bits can have these
values:

000 Single length key

010 Double length key, left half

001 Double length key. right half

110 Double-length key, left half, halves guaranteed unique

101 Double-length key, right half, halves guaranteed unique

Specifying a Control-Vector-Base Value
You can determine the value of a control vector by working through the following
series of questions:
1. Begin with a field of 64 bits (eight bytes) set to B'0'. The most significant bit is

referred to as bit 0. Define the key type and subtype (bits 8 to 14), as follows:
v The main key type bits (bits 8 to 11). Set bits 8 to 11 to one of the following

values:

Table 397. Main Key Type for Bits 8 to 11

Bits 8 to 11 Main Key Type

0000 Data operation keys

0010 PIN keys

0011 Cryptographic variable-encrypting keys

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6

00000000 01010011 0E..000P 00000000 00000011 fff0K00P 00000000 HT000u0P

00000000 0111vvvP 0E0vvvvP 00000000 00000011 fff0K00P 00000000 HT000u0P

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2

Control-Vector Base Bits

Most Significant Bit

KEYGENKY

DKYGENKY

Key Generating Keys

Least Significant Bit

CLR8-ENC

0001 DDATA000 DKY Subtype 0
001 DKY Subtype 1
010 DKY Subtype 2
011 DKY Subtype 3
100 DKY Subtype 4
101 DKY Subtype 5
110 DKY Subtype 6
111 DKY Subtype 7

0010 DMAC
0011 DMV
0100 DIMP

0101 DEXP

0110 DPVR

1000 DMKEY

1001 DMPIN

1111 DALL

UKPT

Key-form

Figure 11. Control Vector Base Bit Map (Key Generating Keys)

870 z/OS ICSF Application Programmer's Guide

Table 397. Main Key Type for Bits 8 to 11 (continued)

Bits 8 to 11 Main Key Type

0100 Key-encrypting keys

0101 Key-generating keys

0111 Diversified key-generating keys

v The key subtype bits (bits 12 to 14). Set bits 12 to 14 to one of the following
values:

Note: For Diversified Key Generating Keys, the subtype field specifies the
hierarchical level of the DKYGENKY. If the subtype is non-zero, then the
DKYGENKY can only generate another DKYGENKY key with the hierarchy
level decremented by one. If the subtype is zero, the DKYGENKY can only
generate the final diversified key (a non-DKYGENKY key) with the key
type specified by the usage bits.

Table 398. Key Subtype for Diversified Key Generating Keys

Bits 12 to 14 Key Subtype

Data Operation Keys

000 Compatibility key (DATA)

001 Confidentiality key (CIPHER, DECIPHER, or ENCIPHER)

010 MAC key (MAC or MACVER)

101 Secure messaging keys

110 Cipher text translate key (CIPHERXI, CIPHERXL, CIPHERXO)

Key-Encrypting Keys

000 Transport-sending keys (EXPORTER and OKEYXLAT)

001 Transport-receiving keys (IMPORTER and IKEYXLAT)

PIN Keys

001 PIN-generating key (PINGEN, PINVER)

000 Inbound PIN-block decrypting key (IPINENC)

010 Outbound PIN-block encrypting key (OPINENC)

Cryptographic Variable-Encrypting Keys

111 Cryptographic variable-encrypting key (CVAR....)

Diversified Key Generating Keys

000 DKY Subtype 0

001 DKY Subtype 1

010 DKY Subtype 2

011 DKY Subtype 3

100 DKY Subtype 4

101 DKY Subtype 5

110 DKY Subtype 6

111 DKY Subtype 7

2. For key-encrypting keys, set the following bits:
v The key-generating usage bits (gks, bits 18 to 20). Set the gks bits to B'111'

to indicate that the Key Generate callable service can use the associated

Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service 871

key-encrypting key to encipher generated keys when the Key Generate
callable service is generating various key-pair key-form combinations (see
the Key-Encrypting Keys section of Figure 8 on page 867). Without any of
the gks bits set to 1, the Key Generate callable service cannot use the
associated key-encrypting key. The Key Token Build callable service can set
the gks bits to 1 when you supply the OPIM, IMEX, IMIM, OPEX, and
EXEX keywords.

v The IMPORT and EXPORT bit and the XLATE bit (ix, bits 21 and 22). If the
‘i’ bit is set to 1, the associated key-encrypting key can be used in the Data
Key Import, Key Import, Data Key Export, and Key Export callable services.
If the ‘x’ bit is set to 1, the associated key-encrypting key can be used in the
Key Translate callable service.

v The key-form bits (fff, bits 40 to 42). The key-form bits indicate how the key
was generated and how the control vector participates in
multiple-enciphering. To indicate that the parts can be the same value, set
these bits to B'010'. For information about the value of the key-form bits in
the right half of a control vector, see Step 8.

3. For MAC and MACVER keys, set the following bits:
v The MAC control bits (bits 20 and 21). For a MAC-generate key, set bits 20

and 21 to B'11'. For a MAC-verify key, set bits 20 and 21 to B'01'.
v The key-form bits (fff, bits 40 to 42). For a single-length key, set the bits to

B'000'. For a double-length key, set the bits to B'010'.
4. For PINGEN and PINVER keys, set the following bits:

v The PIN calculation method bits (aaaa, bits 0 to 3). Set these bits to one of
the following values:

Bits 0 to 3 Calculation Method
Keyword

Description

0000 NO-SPEC A key with this control vector can
be used with any PIN calculation
method.

0001 IBM-PIN or IBM-PINO A key with this control vector can
be used only with the IBM PIN or
PIN Offset calculation method.

0010 VISA-PVV A key with this control vector can
be used only with the VISA-PVV
calculation method.

0100 GBP-PIN or GBP-PINO A key with this control vector can
be used only with the German
Banking Pool PIN or PIN Offset
calculation method.

0011 INBK-PIN A key with this control vector can
be used only with the Interbank
PIN calculation method.

0101 NL-PIN-1 A key with this control vector can
be used only with the NL-PIN-1,
Netherlands PIN calculation
method.

v The prohibit-offset bit (o, bit 37) to restrict operations to the PIN value. If
set to 1, this bit prevents operation with the IBM 3624 PIN Offset
calculation method and the IBM German Bank Pool PIN Offset calculation
method.

872 z/OS ICSF Application Programmer's Guide

5. For PINGEN, IPINENC, and OPINENC keys, set bits 18 to 22 to indicate
whether the key can be used with the following callable services

Service Allowed Bit Name Bit

Clear PIN Generate CPINGEN 18

Encrypted PIN Generate Alternate EPINGENA 19

Encrypted PIN Generate EPINGEN 20 for PINGEN

19 for OPINENC

Clear PIN Generate Alternate CPINGENA 21 for PINGEN

20 for IPINENC

Encrypted Pin Verify EPINVER 19

Clear PIN Encrypt CPINENC 18

6. For the IPINENC (inbound) and OPINENC (outbound) PIN-block ciphering
keys, do the following:
v Set the TRANSLAT bit (t, bit 21) to 1 to permit the key to be used in the

PIN Translate callable service. The Control Vector Generate callable service
can set the TRANSLAT bit to 1 when you supply the TRANSLAT keyword.

v Set the REFORMAT bit (r, bit 22) to 1 to permit the key to be used in the
PIN Translate callable service. The Control Vector Generate callable service
can set the REFORMAT bit and the TRANSLAT bit to 1 when you supply
the REFORMAT keyword.

7. For the cryptographic variable-encrypting keys (bits 18 to 22), set the
variable-type bits (bits 18 to 22) to one of the following values:

Bits 18 to 22 Generic Key Type Description

00000 CVARPINE Used in the Encrypted PIN
Generate Alternate service to
encrypt a clear PIN.

00010 CVARXCVL Used in the Control Vector
Translate callable service to
decrypt the left mask array.

00011 CVARXCVR Used in the Control Vector
Translate callable service to
decrypt the right mask array.

00100 CVARENC Used in the Cryptographic
Variable Encipher callable service
to encrypt an unformatted PIN.

8. For key-generating keys, set the following bits:
v For KEYGENKY, set bit 18 for UKPT usage and bit 19 for CLR8-ENC usage.
v For DKYGENKY, bits 12–14 will specify the hierarchical level of the

DKYGENKY key. If the subtype CV bits are non-zero, then the DKYGENKY
can only generate another DKYGENKY key with the hierarchical level
decremented by one. If the subtype CV bits are zero, the DKYGENKY can
only generate the final diversified key (a non-DKYGENKY key) with the
key type specified by usage bits.
To specify the subtype values of the DKYGENKY, keywords DKYL0,
DKYL1, DKYL2, DKYL3, DKYL4, DKYL5, DKYL6 and DKYL7 will be used.

v For DKYGENKY, bit 18 is reserved and must be zero.

Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service 873

v Usage bits 18-22 for the DKYGENKY key type are defined as follows. They
will be encoded as the final key type that the DKYGENKY key generates.

Bits 19 to 22 Keyword Usage

0001 DDATA DATA, DATAC, single or double
length

0010 DMAC MAC, DATAM

0011 DMV MACVER, DATAMV

0100 DIMP IMPORTER, IKEYXLAT

0101 DEXP EXPORTER, OKEYXLAT

0110 DPVR PINVER

1000 DMKEY Secure message key for encrypting
keys

1001 DMPIN Secure message key for encrypting
PINs

1111 DALL All key types may be generated
except DKYGENKY and
KEYGENKY keys. Usage of the
DALL keyword is controlled by a
separate access control point.

9. For secure messaging keys, set the following bits:
v Set bit 18 to 1 if the key will be used in the secure messaging for PINs

service. Set bit 19 to 1 if the key will be used in the secure messaging for
keys service.

10. For all keys, set the following bits:
v The export bit (E, bit 17). If set to 0, the export bit prevents a key from

being exported. By setting this bit to 0, you can prevent the receiver of a
key from exporting or translating the key for use in another cryptographic
subsystem. Once this bit is set to 0, it cannot be set to 1 by any service
other than Control Vector Translate. The Prohibit Export callable service can
reset the export bit.

v The key-part bit (K, bit 44). Set the key-part bit to 1 in a control vector
associated with a key part. When the final key part is combined with
previously accumulated key parts, the key-part bit in the control vector for
the final key part is set to 0. The Control Vector Generate callable service
can set the key-part bit to 1 when you supply the KEY-PART keyword.

v The anti-variant bits (bit 30 and bit 38). Set bit 30 to 0 and bit 38 to 1. Many
cryptographic systems have implemented a system of variants where a 7-bit
value is exclusive-ORed with each 7-bit group of a key-encrypting key
before enciphering the target key. By setting bits 30 and 38 to opposite
values, control vectors do not produce patterns that can occur in
variant-based systems.

v Control vector bits 64 to 127. If bits 40 to 42 are B'000' (single-length key),
set bits 64 to 127 to 0. Otherwise, copy bits 0 to 63 into bits 64 to 127 and
set bits 105 and 106 to B'01'.

v Set the parity bits (low-order bit of each byte, bits 7, 15, ..., 127). These bits
contain the parity bits (P) of the control vector. Set the parity bit of each
byte so the number of zero-value bits in the byte is an even number.

v For secure messaging keys, usage bit 18 on will enable the encryption of
keys in a secure message and usage bit 19 on will enable the encryption of
PINs in a secure message.

874 z/OS ICSF Application Programmer's Guide

v The ENH-ONLY bit (H, bit 56). Set the ENH-ONLY bit to 1 in a control
vector to require the key value be encrypted with the enhanced wrapping.
method. The Control Vector Generate callable service can set the
ENH-ONLY bit to 1 when you supply the ENH-ONLY keyword.

Changing Control Vectors with the Control Vector Translate Callable
Service

Do the following when using the Control Vector Translate callable service:
v Provide the control information for testing the control vectors of the source,

target, and key-encrypting keys to ensure that only sanctioned changes can be
performed

v Select the key-half processing mode.

Providing the Control Information for Testing the Control
Vectors

To minimize your security exposure, the Control Vector Translate callable service
requires control information (mask array information) to limit the range of
allowable control vector changes. To ensure that this service is used only for
authorized purposes, the source-key control vector, target-key control vector, and
key-encrypting key (KEK) control vector must pass specific tests. The tests on the
control vectors are performed within the secured cryptographic engine.

The tests consist of evaluating four logic expressions, the results of which must be
a string of binary zeros. The expressions operate bitwise on information that is
contained in the mask arrays and in the portions of the control vectors associated
with the key or key-half that is being processed. If any of the expression
evaluations do not result in all zero bits, the callable service is ended with a control
vector violation return and reason code (8/39). See Figure 12 on page 877. Only the
56 bit positions that are associated with a key value are evaluated. The low-order
bit that is associated with key parity in each key byte is not evaluated.

Mask Array Preparation
A mask array consists of seven 8-byte elements: A1, B1, A2, B2, A3, B3, and B4. You
choose the values of the array elements such that each of the following four
expressions evaluates to a string of binary zeros. (See Figure 12 on page 877.) Set
the A bits to the value that you require for the corresponding control vector bits. In
expressions 1 through 3 on page 876, set the B bits to select the control vector bits
to be evaluated. In expression 4 on page 876, set the B bits to select the source and
target control vector bits to be evaluated. Also, use the following control vector
information:

C1 is the control vector associated with the left half of the KEK.
C2 is the control vector associated with the source key, or selected source-key
half/halves.
C3 is the control vector associated with the target key or selected target-key
half/halves.

1. (C1 exclusive-OR A1) logical-AND B1

This expression tests whether the KEK used to encipher the key meets your
criteria for the desired translation.

2. (C2 exclusive-OR A2) logical-AND B2

This expression tests whether the control vector associated with the source key
meets your criteria for the desired translation.

Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service 875

3. (C3 exclusive-OR A3) logical-AND B3

This expression tests whether the control vector associated with the target key
meets your criteria for the desired translation.

4. (C2 exclusive-OR C3) logical-AND B4

This expression tests whether the control vectors associated with the source key
and the target key meet your criteria for the desired translation.

Encipher two copies of the mask array, each under a different
cryptographic-variable key (key type CVARENC). To encipher each copy of the
mask array, use the Cryptographic Variable Encipher callable service. Use two
different keys so that the enciphered-array copies are unique values. When using
the Control Vector Translate callable service, the mask_array_left parameter and the
mask_array_right parameter identify the enciphered mask arrays. The array_key_left
parameter and the array_key_right parameter identify the internal keys for
deciphering the mask arrays. The array_key_left key must have a key type of
CVARXCVL and the array_key_right key must have a key type of CVARXCVR.
The cryptographic process deciphers the arrays and compares the results; for the
service to continue, the deciphered arrays must be equal. If the results are not
equal, the service returns the return and reason code for data that is not valid
(8/385).

Use the Key Generate callable service to create the key pairs CVARENC-
CVARXCVL and CVARENC-CVARXCVR. Each key in the key pair must be
generated for a different node. The CVARENC keys are generated for, or imported
into, the node where the mask array will be enciphered. After enciphering the
mask array, you should destroy the enciphering key. The CVARXCVL and
CVARXCVR keys are generated for, or imported into, the node where the Control
Vector Translate callable service will be performed.

If using the BOTH keyword to process both halves of a double-length key,
remember that bits 41, 42, 104, and 105 are different in the left and right halves of
the CCA control vector and must be ignored in your mask-array tests (that is,
make the corresponding B2 and/or B3 bits equal to zero).

When the control vectors pass the masking tests, the verb does the following:
v Deciphers the source key. In the decipher process, the service uses a key that is

formed by the exclusive-OR of the KEK and the control vector in the key token
variable the source_key_token parameter identifies.

v Enciphers the deciphered source key. In the encipher process, the service uses a
key that is formed by the exclusive-OR of the KEK and the control vector in the
key token variable the target_key_token parameter identifies.

v Places the enciphered key in the key field in the key token variable the
target_key_token parameter identifies.

876 z/OS ICSF Application Programmer's Guide

Selecting the Key-Half Processing Mode
Use the Control Vector Translate callable service to change a control vector
associated with a key. Rule-array keywords determine which key halves are
processed in the call, as shown in Figure 13 on page 878.

0 1 0 1 … 0 1 0 1 …

0 0 0 0 … 1 1 1 1 …

0 0 1 1 … 0 0 1 1 …

0 1 1 0 … 0 1 1 0 …

0 1 0 1 … 0 1 0 1 …

0 0 0 0 … 0 1 1 0 …

0 0 1 1 … 0 0 1 1 …

0 1 1 0 … 0 1 1 0 …

0 0 0 0 0 1 1 0 …

0 0 0 0 … 1 1 1 1 …

Control Vector
Under Test

For expression
1: KEK CV
2: Source CV
3: Target CV

A_Values

Intermediate
Result

B_Values

Final Result

For Expression
4: Source CV

Target CV

Intermediate
Result

B_Values

Final Result

Exclusive-OR

Exclusive-OR

Logical-AND

Logical-AND

Set Tested Positions
to the Value that
the Control Vector
Must Match

Set to 1
Those Positions
to be Tested

Report a Control Vector
Violation if any
Bit Position is 1

Source Control Vector

Target Control Vector

Set to 1
Those Positions
to be Tested

Report a Control Vector
Violation if any
bit Position is 1

Figure 12. Control Vector Translate Callable Service Mask_Array Processing

Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service 877

Keyword
Meaning

SINGLE
This keyword causes the control vector of the left half of the source key to
be changed. The updated key half is placed into the left half of the target
key in the target key token. The right half of the target key is unchanged.

The SINGLE keyword is useful when processing a single-length key, or
when first processing the left half of a double-length key (to be followed
by processing the right half).

RIGHT
This keyword causes the control vector of the right half of the source key
to be changed. The updated key half is placed into the right half of the
target key of the target key token. The left half of the source key is copied
unchanged into the left half of the target key in the target key token.

BOTH This keyword causes the control vector of both halves of the source key to
be changed. The updated key is placed into the target key in the target key
token.

A single set of control information must permit the control vector changes
applied to each key half. Normally, control vector bit positions 41, 42, 105,
and 106 are different for each key half. Therefore, set bits 41 and 42 to B'00'
in mask array elements B1, B2, and B3.

You can verify that the source and target key tokens have control vectors
with matching bits in bit positions 40-42 and 104-106, the “form field” bits.
Ensure that bits 40-42 of mask array B4 are set to B'111'.

LEFT This keyword enables you to supply a single-length key and obtain a
double-length key. The source key token must contain:
v The KEK-enciphered single-length key
v The control vector for the single-length key (often this is a null value)
v A control vector, stored in the source token where the right-half control

vector is normally stored, used in decrypting the single-length source
key when the key is being processed for the target right half of the key.

The service first processes the source and target tokens as with the
SINGLE keyword. Then the source token is processed using the
single-length enciphered key and the source token right-half control vector
to obtain the actual key value. The key value is then enciphered using the
KEK and the control vector in the target token for the right-half of the key.

CHANGE-CV CHANGE-CV

LEFT RIGHTLEFT RIGHT

LEFT RIGHT LEFT RIGHT LEFT RIGHT

LEFT RIGHT

CHANGE-CV

Keyword SINGLE Keyword RIGHT Keyword BOTH

Source Key

Process

Target Key

Copy

(Unchanged)

CHANGE-CV

Figure 13. Control Vector Translate Callable Service. In this figure, CHANGE-CV means the requested control vector
translation change; LEFT and RIGHT mean the left and right halves of a key and its control vector.

878 z/OS ICSF Application Programmer's Guide

This approach is frequently of use when you must obtain a double-length
CCA key from a system that only supports a single-length key, for example
when processing PIN keys or key-encrypting keys received from non-CCA
systems.

To prevent the service from ensuring that each key byte has odd parity, you can
specify the NOADJUST keyword. If you do not specify the NOADJUST keyword,
or if you specify the ADJUST keyword, the service ensures that each byte of the
target key has odd parity.

When the Target Key Token CV Is Null
When you use any of the LEFT, BOTH, or RIGHT keywords, and when the
control vector in the target key token is null (all B'0'), then bit 3 in byte 59 will be
set to B'1' to indicate that this is a double-length DATA key.

Control Vector Translate Example
As an example, consider the case of receiving a single-length PIN-block encrypting
key from a non-CCA system. Often such a key will be encrypted by an unmodified
transport key (no control vector or variant is used). In a CCA system, an inbound
PIN encrypting key is double-length.

First use the Key Token Build callable service to insert the single-length key value
into the left-half key-space in a key token. Specify USE-CV as a key type and a
control vector value set to 16 bytes of X'00'. Also specify EXTERNAL, KEY, and
CV keywords in the rule array. This key token will be the source key key token.

Second, the target key token can also be created using the Key Token Build callable
service. Specify a key type of IPINENC and the NO-EXPORT rule array keyword.

Then call the Control Vector Translate callable service and specify a rule-array
keyword of LEFT. The mask arrays can be constructed as follows:
v A1 is set to the value of the KEK's control vector, most likely the value of an

IMPORTER key, perhaps with the NO-EXPORT bit set. B1 is set to eight bytes of
X'FF' so that all bits of the KEK's control vector will be tested.

v A2 is set to eight bytes of X'00', the (null) value of the source key control vector.
B2 is set to eight bytes of X'FF' so that all bits of the source-key “control vector”
will be tested.

v A3 is set to the value of the target key's left-half control vector. B3 is set to
X'FFFF FFFF FF9F FFFF'. This will cause all bits of the control vector to be
tested except for the two (“fff”) bits used to distinguish between the left-half and
right-half target-key control vector.

v B4 is set to eight bytes of X'00' so that no comparison is made between the
source and target control vectors.

Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service 879

880 z/OS ICSF Application Programmer's Guide

Appendix D. Coding Examples

This appendix provides sample routines using the ICSF callable services for these
languages:
v C
v COBOL
v Assembler
v PL/1

The C, COBOL and Assembler H examples that follow use the key generate,
encipher, and decipher callable services to determine whether the deciphered text
matches the starting text.

C
C programs must include the header file csfbext.h, which contains stubs for calling
the ICSF services. This file is installed in the HFS directory /usr/include and is
copied to SYS1.SIEAHDR.H(CSFBEXT).

Information on creating C applications that call ICSF PKCS #11 services is available
in z/OS Cryptographic Services ICSF Writing PKCS #11 Applications.

In addition, C applications that include csfbext.h must be link edited with the
appropriate DLL sidedeck for the addressing model:

Standard 31-bit
Link with /usr/lib/CSFDLL31.x or SYS1.SIEASID(CSFDLL31)

31-bit with XPLINK
Link with /usr/lib/CSFDLL3X.x or SYS1.SIEASID(CSFDLL3X)

64-bit Link with /usr/lib/CSFDLL64.x or SYS1.SIEASID(CSFDLL64)

Information on creating C applications that call ICSF PKCS #11 services is available
in z/OS Cryptographic Services ICSF Writing PKCS #11 Applications.
/*---*
* Example using C: *
* Invokes CSNBKGN (key generate), CSNBENC (DES encipher) and *
* CSNBDEC (DES decipher) *
---/
#include <stdio.h>
#include "csfbext.h"

/*---*
* Prototypes for functions in this example *
---/

/*---*
* Utility for printing hex strings *
---/
void printHex(unsigned char *, unsigned int);

/***/
/* Main Function */
/***/
int main(void) {

© Copyright IBM Corp. 1997, 2013 881

/*---*
* Constant inputs to ICSF services *
---/
static int textLen = 24;
static unsigned char clearText[24]="ABCDEFGHIJKLMN0987654321";
static unsigned char cipherProcessRule[8]="CUSP ";
static unsigned char keyForm[4]="OP ";
static unsigned char keyLength[8]="SINGLE ";
static unsigned char dataKeyType[8]="DATA ";
static unsigned char nullKeyType[8]=" ";
static unsigned char ICV[8]={0};
static int *pad=0;
static int exitDataLength = 0;
static unsigned char exitData[4]={0};
static int ruleArrayCount = 1;

/*---*
* Variable inputs/outputs for ICSF services *
---/
unsigned char cipherText[24]={0};
unsigned char compareText[24]={0};
unsigned char dataKeyId[64]={0};
unsigned char nullKeyId[64]={0};
unsigned char dummyKEKKeyId1[64]={0};
unsigned char dummyKEKKeyId2[64]={0};
int returnCode = 0;
int reasonCode = 0;
unsigned char OCV[18]={0};

/*---*
* Begin executable code *
---/
do {

/*---*
* Call key generate *
---/
if ((returnCode = CSNBKGN(&returnCode,

&reasonCode,
&exitDataLength,
exitData,
keyForm,
keyLength,
dataKeyType,
nullKeyType,
dummyKEKKeyId1,
dummyKEKKeyId2,
dataKeyId,
nullKeyId)) != 0) {

printf("\nKey Generate failed:\n");
printf(" Return Code = %04d\n",returnCode);
printf(" Reason Code = %04d\n",reasonCode);
break;
}

/*---*
* Call encipher *
---/
printf("\nClear Text\n");
printHex(clearText,sizeof(clearText));

if ((returnCode = CSNBENC(&returnCode,
&reasonCode,
&exitDataLength,
exitData,
dataKeyId,
&textLen,
clearText,
ICV,

882 z/OS ICSF Application Programmer's Guide

&ruleArrayCount,
cipherProcessRule,
&pad,
OCV,
cipherText)) != 0) {

printf("\nReturn from Encipher:\n");
printf(" Return Code = %04d\n",returnCode);
printf(" Reason Code = %04d\n",reasonCode);
if (returnCode > 4)

break;
}

/*---*
* Call decipher *
---/
printf("\nCipher Text\n");
printHex(cipherText,sizeof(cipherText));

if ((returnCode = CSNBDEC(&returnCode,
&reasonCode,
&exitDataLength,
exitData,
dataKeyId,
&textLen,
cipherText,
ICV,
&ruleArrayCount,
cipherProcessRule,
OCV,
compareText)) != 0) {

printf("\nReturn from Decipher:\n");
printf(" Return Code = %04d\n",returnCode);
printf(" Reason Code = %04d\n",reasonCode);
if (returnCode > 4)

break;
}

/*---*
* End *
---/
printf("\nClear Text after decipher\n");
printHex(compareText,sizeof(compareText));

} while(0);

return returnCode;

} /* end main */

void printHex (unsigned char * text, unsigned int len)
/*--*
* Prints a string as hex characters *
--/

{
unsigned int i;

for (i = 0; i < len; ++i)
if (((i & 7) == 7) ││ (i == (len - 1)))

printf (" %02x\n", text[i]);
else

printf (" %02x", text[i]);
printf ("\n");

} /* end printHex */

Appendix D. Coding Examples 883

COBOL

IDENTIFICATION DIVISION.

PROGRAM-ID. COBOLXMP.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.

DATA DIVISION.

FILE SECTION.
WORKING-STORAGE SECTION.
77 INPUT-TEXT PIC X(24)

VALUE ’ABCDEFGHIJKLMN0987654321’.
77 OUTPUT-TEXT PIC X(24)

VALUE LOW-VALUES.
77 COMPARE-TEXT PIC X(24)

VALUE LOW-VALUES.
77 CIPHER-PROCESSING-RULE PIC X(08)

VALUE ’CUSP ’.
77 KEY-FORM PIC X(08)

VALUE ’OP ’.
77 KEY-LENGTH PIC X(08)

VALUE ’SINGLE ’.
77 KEY-TYPE-1 PIC X(08)

VALUE ’DATA ’.
77 KEY-TYPE-2 PIC X(08)

VALUE ’ ’.
77 ICV PIC X(08)

VALUE LOW-VALUES.
77 PAD PIC X(01)

VALUE LOW-VALUES.
************* DEFINE SAPI INPUT/OUTPUT PARAMETERS ************
01 SAPI-REC.

05 RETURN-CODE-S PIC 9(08) COMP.
05 REASON-CODE-S PIC 9(08) COMP.
05 EXIT-DATA-LENGTH-S PIC 9(08) COMP.
05 EXIT-DATA-S PIC X(04).
05 KEK-KEY-ID-1-S PIC X(64)

VALUE LOW-VALUES.
05 KEK-KEY-ID-2-S PIC X(64)

VALUE LOW-VALUES.
05 DATA-KEY-ID-S PIC X(64)

VALUE LOW-VALUES.
05 NULL-KEY-ID-S PIC X(64)

VALUE LOW-VALUES.
05 KEY-FORM-S PIC X(08).
05 KEY-LENGTH-S PIC X(08).
05 DATA-KEY-TYPE-S PIC X(08).
05 NULL-KEY-TYPE-S PIC X(08).
05 TEXT-LENGTH-S PIC 9(08) COMP.
05 TEXT-S PIC X(24).
05 ICV-S PIC X(08).
05 PAD-S PIC X(01).
05 CPHR-TEXT-S PIC X(24).
05 COMP-TEXT-S PIC X(24).
05 RULE-ARRAY-COUNT-S PIC 9(08) COMP.
05 RULE-ARRAY-S.

10 RULE-ARRAY PIC X(08).
05 CHAINING-VECTOR-S PIC X(18).

PROCEDURE DIVISION.

884 z/OS ICSF Application Programmer's Guide

MAIN-RTN.
************* CALL KEY GENERATE ***************************

MOVE 0 TO EXIT-DATA-LENGTH-S.
MOVE KEY-FORM TO KEY-FORM-S.
MOVE KEY-LENGTH TO KEY-LENGTH-S.
MOVE KEY-TYPE-1 TO DATA-KEY-TYPE-S.
MOVE KEY-TYPE-2 TO NULL-KEY-TYPE-S.
CALL ’CSNBKGN’ USING RETURN-CODE-S

REASON-CODE-S
EXIT-DATA-LENGTH-S
EXIT-DATA-S
KEY-FORM-S
KEY-LENGTH-S
DATA-KEY-TYPE-S
NULL-KEY-TYPE-S
KEK-KEY-ID-1-S
KEK-KEY-ID-2-S
DATA-KEY-ID-S
NULL-KEY-ID-S.

IF RETURN-CODE-S NOT = 0 OR
REASON-CODE-S NOT = 0 THEN
DISPLAY ’*** KEY-GENERATE ***’
DISPLAY ’*** RETURN-CODE = ’ RETURN-CODE-S
DISPLAY ’*** REASON-CODE = ’ REASON-CODE-S

ELSE
MOVE 24 TO TEXT-LENGTH-S
MOVE INPUT-TEXT TO TEXT-S
MOVE 1 TO RULE-ARRAY-COUNT-S
MOVE CIPHER-PROCESSING-RULE TO RULE-ARRAY-S
MOVE LOW-VALUES TO CHAINING-VECTOR-S
MOVE ICV TO ICV-S.
MOVE PAD TO PAD-S.

************* CALL ENCIPHER ************************************
CALL ’CSNBENC’ USING RETURN-CODE-S

REASON-CODE-S
EXIT-DATA-LENGTH-S
EXIT-DATA-S
DATA-KEY-ID-S
TEXT-LENGTH-S
TEXT-S
ICV-S
RULE-ARRAY-COUNT-S
RULE-ARRAY-S
PAD-S
CHAINING-VECTOR-S
CPHR-TEXT-S

IF RETURN-CODE-S NOT = 0 OR
REASON-CODE-S NOT = 0 THEN
DISPLAY ’*** ENCIPHER ***’
DISPLAY ’*** RETURN-CODE = ’ RETURN-CODE-S
DISPLAY ’*** REASON-CODE = ’ REASON-CODE-S

ELSE
************* CALL DECIPHER ************************************

CALL ’CSNBDEC’ USING RETURN-CODE-S
REASON-CODE-S
EXIT-DATA-LENGTH-S
EXIT-DATA-S
DATA-KEY-ID-S
TEXT-LENGTH-S
CPHR-TEXT-S
ICV-S
RULE-ARRAY-COUNT-S
RULE-ARRAY-S
CHAINING-VECTOR-S
COMP-TEXT-S

IF RETURN-CODE-S NOT = 0 OR

Appendix D. Coding Examples 885

REASON-CODE-S NOT = 0 THEN
DISPLAY ’*** DECIPHER ***’
DISPLAY ’*** RETURN-CODE = ’ RETURN-CODE-S
DISPLAY ’*** REASON-CODE = ’ REASON-CODE-S

ELSE
IF COMP-TEXT-S = TEXT-S THEN

DISPLAY ’*** DECIPHERED TEXT = PLAIN TEXT ***’
ELSE

DISPLAY ’*** DECIPHERED TEXT ê= PLAIN TEXT ***’.
DISPLAY ’*** TEST PROGRAM ENDED ***’
STOP RUN.

Assembler H
TITLE ’SAMPLE ENCIPHER/DECIPHER S/370 PROGRAM.’

===
* SYSTEM/370 ASSEMBLER H EXAMPLE *
* *
===

SPACE
SAMPLE START 0

DS 0H
STM 14,12,12(13) SAVE REGISTERS
BALR 12,0 USE R12 AS BASE REGISTER
USING *,12 PROVIDE SAVE AREA FOR SUBROUTINE
LA 14,SAVE PERFORM SAVE AREA CHAINING
ST 13,4(14) "
ST 14,8(13) "
LR 13,14 "

*
CALL CSFKGN,(RETCD, *

RESCD, *
EXDATAL, *
EXDATA, *
KEY_FORM, *
KEY_LEN, *
KEYTYP1, *
KEYTYP2, *
KEK_ID1, *
KEK_ID2, *
DATA_ID, *
NULL_ID)

CLC RETCD,=F’0’ CHECK RETURN CODE
BNE BACK OUTPUT RETURN/REASON CODE AND STOP
CLC RESCD,=F’0’ CHECK REASON CODE
BNE BACK OUTPUT RETURN/REASON CODE AND STOP

*
* CALL ENCIPHER WITH THE KEY JUST GENERATED
* OPERATIONAL FORM
*

MVC RULEAC,=F’1’ SET RULE ARRAY COUNT
MVC RULEA,=CL8’CUSP ’ BUILD RULE ARRAY
CALL CSFENC,(RETCD, *

RESCD, *
EXDATAL, *
EXDATA, *
DATA_ID, *
TEXTL, *
TEXT, *
ICV, *
RULEAC, *
RULEA, *
PAD_CHAR, *
OCV, *
CIPHER_TEXT)

CLC RETCD,=F’0’ CHECK RETURN CODE
BNE BACK OUTPUT RETURN/REASON CODE AND STOP

886 z/OS ICSF Application Programmer's Guide

CLC RESCD,=F’0’ CHECK REASON CODE
BNE BACK OUTPUT RETURN/REASON CODE AND STOP
CALL CSFDEC,(RETCD, *

RESCD, *
EXDATAL, *
EXDATA, *
DATA_ID, *
TEXTL, *
CIPHER_TEXT, *
ICV, *
RULEAC, *
RULEA, *
OCV, *
NEW_TEXT)

CLC RETCD,=F’0’ CHECK RETURN CODE
BNE BACK OUTPUT RETURN/REASON CODE AND STOP
CLC RESCD,=F’0’ CHECK REASON CODE
BNE BACK OUTPUT RETURN/REASON CODE AND STOP

*
COMPARE EQU * COMPARE START AND END TEXT

CLC TEXT,NEW_TEXT
BE GOODENC
WTO ’DECIPHERED TEXT DOES NOT MATCH STARTING TEXT’
B BACK

GOODENC WTO ’DECIPHERED TEXT MATCHES STARTING TEXT’
*
*

WTO ’TEST PROGRAM TERMINATING’
B RETURN

*
*--
* CONVERT RETURN/REASON CODES FROM BINARY TO EBCDIC
*--
BACK DS 0F OUTPUT RETURN & REASON CODE

L 5,RETCD LOAD RETURN CODE
L 6,RESCD LOAD REASON CODE
CVD 5,BCD1 CONVERT TO PACK-DECIMAL
CVD 6,BCD2
UNPK ORETCD,BCD1 CONVERT TO EBCDIC
UNPK ORESCD,BCD2
OI ORETCD+7,X’F0’ CORRECT LAST DIGIT
OI ORESCD+7,X’F0’

*
MVC ERROUT+21(4),ORETCD+4
MVC ERROUT+41(4),ORESCD+4

ERROUT WTO ’ERROR CODE = , REASON CODE = ’
RETURN EQU *

L 13,4(13) SAVE AREA RESTORATION
MVC 16(4,13),RETCD SAVE RETURN CODE
LM 14,12,12(13)
BR 14 RETURN TO CALLER

*
BCD1 DS D CONVERT TO BCD TEMP AREA
BCD2 DS D CONVERT TO BCD TEMP AREA
ORETCD DS CL8’0’ OUTPUT RETURN CODE
ORESCD DS CL8’0’ OUTPUT REASON CODE
*
KEY_FORM DC CL8’OP ’ KEY FORM
KEY_LEN DC CL8’SINGLE ’ KEY LENGTH
KEYTYP1 DC CL8’DATA ’ KEY TYPE 1
KEYTYP2 DC CL8’ ’ KEY TYPE 2
TEXT DC C’ABCDEFGHIJKLMNOPQRSTUV0987654321’
TEXTL DC F’32’ TEXT LENGTH
CIPHER_TEXT DC CL32’ ’
NEW_TEXT DC CL32’ ’
DATA_ID DC XL64’00’ DATA KEY TOKEN
NULL_ID DC XL64’00’ NULL KEY TOKEN - UNFILLED

Appendix D. Coding Examples 887

KEK_ID1 DC XL64’00’ KEK1 KEY TOKEN
KEK_ID2 DC XL64’00’ KEK2 KEY TOKEN
RETCD DS F’0’ RETURN CODE
RESCD DS F’0’ REASON CODE
EXDATAL DC F’0’ EXIT DATA LENGTH
EXDATA DS 0C EXIT DATA
RULEA DS 1CL8 RULE ARRAY
RULEAC DS F’0’ RULE ARRAY COUNT
ICV DC XL8’00’ INITIAL CHAINING VECTOR
OCV DC XL18’00’ OUTPUT CHAINING VECTOR
PAD_CHAR DC F’0’ PAD CHARACTER
SAVE DS 18F SAVE REGISTER AREA

END SAMPLE

PL/1
/**/
/* */
/* Sample program to call the one-way hash service to generate */
/* the SHA-1 hash of the input text and call digital signature */
/* generate with an RSA key using the ISO 9796 text formatting. The */
/* RSA key token is built from supplied data and imported for the */
/* signature generate service to use. */
/* */
/* INPUT: TEXT Message digest to be signed */
/* */
/* OUTPUT: SIGNATURE_LENGTH Length of the signature in bytes */
/* Written to a dataset. */
/* */
/* SIGNATURE Signature for hash. Written to a */
/* dataset. */
/* */
/**/
DSIGEXP:PROCEDURE(TEXT) OPTIONS(MAIN);

/* Declarations - Parameters */

DCL TEXT CHAR(64) VARYING;

/* Declarations - API parameters */

DCL CHAINING_VECTOR_LENGTH FIXED BINARY(31, 0) INIT(128);
DCL CHAINING_VECTOR CHAR(128);
DCL DUMMY_KEK CHAR(64);
DCL EXIT_DATA CHAR(4);
DCL EXIT_LEN FIXED BINARY(31, 0) INIT(0);

DCL HASH CHAR(20);
DCL HASH_LENGTH FIXED BINARY(31, 0) INIT(20);

DCL INTERNAL_PKA_TOKEN CHAR(1024);
DCL INTERNAL_PKA_TOKEN_LENGTH FIXED BINARY(31, 0);

DCL KEY_VALUE_STRUCTURE CHAR(139)
INIT((’02000040000300408000000000000000’X ||

’01AE28DA4606D885EB7E0340D6BAAC51’X ||
’991C0CD0EAE835AFD9CFF3CD7E7EA741’X ||
’41DADD24A6331BEDF41A6626522CCF15’X ||
’767D167D01A16F970100010252BDAD42’X ||
’52BDAD425A8C6045D41AFAF746BEBD5F’X ||
’085D574FCD9C07F0B38C2C45017C2A1A’X ||
’B919ED2551350A76606BFA6AF2F1609A’X ||
’00A0A48DD719A55E9CA801’X));

DCL KEY_VALUE_LENGTH FIXED BINARY(31, 0) INIT(139);

DCL OWH_TEXT CHAR(64);

888 z/OS ICSF Application Programmer's Guide

DCL PKA_KEY_TOKEN CHAR(1024);
DCL PKA_TOKEN_LENGTH FIXED BINARY(31, 0);

DCL PRIVATE_NAME CHAR(64) INIT(’PL1.EXAMPLE.FOR.APG’);
DCL PRIVATE_NAME_LENGTH FIXED BINARY(31, 0) INIT(0);

DCL RETURN_CODE FIXED BINARY(31, 0) INIT(0);
DCL REASON_CODE FIXED BINARY(31, 0) INIT(0);

DCL RESERVED_FIELD_LENGTH FIXED BINARY(31, 0) INIT(0);
DCL RESERVED_FIELD CHAR(1);

DCL RULE_ARY_CNT_DSG FIXED BINARY(31, 0) INIT(1);
DCL RULE_ARY_CNT_PKB FIXED BINARY(31, 0) INIT(1);
DCL RULE_ARY_CNT_PKI FIXED BINARY(31, 0) INIT(0);
DCL RULE_ARY_CNT_OWH FIXED BINARY(31, 0) INIT(2);
DCL RULE_ARY_DSG CHAR(8) INIT(’ISO-9796’);
DCL RULE_ARY_PKB CHAR(8) INIT(’RSA-PRIV’);
DCL RULE_ARY_PKI CHAR(8);
DCL RULE_ARY_OWH CHAR(16) INIT(’SHA-1 ONLY ’);

DCL SIGNATURE_LENGTH FIXED BINARY(31, 0);
DCL SIGNATURE CHAR(128);
DCL SIG_BIT_LENGTH FIXED BINARY(31, 0);

DCL TEXT_LENGTH FIXED BINARY(31, 0);

/* Declarations - Files and entry points */

DCL SYSPRINT FILE OUTPUT;
DCL SIGOUT FILE RECORD OUTPUT;

DCL CSNDPKB ENTRY EXTERNAL OPTIONS(ASM, INTER);
DCL CSNDPKI ENTRY EXTERNAL OPTIONS(ASM, INTER);
DCL CSNBOWH ENTRY EXTERNAL OPTIONS(ASM, INTER);
DCL CSNDDSG ENTRY EXTERNAL OPTIONS(ASM, INTER);

/* Declarations - Internal variables */

DCL DSG_HEADER CHAR(32)
INIT(’* DIGITAL SIGNATURE GENERATION *’);

DCL FILE_OUT_LINE CHAR(128);
DCL OWH_HEADER CHAR(16)

INIT(’* ONE WAY HASH *’);
DCL PKB_HEADER CHAR(16)

INIT(’* PKA TOKEN BUILD *’);
DCL PKI_HEADER CHAR(16)

INIT(’* PKA TOKEN IMPORT *’);
DCL RC_STRING CHAR(14) INIT(’RETURN CODE = ’);
DCL RS_STRING CHAR(14) INIT(’REASON CODE = ’);
DCL SIG_STRING CHAR(12) INIT(’SIGNATURE = ’);
DCL SIG_LEN_STRING CHAR(26) INIT(’SIGNATURE LENGTH(BYTES) = ’);

/* Declarations - Built-in functions */

DCL (SUBSTR, LENGTH) BUILTIN;

/**/
/* Call one-way hash to get the SHA-1 hash of the text. */
/**/
TEXT_LENGTH = LENGTH(TEXT);
OWH_TEXT = SUBSTR(TEXT, 1, TEXT_LENGTH);

CALL CSNBOWH(RETURN_CODE,
REASON_CODE,
EXIT_LEN,
EXIT_DATA,

Appendix D. Coding Examples 889

RULE_ARY_CNT_OWH,
RULE_ARY_OWH,
TEXT_LENGTH,
OWH_TEXT,
CHAINING_VECTOR_LENGTH,
CHAINING_VECTOR,
HASH_LENGTH,
HASH);

PUT SKIP LIST(OWH_HEADER);
PUT SKIP LIST(RC_STRING || RETURN_CODE);
PUT SKIP LIST(RS_STRING || REASON_CODE);

/**/
/* Create the PKA RSA private external token. */
/**/
IF RETURN_CODE = 0 THEN

DO;

PKA_TOKEN_LENGTH = 1024;

CALL CSNDPKB(RETURN_CODE,
REASON_CODE,
EXIT_LEN,
EXIT_DATA,
RULE_ARY_CNT_PKB,
RULE_ARY_PKB,
KEY_VALUE_LENGTH,
KEY_VALUE_STRUCTURE,
PRIVATE_NAME_LENGTH,
PRIVATE_NAME,
RESERVED_FIELD_LENGTH,
RESERVED_FIELD,
RESERVED_FIELD_LENGTH,
RESERVED_FIELD,
RESERVED_FIELD_LENGTH,
RESERVED_FIELD,
RESERVED_FIELD_LENGTH,
RESERVED_FIELD,
RESERVED_FIELD_LENGTH,
RESERVED_FIELD,
PKA_TOKEN_LENGTH,
PKA_KEY_TOKEN);

PUT SKIP LIST(PKB_HEADER);
PUT SKIP LIST(RC_STRING || RETURN_CODE);
PUT SKIP LIST(RS_STRING || REASON_CODE);

END;

/**/
/* Import the clear RSA private external token. */
/**/
IF RETURN_CODE = 0 THEN

DO;

INTERNAL_PKA_TOKEN_LENGTH = 1024;

CALL CSNDPKI(RETURN_CODE,
REASON_CODE,
EXIT_LEN,
EXIT_DATA,
RULE_ARY_CNT_PKI,
RULE_ARY_PKI,
PKA_TOKEN_LENGTH,
PKA_KEY_TOKEN,
DUMMY_KEK,

890 z/OS ICSF Application Programmer's Guide

INTERNAL_PKA_TOKEN_LENGTH,
INTERNAL_PKA_TOKEN);

PUT SKIP LIST(PKI_HEADER);
PUT SKIP LIST(RC_STRING || RETURN_CODE);
PUT SKIP LIST(RS_STRING || REASON_CODE);

END;
/**/
/* Call digital signature generate. */
/**/
IF RETURN_CODE = 0 THEN

DO;

SIGNATURE_LENGTH = 128;

CALL CSNDDSG(RETURN_CODE,
REASON_CODE,
EXIT_LEN,
EXIT_DATA,
RULE_ARY_CNT_DSG,
RULE_ARY_DSG,
INTERNAL_PKA_TOKEN_LENGTH,
INTERNAL_PKA_TOKEN,
HASH_LENGTH,
HASH,
SIGNATURE_LENGTH,
SIG_BIT_LENGTH,
SIGNATURE);

PUT SKIP LIST(DSG_HEADER);
PUT SKIP LIST(RC_STRING || RETURN_CODE);
PUT SKIP LIST(RS_STRING || REASON_CODE);

IF RETURN_CODE = 0 THEN
DO;

/**/
/* Write the signature and its length to the output file. */
/**/
FILE_OUT_LINE = SIG_LEN_STRING || SIGNATURE_LENGTH;
WRITE FILE(SIGOUT) FROM(FILE_OUT_LINE);
FILE_OUT_LINE = SIG_STRING || SIGNATURE;
WRITE FILE(SIGOUT) FROM(FILE_OUT_LINE);
END;

END;

END DSIGEXP;

Appendix D. Coding Examples 891

892 z/OS ICSF Application Programmer's Guide

Appendix E. Cryptographic Algorithms and Processes

This appendix describes the personal identification number (PIN) formats and
algorithms.

PIN Formats and Algorithms
For PIN calculation procedures, see IBM Common Cryptographic Architecture:
Cryptographic Application Programming Interface Reference.

PIN Notation
This section describes various PIN block formats. The following notations describe
the contents of PIN blocks:

P = A 4-bit decimal digit that is one digit of the PIN value.

C = A 4-bit hexadecimal control value. The valid values are X'0', X'1', and X'2'.

L = A 4-bit hexadecimal value that specifies the number of PIN digits. The
value ranges from 4 to 12, inclusive.

F = A 4-bit field delimiter of value X'F'.

f = A 4-bit delimiter filler that is either P or F, depending on the length of the
PIN.

D = A 4-bit decimal padding value. All pad digits in the PIN block have the
same value.

X = A 4-bit hexadecimal padding value. All pad digits in the PIN block have
the same value.

x = A 4-bit hexadecimal filler that is either P or X, depending on the length of
the PIN.

R = A 4-bit hexadecimal random digit. The sequence of R digits can each take a
different value.

r = A 4-bit random filler that is either P or R, depending on the length of the
PIN.

Z = A 4-bit hexadecimal zero (X'0').

z = A 4-bit zero filler that is either P or Z, depending on the length of the PIN.

S = A 4-bit hexadecimal digit that constitutes one digit of a sequence number.

A = A 4-bit decimal digit that constitutes one digit of a user-specified constant.

PIN Block Formats
This section describes the PIN block formats and assigns a code to each format.

ANSI X9.8
This format is also named ISO format 0, VISA format 1, VISA format 4, and ECI
format 1.

P1 = CLPPPPffffffffFF

P2 = ZZZZAAAAAAAAAAAA

© Copyright IBM Corp. 1997, 2013 893

PIN Block = P1 XOR P2

where C = X’0’
L = X’4’ to X’C’

Programming Note: The rightmost 12 digits (excluding the check digit) in P2 are
the rightmost 12 digits of the account number for all formats except VISA format 4.
For VISA format 4, the rightmost 12 digits (excluding the check digit) in P2 are the
leftmost 12 digits of the account number.

ISO Format 1
This format is also named ECI format 4.

PIN Block = CLPPPPrrrrrrrrRR

where C = X’1’
L = X’4’ to X’C’

ISO Format 2
PIN Block = CLPPPPffffffffFF

where C = X’2’
L = X’4’ to X’C’

ISO Format 3
PIN Block = CLPPPPrrrrrrrrRR

where C = X’3’
L = X’4’ to X’C’

VISA Format 2
PIN Block = LPPPPzzDDDDDDDDD

where L = X’4’ to X’6’

VISA Format 3
This format specifies that the PIN length can be 4-12 digits, inclusive. The PIN
starts from the leftmost digit and ends by the delimiter (‘F’), and the remaining
digits are padding digits.

An example of a 6-digit PIN:
PIN Block = PPPPPPFXXXXXXXXX

IBM 4700 Encrypting PINPAD Format
This format uses the value X'F' as the delimiter for the PIN.

PIN Block = LPPPPffffffffFSS

where L = X’4’ to X’C’

IBM 3624 Format
This format requires the program to specify the delimiter, X, for determining the
PIN length.

PIN Block = PPPPxxxxxxxxXXXX

IBM 3621 Format
This format requires the program to specify the delimiter, X, for determining the
PIN length.

PIN Block = SSSSPPPPxxxxxxxx

894 z/OS ICSF Application Programmer's Guide

ECI Format 2
This format defines the PIN to be 4 digits.

PIN Block = PPPPRRRRRRRRRRRR

ECI Format 3
PIN Block = LPPPPzzRRRRRRRRR

where L = X’4’ to X’6’

PIN Extraction Rules
This section describes the PIN extraction rules for the Encrypted PIN verify and
Encrypted PIN translate callable services.

Encrypted PIN Verify Callable Service
The service extracts the customer-entered PIN from the input PIN block according
to the following rules:
v If the input PIN block format is ANSI X9.8, ISO format 0, VISA format 1, VISA

format 4, ECI format 1, ISO format 1, ISO format 2, VISA format 2, IBM
Encrypting PINPAD format, or ECI format 3, the service extracts the PIN
according to the length specified in the PIN block.

v If the input PIN block format is VISA format 3, the specified delimiter (padding)
determines the PIN length. The search starts at the leftmost digit in the PIN
block. If the input PIN block format is 3624, the specification of a PIN extraction
method for the 3624 is supported through rule array keywords. If no PIN
extraction method is specified in the rule array, the specified delimiter (padding)
determines the PIN length.

v If the input PIN block format is 3621, the specification of a PIN extraction
method for the 3621 is supported through rule array keywords. If no PIN
extraction method is specified in the rule array, the specified delimiter (padding)
determines the PIN length.

v If the input PIN block format is ECI format 2, the PIN is the leftmost 4 digits.

For the VISA algorithm, if the extracted PIN length is less than 4, the services sets
a reason code that indicates that verification failed. If the length is greater than or
equal to 4, the service uses the leftmost 4 digits as the referenced PIN.

For the IBM German Banking Pool algorithm, if the extracted PIN length is not 4,
the service sets a reason code that indicates that verification failed.

For the IBM 3624 algorithm, if the extracted PIN length is less than the PIN check
length, the service sets a reason code that indicates that verification failed.

Clear PIN Generate Alternate Callable Service
The service extracts the customer-entered PIN from the input PIN block according
to the following rules:
v This service supports the specification of a PIN extraction method for the 3624

and 3621 PIN block formats through the use of the rule_array keyword.
Rule_array points to an array of one or two 8-byte elements. The first element in
the rule array specifies the PIN calculation method. The second element in the
rule array (if specified) indicates the PIN extraction method. Refer to the “Clear
PIN Generate Alternate (CSNBCPA and CSNECPA)” on page 466 for an
explanation of PIN extraction method keywords.

Appendix E. Cryptographic Algorithms and Processes 895

Encrypted PIN Translate Callable Service
The service extracts the customer-entered PIN from the input PIN block according
to the following rules:
v If the input PIN block format is ANSI X9.8, ISO format 0, VISA format 1, VISA

format 4, ECI format 1, ISO format 1, ISO format 2, VISA format 2, IBM
Encrypting PINPAD format, or ECI format 3, and if the specified PIN length is
less than 4, the service sets a reason code to reject the operation. If the specified
PIN length is greater than 12, the operation proceeds to normal completion with
unpredictable contents in the output PIN block. Otherwise, the service extracts
the PIN according to the specified length.

v If the input PIN block format is VISA format 3, the specified delimiter (padding)
determines the PIN length. The search starts at the leftmost digit in the PIN
block. If the input PIN block format is 3624, the specification of a PIN extraction
method for the 3624 is supported through rule array keywords. If no PIN
extraction method is specified in the rule array, the specified delimiter (padding)
determines the PIN length.

v If the input PIN block format is 3621, the specification of a PIN extraction
method for the 3621 is supported through rule array keywords. If no PIN
extraction method is specified in the rule array, the specified delimiter (padding)
determines the PIN length.

v If the input block format is ECI format 2, the PIN is always the leftmost 4 digits.

If the maximum PIN length allowed by the output PIN block is shorter than the
extracted PIN, only the leftmost digits of the extracted PIN that form the allowable
maximum length are placed in the output PIN block. The PIN length field in the
output PIN block, it if exists, specifies the allowable maximum length.

PIN Change/Unblock Callable Service
The PIN Block calculation PIN Change/Unblock:
1. Form three 8-byte, 16-digit blocks, -1, -2, and -3, and set all digits to X'0'
2. Replace the rightmost four bytes of block-1 with the authentication code

described in the previous section.
3. Set the second digit of block-2 to the length of the new PIN (4 to 12), followed

by the new PIN, and padded to the right with X'F'
4. Include any current PIN by placing it into the leftmost digits of block-3.
5. Exclusive-OR blocks -1, -2, and -3 to form the 8-byte PIN block.
6. Pad the PIN block with other portions of the message for the smart card:

v Prepend X'08'
v Append X'80'
v Append an additional six bytes of X'00'

The resulting message is ECB-mode triple-encrypted with an appropriate session
key.

IBM PIN Algorithms
This section describes the IBM PIN generation algorithms, IBM PIN offset
generation algorithm, and IBM PIN verification algorithms.

3624 PIN Generation Algorithm
This algorithm generates a n-digit PIN based on an account-related data or
person-related data, namely the validation data. The assigned PIN length
parameter specifies the length of the generated PIN.

896 z/OS ICSF Application Programmer's Guide

The algorithm requires the following input parameters:
v A 64-bit validation data
v A 64-bit decimalization table
v A 4-bit assigned PIN length
v A 128-bit PIN-generation key

The service uses the PIN generation key to encipher the validation data. Each digit
of the enciphered validation data is replaced by the digit in the decimalization
table whose displacement from the leftmost digit of the table is the same as the
value of the digit of the enciphered validation data. The result is an intermediate
PIN. The leftmost n digits of the intermediate PIN are the generated PIN, where n
is specified by the assigned PIN length.

Figure 14 illustrates the 3624 PIN generation algorithm.

German Banking Pool PIN Generation Algorithm
This algorithm generates a 4-digit PIN based on an account-related data or
person-related data, namely the validation data.

The algorithm requires the following input parameters:
v A 64-bit validation data
v A 64-bit decimalization table
v A 128-bit PIN-generation key

The validation data is enciphered using the PIN generation key. Each digit of the
enciphered validation data is replaced by the digit in the decimalization table
whose displacement from the leftmost digit of the table is the same as the value of
the digit of enciphered validation data. The result is an intermediate PIN. The

Assigned PIN Length

PIN
Generation
Key

Validation Data

Intermediate PIN

Generated PIN

E
D
E

Digit
Replacement

Decimalization
Table

Multiple
Encryption

Figure 14. 3624 PIN Generation Algorithm

Appendix E. Cryptographic Algorithms and Processes 897

rightmost 4 digits of the leftmost 6 digits of the intermediate PIN are extracted.
The leftmost digit of the extracted 4 digits is checked for zero. If the digit is zero,
the digit is changed to one; otherwise, the digit remains unchanged. The resulting
four digits is the generated PIN.

Figure 15 illustrates the German Banking Pool (GBP) PIN generation algorithm.

PIN Offset Generation Algorithm
To allow the customer to select his own PIN, a PIN offsets is used by the IBM 3624
PIN generationN algorithms to relate the customer-selected PIN to the generated
PIN.

The PIN offset generation algorithm requires two parameters in addition to those
used in the 3624 PIN generation algorithm. They are a customer-selected PIN and
a 4-bit PIN check length. The length of the customer-selected PIN is equal to the
assigned-PIN length, n.

The 3624 PIN generation algorithm described in the previous section is performed.
The offset data value is the result of subtracting (modulo 10) the leftmost n digits
of the intermediate PIN from the customer-selected PIN. The modulo 10

6 Digits

4 Digits

PIN
Generation
Key

Validation Data

Intermediate PIN

If A = 0, then Z = 1; otherwise, Z = A.

A P P P

Z P P P
(Generated PIN)

E
D
E

Digit
Replacement

Decimalization
Table

Multiple
Encryption

Figure 15. GBP PIN Generation Algorithm

898 z/OS ICSF Application Programmer's Guide

|
|
|

subtraction ignores borrows. The rightmost m digits of the offset data form the
PIN offset, where m is specified by the PIN check length. Note that n cannot be
less than m.

Figure 16 illustrates the PIN offset generation algorithm.

3624 PIN Verification Algorithm
This algorithm generates an intermediate PIN based on the specified validation
data. A part of the intermediate PIN is adjusted by adding an offset data. A part of
the result is compared with the corresponding part of the customer-entered PIN.

The algorithm requires the following input parameters:

Assigned PIN Length

Assigned PIN Length

PIN Check Length

PIN
Generation
Key

Validation Data

Intermediate PIN

A

B

Customer
Selected PIN

A - B,
where B is leftmost
n digits of the
intermediate PIN

Offset Data

PIN Offset

E
D
E

Digit
Replacement

Subtraction
modulo 10

Decimalization
Table

Multiple
Encryption

Figure 16. PIN-Offset Generation Algorithm

Appendix E. Cryptographic Algorithms and Processes 899

|
|
|

v A 64-bit validation data
v A 64-bit decimalization table
v A 128-bit PIN-verification key
v A 4-bit PIN check length
v An offset data
v A customer-entered PIN

The rightmost m digits of the offset data form the PIN offset, where m is the PIN
check length.
1. The validation data is enciphered using the PIN verification key. Each digit of

the enciphered validation data is replaced by the digit in the decimalization
table whose displacement from the leftmost digit of the table is the same as the
value of the digit of enciphered validation data.

2. The leftmost n digits of the result is added (modulo 10) to the offset data value,
where n is the length of the customer-entered PIN. The modulo 10 addition
ignores carries.

3. The rightmost m digits of the result of the addition operation form the PIN
check number. The PIN check number is compared with the rightmost m digits
of the customer-entered PIN. If they match, PIN verification is successful;
otherwise, verification is unsuccessful.

When a nonzero PIN offset is used, the length of the customer-entered PIN is
equal to the assigned PIN length.

Figure 17 on page 901 illustrates the PIN verification algorithm.

900 z/OS ICSF Application Programmer's Guide

German Banking Pool PIN Verification Algorithm
This algorithm generates an intermediate PIN based on the specified validation
data. A part of the intermediate PIN is adjusted by adding an offset data. A part of
the result is extracted. The extracted value may or may not be modified before it
compares with the customer-entered PIN.

The algorithm requires the following input parameters:

Length of CE PIN

Length of CE PIN

PIN Check
Length

PIN Check Length

PIN CN: PIN Check Number
CE PIN: Customer-entered PIN

PIN
Verification
Key

Validation Data

Intermediate PIN

A

Offset Data

B, the leftmost
n digits of the
intermediate
PIN

A + B

=?

CE PIN

PIN CN

E
D
E

Digit
Replacement

Addition
modulo 10

Decimalization
Table

Multiple
Encryption

Figure 17. PIN Verification Algorithm

Appendix E. Cryptographic Algorithms and Processes 901

v A 64-bit validation data
v A 64-bit decimalization table
v A 128-bit PIN verification key
v An offset data
v A customer-entered PIN

The rightmost 4 digits of the offset data form the PIN offset.
1. The validation data is enciphered using the PIN verification key. Each digit of

the enciphered validation data is replaced by the digit in the decimalization
table whose displacement from the leftmost digit of the table is the same as the
value of the digit of enciphered validation data.

2. The leftmost 6 digits of the result is added (modulo 10) to the offset data. The
modulo 10 addition ignores carries.

3. The rightmost 4 digits of the result of the addition (modulo 10) are extracted.
4. The leftmost digit of the extracted value is checked for zero. If the digit is zero,

the digit is set to one; otherwise, the digit remains unchanged. The resulting
four digits are compared with the customer-entered PIN. If they match, PIN
verification is successful; otherwise, verification is unsuccessful.

Figure 18 illustrates the GBP PIN verification algorithm.

VISA PIN Algorithms
The VISA PIN verification algorithm performs a multiple encipherment of a value,
called the transformed security parameter (TSP), and a extraction of a 4-digit PIN
verification value (PVV) from the ciphertext. The calculated PVV is compared with
the referenced PVV and stored on the plastic card or data base. If they match,
verification is successful.

PVV Generation Algorithm
The algorithm generates a 4-digit PIN verification value (PVV) based on the
transformed security parameter (TSP).

The algorithm requires the following input parameters:
v A 64-bit TSP
v A 128-bit PVV generation key

Key encrypted
under sending
system's DES
master key

Key encrypted
under receiving
system's DES
master key

Prepare key
for export

Import the
key

Key encrypted
under transport
key

Key encrypted
under transport
key

Exporter key Importer key

Sending System Receiving System

Figure 18. GBP PIN Verification Algorithm

902 z/OS ICSF Application Programmer's Guide

1. A multiple encipherment of the TSP using the double-length PVV generation
key is performed.

2. The ciphertext is scanned from left to right. Decimal digits are selected during
the scan until four decimal digits are found. Each selected digit is placed from
left to right according to the order of selection. If four decimal digits are found,
those digits are the PVV.

3. If, at the end of the first scan, less than four decimal digits have been selected,
a second scan is performed from left to right. During the second scan, all
decimal digits are skipped and only nondecimal digits can be processed.
Nondecimal digits are converted to decimal digits by subtracting 10. The
process proceeds until four digits of PVV are found.

Figure 19 illustrates the PVV generation algorithm.

Programming Note: For VISA PVV algorithms, the leftmost 11 digits of the TSP
are the personal account number (PAN), the leftmost 12th digit is a key table index
to select the PVV generation key, and the rightmost 4 digits are the PIN. The key
table index should have a value between 1 and 6, inclusive.

PVV Verification Algorithm
The algorithm requires the following input parameters:
v A 64-bit TSP
v A 16-bit referenced PVV

PGK = PVV Generation Key
= PGKL PGKR

Scan the result from left to
right to select 4 digits

PGKL

PGKR

PGKL

TSP

Encipherment Result

4-digit PVV

E

D

E

Figure 19. PVV Generation Algorithm

Appendix E. Cryptographic Algorithms and Processes 903

v A 128-bit PVV verification key

A PVV is generated using the PVV generation algorithm, except a PVV verification
key rather than a PVV generation key is used. The generated PVV is compared
with the referenced PVV. If they match, verification is successful.

Interbank PIN Generation Algorithm
The Interbank PIN calculation method consists of the following steps:
1. Let X denote the transaction_security parameter element converted to an array

of 16 4-bit numeric values. This parameter consists of (in the following
sequence) the 11 rightmost digits of the customer PAN (excluding the check
digit), a constant of 6, a 1-digit key indicator, and a 3-digit validation field.

2. Encrypt X with the double-length PINGEN (or PINVER) key to get 16
hexadecimal digits (64 bits).

3. Perform decimalization on the result of the previous step by scanning the 16
hexadecimal digits from left to right, skipping any digit greater than X'9' until 4
decimal digits (for example, digits that have values from X'0' to X'9') are found.
If all digits are scanned but 4 decimal digits are not found, repeat the scanning
process, skipping all digits that are X'9' or less and selecting the digits that are
greater than X'9'. Subtract 10 (X'A') from each digit selected in this scan.
If the 4 digits that were found are all zeros, replace the 4 digits with 0100.

4. Concatenate and use the resulting digits for the Interbank PIN. The 4-digit PIN
consists of the decimal digits in the sequence in which they are found.

Cipher Processing Rules
DES defines operations on 8-byte data strings. Although the fundamental concepts
of ciphering (enciphering and deciphering) and data verification are simple, there
are different approaches to processing data strings that are not a multiple of 8
bytes in length. These approaches are defined in various standards and IBM
products.

CBC and ANSI X3.106
ANSI standard X3.106 defines four methods of operation for ciphering. One of
these modes, cipher block chaining (CBC), defines the basic method for performing
ciphering on multiple blocks. A plaintext data string, which must be a multiple of
the block size, is processed as a series of blocks. The ciphered result from
processing a block is exclusive ORed with the next block. The last block of the
ciphered result is defined as an output chaining vector (OCV). ICSF stores the
output chaining vector value in the chaining_vector parameter.

An initial chaining vector is exclusive ORed with the first group of 8 input bytes.

In summary:
v An input chaining vector (ICV) is required.
v If the text_length is not an exact multiple of 8 bytes, the request fails.
v The plaintext is not padded, for example, the output text length is not increased.

ICSF provides an enhancement to CBC mode called ciphertext-stealing. This allows
for a text length that is not a multiple of the block size. This is accomplished by
manipulating the last two blocks in a certain way. The second to last block is
encrypted in the normal manner, but then some of the bits are "stolen" and added
to the last (partial) block. These bits can be recovered by decrypting the last block.

904 z/OS ICSF Application Programmer's Guide

This enhancement is currently proposed to NIST as Proposal To Extend CBC Mode
By “Ciphertext Stealing”, dated May 6, 2007.

ANSI X9.23 and IBM 4700
An enhancement to the basic cipher block chaining mode of ANSI X3.106 is
defined so the data lengths that are not an exact multiple of 8 bytes can be
processed. The ANSI X9.23 method always adds from 1 byte to 8 bytes to the
plaintext before encipherment. The last added byte is the count of the added bytes
and is in the range of X'01' to X'08'. The standard defines that the other added
bytes, the pad characters, are random.

When ICSF enciphers the plaintext, the resulting ciphertext is always 1 to 8 bytes
longer than the plaintext.

When ICSF deciphers the ciphertext, ICSF uses the last byte of the deciphered data
as the number of bytes to be removed (the pad bytes and the count byte). The
resulting plaintext is the same as the original plaintext.

The output chaining vector can be used as feedback with this method in the same
way as with the X3.106 method.

In summary, for the ANSI X9.23 method:
v X9.23 processing requires the caller to supply an ICV.
v X9.23 encipher does not allow specification of a pad character.

The 4700 padding rule is similar to the X9.23 rule. The only difference is that in the
X9.23 method, the padding character is not user-selected, but the padding string is
selected by the encipher process.

Segmenting
The callable services can operate on large data objects. Segmenting is the process of
dividing the function into more than one processing step. Your application can
divide the process into multiple steps without changing the final outcome.

To provide segmenting capability, the MAC generation, MAC verification, and
MDC generation callable services require an 18-byte system work area in the
application address space that is provided as the chaining vector parameter to the
callable service. The application program must not change the system work area.

Cipher Last-Block Rules
The DES defines cipher-block chaining as operating on multiples of 8 bytes, and
AES uses multiples of 16 bytes. Various algorithms are used to process strings that
are multiples of the block size. The algorithms are generically named “last-block
rules”. You select the supported last-block rules by using these keywords:
v X9.23
v IPS
v CUSP (also used with PCF)
v 4700-PAD
v CBC-CS

You specify which cipher last-block rule you want to use in the rule_array
parameter of the callable service.

Appendix E. Cryptographic Algorithms and Processes 905

CUSP
If the length of the data to be enciphered is an exact multiple of 8 bytes, the ICV is
exclusive ORed with the first 8-byte block of plaintext, and the resulting 8 bytes
are passed to the DES with the specified key. The resulting 8-byte block of
ciphertext is then exclusive ORed with the second 8-byte block of plaintext, and
the value is enciphered. This process continues until the last 8-byte block of
plaintext is to be enciphered. Because the length of this last block is exactly 8 bytes,
the last block is processed in an identical manner to all the preceding blocks.

To produce the OCV, the last block of ciphertext is enciphered again (thus
producing a double-enciphered block). The user can pass this value of the OCV as
the ICV in his next encipher call to produce chaining between successive calls. The
caller can alternatively pass the same ICV on every call to the callable service.

If the length of data to be enciphered is greater than 7 bytes, and is not an exact
multiple of 8 bytes, the process is the same as that above, until the last partial
block of 1 to 7 bytes is reached. To encipher the last short block, the previous
8-byte block of ciphertext is passed to the DES with the specified key. The first 1 to
7 bytes of this double-enciphered block has two uses. The first use is to exclusive
OR this block with the last short block of plaintext to form the last short block of
the ciphertext. The second use is to pass it back as the OCV. Thus, the OCV is the
last complete 8-byte block of plaintext, doubly enciphered.

If the length of the data to be enciphered is less than 8 bytes, the ICV is enciphered
under the specified key. The first 1 to 7 bytes of the enciphered ICV is exclusive
ORed with the plaintext to form the ciphertext. The OCV is the enciphered ICV.

The Information Protection System (IPS)
The Information Protection System (IPS) offers two forms of chaining: block and
record. Under record chaining, the OCV for each enciphered data string becomes
the ICV for the next. Under block chaining, the same ICV is used for each
encipherment.

Files that are enciphered directly with the ICSF encipher callable service cannot be
properly deciphered using the IPS/CMS CIPHER command or the IPS/CMS
subroutines. Both IPS/CMS CIPHER and AMS REPRO ENCIPHER write headers
to their files that contain information (principally the ICV and chaining method)
needed for decipherment. The encipher callable service does not generate these
headers. Specialized techniques are described in IPS/CMS documentation to
overcome some, if not all, of these limitations, depending on the chaining mode.
As a rough test, you can attempt a decipherment with the CIPHER command
HDWARN option, which causes CIPHER to continue processing even though the
header is absent.

The encipher callable service returns an OCV used by IPS for record chaining. This
allows cryptographic applications using ICSF to be compatible with IPS record
chaining.

Record chaining provides a superior method of handling successive short blocks,
and has better error recovery features when the caller passes successive short
blocks.

The principle used by record chaining is that the OCV is the last 8 bytes of ciphertext.
This is handled as follows:

906 z/OS ICSF Application Programmer's Guide

v If the length of the data to be enciphered is an exact multiple of 8 bytes, the ICV
is exclusive ORed with the first 8 byte block of plaintext, and the resulting 8
bytes are passed to the DES with the specified key. The resulting 8-byte block of
ciphertext is then exclusive ORed with the second 8-byte block of plaintext, and
the resulting value is enciphered. This process continues until the last 8-byte
block of plaintext is to be enciphered. Because the length of this last block is
exactly 8 bytes, the last block is processed in an identical manner to all the
preceding blocks.
The OCV is the last 8 bytes of ciphertext.
The user can pass this value as the ICV in the next encipher call to produce
chaining between successive calls.

v If the length of data to be enciphered is greater than 7 bytes, and is not an exact
multiple of 8 bytes, the process is the same as that above, until the last partial
block of 1 to 7 bytes is reached. To encipher the last short block, the previous
8-byte block of ciphertext is passed to the DES with the specified key. The first 1
to 7 bytes of this doubly enciphered block is then exclusive ORed with the last
short block of plaintext to form the last short block of the ciphertext. The OCV is
the last 8 bytes of ciphertext.

v If the length of the data to be enciphered is less than 8 bytes, then the ICV is
enciphered under the specified key. The first 1 to 7 bytes of the enciphered ICV
is exclusive ORed with the plaintext to form the ciphertext. The OCV is the
rightmost 8 bytes of the plaintext ICV concatenated with the short block of
ciphertext. For example:

ICV = ABCDEFGH
ciphertext = XYZ
OCV = DEFGHXYZ

PKCS Padding Method
This section describes the algorithm used to pad clear text when the PKCS-PAD
method is specified. Padding is applied before encryption when this keyword is
specified with the Symmetric Algorithm Encipher callable service, and it is
removed from decrypted data when the keyword is specified with the Symmetric
Algorithm Decipher callable service.

The rules for PKCS padding are very simple:
v Padding bytes are always added to the clear text before it is encrypted.
v Each padding byte has a value equal to the total number of padding bytes that

are added. For example, if 6 padding bytes must be added, each of those bytes
will have the value 0x06.

v The total number of padding bytes is at least one, and is the number that is
required in order to bring the data length up to a multiple of the cipher
algorithm block size.

The callable services described in this document use AES, which has a cipher block
size of 16 bytes. The total number of padding bytes added to the clear text will
always be between 1 and 16. The table below indicates exactly how many padding
bytes are added according to the data length, and also shows the value of the
padding bytes that are applied.

Value of clear text length
(mod 16)

Number of padding bytes
added Value of each padding byte

0 16 0x10

1 15 0x0F

Appendix E. Cryptographic Algorithms and Processes 907

Value of clear text length
(mod 16)

Number of padding bytes
added Value of each padding byte

2 14 0x0E

3 13 0x0D

4 12 0x0C

5 11 0x0B

6 10 0x0A

7 9 0x09

8 8 0x08

9 7 0x07

10 6 0x06

11 5 0x05

12 4 0x04

13 3 0x03

14 2 0x02

15 1 0x01

Note that the PKCS standards that define this padding method describe it in a way
that limits the maximum padding length to 8 bytes. This is a consequence of the
fact that the algorithms at that time used 8-byte blocks. We extend the definition to
apply to 16-byte AES cipher blocks.

PKCS Padding Method (Example 1)
Clear text consists of the following18 bytes:
F14ADBDA019D6DB7 EFD91546E3FF8444 9BCB

In order to make this a multiple of 16 bytes (the AES block size), we must add 14
bytes. Each byte will contain the value 0x0E, which is 14, the total number of
padding bytes added. The result is that the padded clear text is as follows:
F14ADBDA019D6DB7 EFD91546E3FF8444 9BCB0E0E0E0E0E0E
0E0E0E0E0E0E0E0E

The padded value is 32 bytes in length, which is two AES blocks. This padded
string is encrypted in CBC mode, and the resulting ciphertext will also be 32 bytes
in length.

PKCS Padding Method (Example 2)
Clear text consists of the following16 bytes:
971ACD01C9C7ADEA CC83257926F490FF

This is already a multiple of the AES block size, but PKCS padding rules say that
padding is always applied. Thus, we add 16 bytes of padding to bring the total
length to 32, the next multiple of the AES block size. Each pad byte has the value
0x10, which is 16, the total number of padding bytes added. The result is that the
padded clear text is as follows:
971ACD01C9C7ADEA CC83257926F490FF 1010101010101010
1010101010101010

908 z/OS ICSF Application Programmer's Guide

The padded value is 32 bytes in length, which is two AES blocks. This padded
string is encrypted in CBC mode, and the resulting cipher text will also be 32 bytes
in length.

Wrapping Methods for Symmetric Key Tokens
This section explains how symmetric keys are wrapped with master and
key-encrypting keys. For DES and AES keys, two methods are detailed. These use
the 64-byte token. HMAC keys will use a variable length token with associated
data and the payload wrapping method. In the future, all symmetric keys will be
able to use the variable length token and the payload wrapping method.

ECB Wrapping of DES Keys (Original Method)
The wrapping of a double-length key (*K) using a double-length *KEK is defined
as follows:
e*KEK(KL) || e*KEK(KR) = eKEKL(dKEKR(eKEKL(KL))) || eKEKL(dKEKR(eKEKL(KR)))

Where:
v KL is the left 64 bits of *K.
v KR is the right 64 bits of *K.
v KEKL is the left 64 bits of *KEK.
v KEKR is the right 64 bits of *KEK.
v || means concatenation

CBC Wrapping of AES Keys
The key value in AES tokens are wrapped using the AES algorithm and cipher
block chaining (CBC) mode of encryption. The key value is left justified in a
32-byte block, padded on the right with zero and encrypted.

The enhanced wrapping of an AES key (*K) using an AES *MK is defined as
follows: e*MK(*K) = ecbcMK(*K)

Enhanced CBC Wrapping of DES Keys (Enhanced Method)
The enhanced CBC wrapping method uses triple DES encryption, an internal
chaining of the key value and CBC mode.

The enhanced wrapping of a double-length key (*K) using a double-length *KEK is
defined as follows:
e*KEK(*KL) = ecbcKEKL(dcbcKEKR(ecbcKEKL(KLPRIME || KR)))

KLPRIME = KL XOR SHA1(KR)

Where:
v KL is the left 64 bits of *K.
v KR is the right 64 bits of *K.
v KLPRIME is the 64 bit modified value of KL
v KEKL is the left 64 bits of *KEK.
v KEKR is the right 64 bits of *KEK.
v SHA1(X) is the 160-bit SHA-1 hash of X
v || means concatenation.
v XOR means bitwise exclusive OR

Appendix E. Cryptographic Algorithms and Processes 909

v ecbc means encryption using cipher block chaining mode
v dcbc means decryption using cipher block chaining mode

Wrapping key derivation for enhanced wrapping of DES keys
The wrapping key is exactly the same key that is used by CCA today, with one
exception. Instead of using the base key itself (master key or key-encrypting key),
ICSF will use a key that is derived from that base key. The derived key will have
the control vector applied to it in the standard CCA manner, and then use the
resulting key to wrap the new-format target key token. The reason for using a
derived key is to ensure that no attacks against this wrapping scheme are possible
using the existing CCA functions. For example, it was observed that an attack was
possible by copying the wrapped key into an ECB CCA key token, if the wrapping
key was used instead of a derivative of that key.

The key will be derived using a method defined in the NIST standard SP 800-108,
"Recommendation for Key Derivation Using Pseudorandom Functions" (October,
2009). Derivation will use the method "KDF in Counter Mode" using
pseudorandom function (PRF) HMAC-SHA256. This method provides sufficient
strength for deriving keys for any algorithm used.

The HMAC algorithm is defined as follows:
HMAC(K, text) = H((K0 XOR opad) || H((K0 XOR ipad) || text))

where opad is the constant 0x5C repeated to form a string the same length as K0,
and ipad is the constant 0x36 repeated to form a string the same length as K0. If
the key K is equal in length to the input block size of the hash function (512 bits
for SHA-256), then K0 is set to the value of K. Otherwise, K0 is formed from K by
hashing and/or padding.

The KDF specification calls for inputs optionally including two byte strings, Label
and Context. The context will not be used. The label will contain information on
the usage of this key, to distinguish it from other derivations that CCA may use in
the future for different purposes. Since the security of the derivation process is
rooted in the security of the derivation key and in the HMAC and KDF functions
themselves, it is not necessary for this label string to be of any particular minimum
size. The separation indicator byte of 0x00 specified in the NIST document will
follow the label.

The label value will be defined so that it will be unique to derivation for this key
wrapping process. This means that in any future designs which use the same KDF,
ICSF must use a different value for the label. The label will be the 16 byte value
consisting of the following ASCII characters:
ENHANCEDWRAP2010 (X'454E4841 4E434544 57524150 32303130')

The parameters for the counter mode KDF defined in SP 800-108 are as follows:
v Fixed values:

– h (length of output of PRF) = 256 bits
– r (length of the counter, in bits) = 32 - the counter will be an unsigned 4-byte

value
v Inputs:

– KI (input key) will be the key we are deriving from
– Label will be the value shown above (ASCII ENHANCEDWRAP2010)
– Separator byte of 0x00 will follow the label value

910 z/OS ICSF Application Programmer's Guide

– Context will be a null string (no context is used)
– L will be the length of the derived key to be produced, rounded up to the

next multiple of 256
– PRF (pseudorandom function) will be HMAC-SHA256

The KDF function will produce a pseudorandom bit string that is a multiple of 256
and will use as many bits of that as are required for the key to be produced. Bits
for the key will be taken starting from the leftmost bit of the pseudorandom string,
and any unused bits at the right will be discarded.

Variable length token (AESKW method)
The wrapping method for the variable-length key tokens will be AESKW as
defined in ANSI X9.102.

The wrapping of the payload of a variable length key (*K) using an AES *MK is
defined as follows:
e*MK(*K) = eAESKW*MK(P)

P = ICV || Pad Length || Hash Length || Hash options || Data Hash || *K || Padding

Where:
v ICV is the 6 byte constant 0xA6A6A6A6A6A6
v Pad length is the length of the Padding in bits
v Hash length is the length of the Data Hash in bytes
v Hash options is a 4-byte field
v Data Hash is the hash of the associated data block
v Padding is the number of bytes, 0x00, to make of the overall length of P a

multiple of 16
v eAESKW means encryption using the AESKW method

PKA92 Key Format and Encryption Process
The PKA Symmetric Key Generate and the PKA Symmetric Key Import callable
services optionally support a PKA92 method of encrypting a DES key with an RSA
public key. This format is adapted from the IBM Transaction Security System (TSS)
4753 and 4755 product's implementation of “PKA92”. The callable services do not
create or accept the complete PKA92 AS key token as defined for the TSS products.
Rather, the callable services only support the actual RSA-encrypted portion of a
TSS PKA92 key token, the AS External Key Block.

Forming an AS External Key Block - The PKA96 implementation forms an AS
External Key Block by RSA-encrypting a key block using a public key. The key
block is formed by padding the key record detailed in Table 399 on page 912 with
zero bits on the left, high-order end of the key record. The process completes the
key block with three sub-processes: masking, overwriting, and RSA encrypting.

Appendix E. Cryptographic Algorithms and Processes 911

|

Table 399. PKA96 Clear DES Key Record

Offset
(Bytes)

Length
(Bytes)

Description

Zero-bit padding to form a structure as long as the length of the public key modulus. The
implementation constrains the public key modulus to a multiple of 64 bits in the range of
512 to 1024 bits. Note that government export or import regulations can impose limits on
the modulus length. The maximum length is validated by a check against a value in the
Function Control Vector.

000 005 Header and flags: X'01 0000 0000'

005 016 Environment Identifier (EID), encoded in ASCII

021 008 Control vector base for the DES key

029 008 Repeat of the CV data at offset 021

037 008 The single-length DES key or the left half of a double-length
DES key

045 008 The right half of a double-length DES key or a random
number. This value is locally designated "K."

053 008 Random number, "IV"

061 001 Ending byte, X'00'

Masking Sub-process

1. Form the initial key block by padding the PKR with zero bits on the left,
high-order end to the length of the modulus.

2. Create a mask by CBC encrypting a multiple of 8 bytes of binary zeros using K
as the key and the length of the modulus, and IV as the initialization vector as
defined in the key record at offsets 45 and 53. Exclusive-OR the mask with the
key record and call the result PKR.

3. Exclusive-OR the mask with the key block.

Overwriting Sub-process

1. Set the high-order bits of PKR to B'01', and set the low-order bits to B'0110'.
2. Exclusive-OR K and IV and write the result at offset 45 in PKR.
3. Write IV at offset 53 in PKR. This causes the masked and overwritten PKR to

have IV at its original position.

Encrypting Sub-process - RSA encrypt the overwritten PKR masked key record using
the public key of the receiving node. This is the last step in creating an AS external
key block

Recovering a Key from an AS External Key Block - Recover the encrypted DES
key from an AS External Key Block by performing decrypting, validating,
unmasking, and extraction sub-processes.

Decrypting Sub-process - RSA decrypt the AS External Key Block using an RSA
private key and call the result of the decryption PKR. The private key must be
usable for key management purposes.

Validating Sub-process - Verify that the high-order two bits of the decrypted key
block are valued to B'01' and that the low-order four bits of the PKR record are
valued to B'0110'.

912 z/OS ICSF Application Programmer's Guide

Unmasking Sub-process - Set IV to the value of the 8 bytes at offset 53 of the PKR
record. Note that there is a variable quantity of padding prior to offset 0. See
Table 399 on page 912.

Set K to the exclusive-OR of IV and the value of the 8 bytes at offset 45 of the PKR
record.

Create a mask that is equal in length to the key block by CBC encrypting a
multiple of 8 bytes of binary zeros using K as the key and IV as the initialization
vector. Exclusive-OR the mask with PKR and call the result the key record.

Copy K to offset 45 in the PKR record.

Extraction Sub-process. Confirm that:
v The four bytes at offset 1 in the PKR are valued to X'0000 0000'
v The two control vector fields at offsets 21 and 29 are identical
v If the control vector is an IMPORTER or EXPORTER key class, that the EID in

the key record is not the same as the EID stored in the cryptographic engine.

The control vector base of the recovered key is the value at offset 21. If the control
vector base bits 40 to 42 are valued to B'010' or B'110', the key is double length. Set
the right half of the received key's control vector equal to the left half and reverse
bits 41 and 42 in the right half.

The recovered key is at offset 37 and is either 8 or 16 bytes long based on the
control vector base bits 40 to 42. If these bits are valued to B'000', the key is single
length. If these bits are valued to B'010' or B'110', the key is double length.

Formatting Hashes and Keys in Public-Key Cryptography
The digital signature generate and digital signature verify callable services support
several methods for formatting a hash, and in some cases a descriptor for the
hashing method, into a bit-string to be processed by the cryptographic algorithm.
This topic discusses the ANSI X9.31 and PKCS #1 methods. The ISO 9796-1 method
can be found in the ISO standard.

This topic also describes the PKCS #1, version 1, 1.5, and 2.0, methods for placing a
key in a bit string for RSA ciphering in a key exchange.

ANSI X9.31 Hash Format
With ANSI X9.31, the string that is processed by the RSA algorithm is formatted by
the concatenation of a header, padding, the hash and a trailer, from the most
significant bit to the least significant bit, such that the resulting string is the same
length as the modulus of the key. For the ICSF implementation, the modulus
length must be a multiple of 8 bits.
v The header consists of X'6B'
v The padding consists of X'BB', repeated as many times as required, and

terminated by X'BA'
v The hash value follows the padding
v The trailer consists of a hashing mechanism specifier and final byte. These

specifiers are defined:
– X'31': RIPEMD-160
– X'33': SHA-1

Appendix E. Cryptographic Algorithms and Processes 913

v A final byte of X'CC'.

PKCS #1 Formats
Version 2.0 of the PKCS #1 standard4 defines methods for formatting keys and
hashes prior to RSA encryption of the resulting data structures. The lower versions
of the PKCS #1 standard defined block types 0, 1, and 2, but in the current
standard that terminology is dropped.

ICSF implemented these processes using the terminology of the Version 2.0
standard:
v For formatting keys for secured transport (CSNDSYX, CSNDSYG, CSNDSYI):

– RSAES-OAEP, the preferred method for key-encipherment5 when exchanging
DATA keys between systems. Keyword PKCSOAEP is used to invoke this
formatting technique. The P parameter described in the standard is not used
and its length is set to zero.

– RSAES-PKCS1-v1_5, is an older method for formatting keys. Keyword
PKCS-1.2 is used to invoke this formatting technique.

v For formatting hashes for digital signatures (CSNDDSG and CSNDDSV):
– RSASSA-PKCS1-v1_5, the newer name for the block-type 1 format. Keyword

PKCS-1.1 is used to invoke this formatting technique.
– The PKCS #1 specification no longer discusses use of block-type 0. Keyword

PKCS-1.0 is used to invoke this formatting technique. Use of block-type 0 is
discouraged.

Using the terminology from older versions of the PKCS #1 standard, block types 0
and 1 are used to format a hash and block type 2 is used to format a DES key. The
blocks consist of (|| means concatenation): X'00' || BT || PS || X'00' D where:
v BT is the block type, X'00', X'01', X'02'.
v PS is the padding of as many bytes as required to make the block the same

length as the modulus of the RSA key, and is bytes of X'00' for block type 0,
X'01' for block type 1, and random and non-X'00' for block type 2. The length of
PS must be at least 8 bytes.

v D is the key, or the concatenation of the BER-encoded hash identifier and the
hash.

You can create the BER encoding of an MD5 or SHA-1 value by prepending these
strings to the 16 or 20-byte hash values, respectively:

MD5 X'3020300C 06082A86 4886F70D 02050500 0410'
SHA-1 X'30213009 06052B0E 03021A05 000414'

Visa and EMV-related smart card formats and processes
The VISA and EMV specifications for performing secure messaging with an EMV
compliant smart card are covered in these documents:
v EMV 2000 Integrated Circuit Card Specification for Payment Systems Version 4.0

(EMV4.0) Book 2

v Design Visa Integrated Circuit Card Specification Manual

4. PKCS standards can be retrieved from http://www.rsasecurity.com/rsalabs/pkcs.

5. The PKA 92 method and the method incorporated into the SET standard are other examples of the Optimal Asymmetric
Encryption Padding (OAEP) technique. The OAEP technique is attributed to Bellare and Rogaway.

914 z/OS ICSF Application Programmer's Guide

v Integrated Circuit Card Specification (VIS) 1.4.0 Corrections

Book 2, Annex A1.3, describes how a smart-card, card-specific authentication code
is derived from a card-issuer-supplied encryption key (ENC-MDK). The Integrated
Circuit Card Specification (VIS) 1.4.0 Corrections indicates that the key used should
be an authentication key (MAC-MDK).

Book 2, Annex A1.3 describes how a smart-card, card-specific session key is
derived from a card-issuer-supplied PIN-block-encryption key (ENC-MDK). The
encryption key is derived using a "tree-based-derivation" technique. IBM CCA
offers two variations of the tree-based technique (TDESEMV2 and TDESEMV4),
and a third technique CCA designates TDES-XOR.

In addition, Book 2 describes construction of the PIN block sent to an EMV card to
initialize or update the user's PIN.

Design Visa Integrated Circuit Card Specification Manual, Annex B.4, contains a
description of the session-key derivation technique CCA designates TDES-XOR.

Augmented by the above-mentioned documentation, the relevant processes are
described in these sections:
v “Deriving the smart-card-specific authentication code”
v “Constructing the PIN-block for transporting an EMV smart-card PIN”
v “Deriving the CCA TDES-XOR session key” on page 916
v “Deriving the EMV TDESEMVn tree-based session key” on page 916
v “PIN-block self-encryption” on page 916

Deriving the smart-card-specific authentication code
To ensure that an original or replacement PIN is received from an authorized
source, the EMV PIN-transport PIN-block incorporates an authentication code. The
authentication code is the rightmost four bytes resulting from the ECB-mode
triple-DES encryption of (the first) eight bytes of card-specific data (that is, the
rightmost four bytes of the Unique DEA Key A).

Constructing the PIN-block for transporting an EMV
smart-card PIN

The PIN block is used to transport a new PIN value. The PIN block also contains
an authentication code, and optionally the "current" PIN value, enabling the smart
card to further ensure receipt of a valid PIN value. To enable incorporation of the
PIN block into the a message for an EMV smart-card, the PIN block is padded to
16 bytes prior to encryption.

PINs of length 4 - 12 digits are supported.

PIN-block construction:
1. Form three 8-byte, 16-digit blocks, block-1, block-2, and block-3, and set all

digits to X'0'.
2. Replace the rightmost four bytes of block-1 with the authentication code

described in the previous section.
3. Set the second digit of block-2 to the length of the new PIN (4 to 12), followed

by the new PIN, and padded to the right with X'F'.
4. Include any current PIN by placing it into the leftmost digits of block-3.

Appendix E. Cryptographic Algorithms and Processes 915

5. Exclusive-OR block-1, block-2, and block-3 to form the 8-byte PIN block.
6. Pad the PIN block with other portions of the message for the smart card:

v Prepend X'08' (the length of the PIN block)
v Append X'80', followed by 6 bytes of X'00'

The resulting message is ECB-mode triple-encrypted with an appropriate session
key.

Deriving the CCA TDES-XOR session key
In the diversified key generate and PIN change/unblock services, the TDES-XOR
process first derives a smart-card-specific intermediate key from the
issuer-supplied ENC-MDK key and card-specific data. (This intermediate key is
also used in the TDESEMV2 and TDESEMV4 processes. See the next section.) The
intermediate key is then modified using the application transaction counter (ATC)
value supplied by the smart card.

The double-length session-key creation steps:
1. Obtain the left-half of an intermediate key by ECB-mode triple-DES encrypting

the (first) eight bytes of card specific data using the issuer-supplied ENC-MDK
key.

2. Again using the ENC-MDK key, obtain the right-half of the intermediate key by
ECB-mode triple-DES encrypting:
v The second 8 bytes of card-specific derivation data when 16 bytes have been

supplied
v The exclusive-OR of the supplied 8 bytes of derivation data with X'FFFFFFFF

FFFFFFFF'
3. Pad the ATC value to the left with six bytes of X'00' and exclusive-OR the

result with the left-half of the intermediate key to obtain the left-half of the
session key.

4. Obtain the one's complement of the ATC by exclusive-ORing the ATC with
X'FFFF'. Pad the result on the left with six bytes of X'00'. Exclusive-OR the
8-byte result with the right-half of the intermediate key to obtain the right-half
of the session key.

Deriving the EMV TDESEMVn tree-based session key
In the diversified key generate and PIN change/unblock services, the TDESEMV2
and TDESEMV4 keywords call for the creation of the session key with this process:
1. The intermediate key is obtained as explained above for the TDES-XOR

process.
2. Combine the intermediate key with the two-byte Application Transaction

Counter (ATC) and an optional Initial Value. The process is defined in the EMV
2000 Integrated Circuit Card Specification for Payment Systems Version 4.0
(EMV4.0) Book 2 Book 2, Annex A1.3.
v TDESEMV2 causes processing with a branch factor of 2 and a height of 16.
v TDESEMV4 causes processing with a branch factor of 4 and a height of 8.

PIN-block self-encryption
In the Secure Messaging for PINs (CSNBSPN and CSNESPN) service, you can use
the SELFENC rule-array keyword to specify that the 8-byte PIN block shall be
used as a DES key to encrypt the PIN block. The verb appends the self-encrypted
PIN block to the clear PIN-block in the output message.

916 z/OS ICSF Application Programmer's Guide

Key Test Verification Pattern Algorithms
The key test verification pattern algorithms are:
v The DES algorithm is used by the Key Test callable service to generate and

verify the verification pattern.
v The SHAVP1 algorithm is used by the Key Test2 callable service to generate and

verify the verification pattern.

DES Algorithm (single- and double-length keys)
For DES keys, the Key Test callable service uses this algorithm to generate and
verify the verification pattern.

KK = eC(KL) XOR KL
VP = eKK(KR XOR RN) XOR RN

where:
v eK(x) - x is encrypted by key K using the DES algorithm
v KL is the left 128-bit clear key value of the key
v KR is the right 128-bit clear key value of the key (will be hex zero for a single

length key)
v C is X''4545454545454545'
v KK is a 128-bit intermediate value
v RN is a 128-bit pseudo-random number
v VP is the 128-bit verification pattern

SHAVP1 Algorithm
This algorithm is used by the Key Test2 callable service to generate and verify the
verification pattern.

VP = Trunc128(SHA256(KA || KT || KL || K))

Where:
v VP is the 128-bit verification pattern
v TruncN(x) is truncation of the string x to the left most N bits
v SHA256(x) is the SHA-256 hash of the string x
v KA is the one-byte CCA variable-length key token constant for the algorithm of

key (HMAC X'03')
v KT is the two-byte CCA variable-length key token constant for the type of key

(MAC X'0002')
v KL is the two-byte bit length of the clear key value
v K is the clear key value left justified and padded on the right with binary zeros

to byte boundary || is string concatenation

Appendix E. Cryptographic Algorithms and Processes 917

918 z/OS ICSF Application Programmer's Guide

Appendix F. EBCDIC and ASCII Default Conversion Tables

This section presents tables showing EBCDIC to ASCII and ASCII to EBCDIC
conversion tables. In the table headers, EBC refers to EBCDIC and ASC refers to
ASCII.

Table 400 shows the EBCDIC to ASCII default conversion table.

Table 400. EBCDIC to ASCII Default Conversion Table

EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC

00 00 20 81 40 20 60 2D 80 F8 A0 C8 C0 7B E0 5C

01 01 21 82 41 A6 61 2F 81 61 A1 7E C1 41 E1 E7

02 02 22 1C 42 E1 62 DF 82 62 A2 73 C2 42 E2 53

03 03 23 84 43 80 63 DC 83 63 A3 74 C3 43 E3 54

04 CF 24 86 44 EB 64 9A 84 64 A4 75 C4 44 E4 55

05 09 25 0A 45 90 65 DD 85 65 A5 76 C5 45 E5 56

06 D3 26 17 46 9F 66 DE 86 66 A6 77 C6 46 E6 57

07 7F 27 1B 47 E2 67 98 87 67 A7 78 C7 47 E7 58

08 D4 28 89 48 AB 68 9D 88 68 A8 79 C8 48 E8 59

09 D5 29 91 49 8B 69 AC 89 69 A9 7A C9 49 E9 5A

0A C3 2A 92 4A 9B 6A BA 8A 96 AA EF CA CB EA A0

0B 0B 2B 95 4B 2E 6B 2C 8B A4 AB C0 CB CA EB 85

0C 0C 2C A2 4C 3C 6C 25 8C F3 AC DA CC BE EC 8E

0D 0D 2D 05 4D 28 6D 5F 8D AF AD 5B CD E8 ED E9

0E 0E 2E 06 4E 2B 6E 3E 8E AE AE F2 CE EC EE E4

0F 0F 2F 07 4F 7C 6F 3F 8F C5 AF F9 CF ED EF D1

10 10 30 E0 50 26 70 D7 90 8C B0 B5 D0 7D F0 30

11 11 31 EE 51 A9 71 88 91 6A B1 B6 D1 4A F1 31

12 12 32 16 52 AA 72 94 92 6B B2 FD D2 4B F2 32

13 13 33 E5 53 9C 73 B0 93 6C B3 B7 D3 4C F3 33

14 C7 34 D0 54 DB 74 B1 94 6D B4 B8 D4 4D F4 34

15 B4 35 1E 55 A5 75 B2 95 6E B5 B9 D5 4E F5 35

16 08 36 EA 56 99 76 FC 96 6F B6 E6 D6 4F F6 36

17 C9 37 04 57 E3 77 D6 97 70 B7 BB D7 50 F7 37

18 18 38 8A 58 A8 78 FB 98 71 B8 BC D8 51 F8 38

19 19 39 F6 59 9E 79 60 99 72 B9 BD D9 52 F9 39

1A CC 3A C6 5A 21 7A 3A 9A 97 BA 8D DA A1 FA B3

1B CD 3B C2 5B 24 7B 23 9B 87 BB D9 DB AD FB F7

1C 83 3C 14 5C 2A 7C 40 9C CE BC BF DC F5 FC F0

1D 1D 3D 15 5D 29 7D 27 9D 93 BD 5D DD F4 FD FA

1E D2 3E C1 5E 3B 7E 3D 9E F1 BE D8 DE A3 FE A7

1F 1F 3F 1A 5F 5E 7F 22 9F FE BF C4 DF 8F FF FF

© Copyright IBM Corp. 1997, 2013 919

Table 401 shows the ASCII to EBCDIC default conversion table.

Table 401. ASCII to EBCDIC Default Conversion Table

ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC

00 00 20 40 40 7C 60 79 80 43 A0 EA C0 AB E0 30

01 01 21 5A 41 C1 61 81 81 20 A1 DA C1 3E E1 42

02 02 22 7F 42 C2 62 82 82 21 A2 2C C2 3B E2 47

03 03 23 7B 43 C3 63 83 83 1C A3 DE C3 0A E3 57

04 37 24 5B 44 C4 64 84 84 23 A4 8B C4 BF E4 EE

05 2D 25 6C 45 C5 65 85 85 EB A5 55 C5 8F E5 33

06 2E 26 50 46 C6 66 86 86 24 A6 41 C6 3A E6 B6

07 2F 27 7D 47 C7 67 87 87 9B A7 FE C7 14 E7 E1

08 16 28 4D 48 C8 68 88 88 71 A8 58 C8 A0 E8 CD

09 05 29 5D 49 C9 69 89 89 28 A9 51 C9 17 E9 ED

0A 25 2A 5C 4A D1 6A 91 8A 38 AA 52 CA CB EA 36

0B 0B 2B 4E 4B D2 6B 92 8B 49 AB 48 CB CA EB 44

0C 0C 2C 6B 4C D3 6C 93 8C 90 AC 69 CC 1A EC CE

0D 0D 2D 60 4D D4 6D 94 8D BA AD DB CD 1B ED CF

0E 0E 2E 4B 4E D5 6E 95 8E EC AE 8E CE 9C EE 31

0F 0F 2F 61 4F D6 6F 96 8F DF AF 8D CF 04 EF AA

10 10 30 F0 50 D7 70 97 90 45 B0 73 D0 34 F0 FC

11 11 31 F1 51 D8 71 98 91 29 B1 74 D1 EF F1 9E

12 12 32 F2 52 D9 72 99 92 2A B2 75 D2 1E F2 AE

13 13 33 F3 53 E2 73 A2 93 9D B3 FA D3 06 F3 8C

14 3C 34 F4 54 E3 74 A3 94 72 B4 15 D4 08 F4 DD

15 3D 35 F5 55 E4 75 A4 95 2B B5 B0 D5 09 F5 DC

16 32 36 F6 56 E5 76 A5 96 8A B6 B1 D6 77 F6 39

17 26 37 F7 57 E6 77 A6 97 9A B7 B3 D7 70 F7 FB

18 18 38 F8 58 E7 78 A7 98 67 B8 B4 D8 BE F8 80

19 19 39 F9 59 E8 79 A8 99 56 B9 B5 D9 BB F9 AF

1A 3F 3A 7A 5A E9 7A A9 9A 64 BA 6A DA AC FA FD

1B 27 3B 5E 5B AD 7B C0 9B 4A BB B7 DB 54 FB 78

1C 22 3C 4C 5C E0 7C 4F 9C 53 BC B8 DC 63 FC 76

1D 1D 3D 7E 5D BD 7D D0 9D 68 BD B9 DD 65 FD B2

1E 35 3E 6E 5E 5F 7E A1 9E 59 BE CC DE 66 FE 9F

1F 1F 3F 6F 5F 6D 7F 07 9F 46 BF BC DF 62 FF FF

920 z/OS ICSF Application Programmer's Guide

Appendix G. Access Control Points and Callable Services

Access to callable services that are executed on a coprocessor is through Access
Control Points in the domain role. To execute services on the coprocessor, access
control points must be enabled for each service in the domain role. The access
control points available depend on the coprocessor you are using.

The TKE workstation allows you to enable or disable access control points. For
systems that do not use the optional TKE Workstation, most access control points
(current and new) are enabled in the domain role with the appropriate licensed
internal code on the coprocessor. The table of access control points lists the default
setting of each access control point.

New TKE users and non-TKE users have the default set of access control points
enabled. For existing TKE users who have changed the setting of any access
control point, any new access control points will not be enabled.

Note: Access control points for ICSF utilities are listed in z/OS Cryptographic
Services ICSF Administrator's Guide.

If an access control point is disabled, the corresponding ICSF callable service will
fail during execution with an access denied error.

The following tables list usage information using the following abbreviations:

AE Always enabled, can not be disabled.

ED Enabled by default.

DD Disabled by default.

SC Usage of this access control point requires special consideration.

This table lists access control points that affect multiple services or have require
special consideration when enabling the access control point.

Table 402. Access control points affecting multiple services or requiring special consideration

Name
Callable
Services Notes Usage

Allow weak DES wrap of RSA CSNDPKG /
CSNFPKG

When enabled, a weaker DES key-encrypting
key is allowed to wrap an RSA private key
token. The Prohibit weak wrap – Transport keys
access control point must be enabled and this
access control point will override the restriction.
See “Key Strength and Wrapping of Key” on
page 74 for more information.

DD, SC

ANSI X9.8 PIN - Allow
modification of PAN

CSNBPTR /
CSNEPTR

See “ANSI X9.8 PIN Restrictions” on page 451
for a description of this control.

DD, SC

ANSI X9.8 PIN - Allow only ANSI
PIN blocks

CSNBPTR /
CSNEPTR

See “ANSI X9.8 PIN Restrictions” on page 451
for a description of this control.

DD, SC

© Copyright IBM Corp. 1997, 2013 921

|
|
|
|

|
|
|
|
|

Table 402. Access control points affecting multiple services or requiring special consideration (continued)

Name
Callable
Services Notes Usage

ANSI X9.8 PIN - Enforce PIN
block restrictions

CSNBCPA /
CSNECPA,
CSNBPTR /
CSNEPTR, and
CSNBSPN /
CSNESPN

See “ANSI X9.8 PIN Restrictions” on page 451
for a description of this control.

DD, SC

ANSI X9.8 PIN – Use stored
decimalization tables only

CSNBPGN /
CSNEPGN,
CSNBCPA /
CSNECPA,
CSNBEPG /
CSNEEPG and
CSNBPVR /
CSNEPVR

See “ANSI X9.8 PIN Restrictions” on page 451
for a description of this control.

DD, SC

DATAM Key Management Control CSNBKGN /
CSNEKGN,
CSNBKIM /
CSNEKIM,
CSNBKEX /
CSNEKEX and
CSNBDKG /
CSNEDKG

When enabled, the DATAM and DATAMV key
types can be used. When disabled, the key types
are not allowed.

ED

Disallow 24-byte DATA wrapped
with 16-byte Key

All callable
services that
wrap key under
an exporter or
importer KEK or
a 16-byte DES
master key

When enabled, a triple-length 0 CV DATA keys
can not be wrapped by a 16-byte DES Key,
either the master key or a key-encrypting key.
See “Key Strength and Wrapping of Key” on
page 23 for more information.

DD, SC

Enhanced PIN Security CSNBCPE /
CSNECPE,
CSNBCPA /
CSNECPA,
CSNBEPG /
CSNEEPG,
CSNBPTR /
CSNEPTR,
CSNBPVR /
CSNEPVR, and
CSNBPCU /
CSNEPCU

“Enhanced PIN Security Mode” on page 455 for
a description of this control

DD, SC

NOCV KEK usage for
export-related functions

CSNBKEX /
CSNEKEX,
CSNBSKM /
CSNESKM, and
CSNBKGN /
CSNEKGN

When enabled, NOCV key-encrypting keys can
be used by the listed services.

ED, SC

922 z/OS ICSF Application Programmer's Guide

|
|

Table 402. Access control points affecting multiple services or requiring special consideration (continued)

Name
Callable
Services Notes Usage

NOCV KEK usage for
import-related functions

CSNBKIM /
CSNEKIM,
CSNBSKI /
CSNESKI,
CSNBSKM /
CSNESKM, and
CSNBKGN /
CSNEKGN

When enabled, NOCV key-encrypting keys can
be used by the listed services.

ED, SC

Prohibit weak wrap – Master keys All Services that
wrap or import
keys. Both
symmetric and
asymmetric keys
are affected

When enabled, an error return code will be
returned when attempting to wrap a stronger
key with a weaker master key. Also, an error
return code will be returned when the last part
is loaded into the DES or RSA new master key
register, if the complete master key is weak. See
“Key Strength and Wrapping of Key” on page
23 and “Key Strength and Wrapping of Key” on
page 74 for more information.

DD, SC

Prohibit weak wrap – Transport
keys

All Services that
wrap or import
keys. Both
symmetric and
asymmetric keys
are affected

When enabled, an error return code will be
returned when attempting to wrap a stronger
key with a weaker key-encrypting key. See “Key
Strength and Wrapping of Key” on page 23 for
more information.

DD, SC

Symmetric Key Token Change –
RTCMK

Services that use
symmetric key
tokens

When enabled, this control allows symmetric
key tokens under the old master key to be
reenciphered under the current master key.
These reenciphered tokens are returned from all
callable service that use symmetric tokens.

AE

Symmetric Key Token Change2 –
RTCMK

Services that use
the
variable-length
symmetric key
tokens

When enabled, this control allows symmetric
key tokens under the old master key to be
reenciphered under the current master key.
These reenciphered tokens are returned from all
callable service that use symmetric tokens.

AE

Symmetric token wrapping -
internal enhanced method

Services that
wrap internal
symmetric key
tokens

When enabled, this control will cause all
generated or imported keys to be wrapped with
the enhanced method. This control can be
overridden by rule array keywords for certain
services. See “Key Strength and Wrapping of
Key” on page 23 for more information.

DD, SC

Symmetric token wrapping -
internal original method

Services that
wrap internal
symmetric key
tokens

When enabled, this control will cause all
generated or imported keys to be wrapped with
the original method. This control can be
overridden by rule array keywords for certain
services. See “Key Strength and Wrapping of
Key” on page 23 for more information.

ED

Symmetric token wrapping -
external enhanced method

Services that
wrap external
symmetric key
tokens

When enabled, this control will cause all
generated or exported keys to be wrapped with
the enhanced method. This control can be
overridden by rule array keywords for certain
services. See “Key Strength and Wrapping of
Key” on page 23 for more information.

DD, SC

Appendix G. Access Control Points and Callable Services 923

|
|

Table 402. Access control points affecting multiple services or requiring special consideration (continued)

Name
Callable
Services Notes Usage

Symmetric token wrapping -
external original method

Services that
wrap external
symmetric key
tokens

When enabled, this control will cause all
generated or exported keys to be wrapped with
the original method. This control can be
overridden by rule array keywords for certain
services. See “Key Strength and Wrapping of
Key” on page 23 for more information.

ED

UKPT - PIN Verify, PIN Translate CSNBPVR /
CSNEPVR and
CSNBPTR /
CSNEPTR

When enabled, the listed services can use UKPT
key derivation.

ED

Warn when weak wrap – Master
keys

All Services that
wrap or import
keys. Both
symmetric and
asymmetric keys
are affected

When enabled, an informational return code
will be returned when attempting to wrap a
stronger key with a master key that is weaker.
Also, a warning return code will be returned
when the last part is loaded into the DES or
RSA new master key register, if the master key
is weak. See “Key Strength and Wrapping of
Key” on page 23 and “Key Strength and
Wrapping of Key” on page 74 for more
information.

DD. SC

Warn when weak wrap –
Key-encrypting keys

All Services that
wrap or import
keys. Both
symmetric and
asymmetric keys
are affected

When enabled, an informational return code
will be returned when attempting to wrap a
stronger key with a weaker key or when
attempting to import a key token that has
previously been wrapped with a weaker key, as
indicated by its security history field. See “Key
Strength and Wrapping of Key” on page 23 and
“Key Strength and Wrapping of Key” on page
74 for more information.

DD. SC

There are relationships between certain access control points. A controlling access
control point is required to be enabled before subordinate access control points can
enabled. The TKE workstation will enable the controlling access control point
when a subordinate access control point is enabled.
v The Allow weak DES wrap of RSA access control point is only checked if the

Prohibit weak wrap – Transport keys access control point is enabled.
v The ANSI X9.8 PIN - Allow modification of PAN and ANSI X9.8 PIN - Allow

only ANSI PIN blocks access control points can only be enable when the ANSI
X9.8 PIN - Enforce PIN block restrictions access control point is enabled.

This next table lists access control points that affect specific services indicated in
the access control point name There is a description of the usage of the access
control point in the Usage Notes section of the callable service description.

Note: If the domain role has been changed via the TKE workstation, all new
access control points are disabled by default.

Table 403. Access control points – Callable Services

Name Callable Service Usage

Authentication Parameter Generate CSNBAPG / CSNEAPG ED

924 z/OS ICSF Application Programmer's Guide

|||

Table 403. Access control points – Callable Services (continued)

Name Callable Service Usage

Authentication Parameter Generate
- Clear

CSNBAPG / CSNEAPG DD

Cipher Text translate2 CSNBCTT2 / CSNECTT2 and CSNBCTT3 / CSNECTT3 ED

Cipher Text translate2 – Allow
translate from AES to TDES

CSNBCTT2 / CSNECTT2 and CSNBCTT3 / CSNECTT3 ED

Cipher Text translate2 – Allow
translate to weaker AES

CSNBCTT2 / CSNECTT2 and CSNBCTT3 / CSNECTT3 ED

Cipher Text translate2 – Allow
translate to weaker DES

CSNBCTT2 / CSNECTT2 and CSNBCTT3 / CSNECTT3 ED

Cipher Text translate2 – Allow
only cipher text translate types

CSNBCTT2 / CSNECTT2 and CSNBCTT3 / CSNECTT3 DD

Clear Key Import / Multiple Clear
Key Import - DES

CSNBCKI / CSNECKI and CSNBCKM / CSNECKM ED

Clear PIN Encrypt CSNBCPE / CSNECPE ED

Clear PIN Generate - 3624 CSNBPGN / CSNEPGN ED

Clear PIN Generate - GBP CSNBPGN / CSNEPGN ED

Clear PIN Generate - VISA PVV CSNBPGN / CSNEPGN ED

Clear PIN Generate - Interbank CSNBPGN / CSNEPGN ED

Clear Pin Generate Alternate - 3624
Offset

CSNBCPA / CSNECPA ED

Clear PIN Generate Alternate -
VISA PVV

CSNBCPA / CSNECPA ED

Control Vector Translate CSNBCVT / CSNECVT ED

Cryptographic Variable Encipher CSNBCVE / CSNECVE ED

CVV Key Combine CSNBCKC / CSNECKC ED

CVV Key Combine - Allow
wrapping override keywords

CSNBCKC / CSNECKC ED

CVV Key Combine - Permit mixed
key types

CSNBCKC / CSNECKC ED

Data Key Export CSNBDKX / CSNEDKX ED

Data Key Export - Unrestricted CSNBDKX / CSNEDKX ED

Data Key Import CSNBDKM / CSNEDKM ED

Data Key Import - Unrestricted CSNBDKM / CSNEDKM ED

Decipher - DES CSNBDEC / CSNEDEC ED

Digital Signature Generate CSNDDSG / CSNFDSG ED

DSG - ZERO-PAD restriction lifted CSNDDSG / CSNFDSG ED

Digital Signature Verify CSNDDSV / CSNFDSV ED

Diversified Key Generate -
CLR8–ENC

CSNBDKG / CSNEDKG ED

Diversified Key Generate -
SESS-XOR

CSNBDKG / CSNEDKG ED

Diversified Key Generate -
TDES-ENC

CSNBDKG / CSNEDKG ED

Appendix G. Access Control Points and Callable Services 925

|
|
||

Table 403. Access control points – Callable Services (continued)

Name Callable Service Usage

Diversified Key Generate -
TDES-CBC

CSNBDKG / CSNEDKG ED

Diversified Key Generate -
TDES-DEC

CSNBDKG / CSNEDKG ED

Diversified Key Generate -
TDES-XOR

CSNBDKG / CSNEDKG ED

Diversified Key Generate -
TDESEMV2/TDESEMV4

CSNBDKG / CSNEDKG ED

Diversified Key Generate - Allow
wrapping override keywords

CSNBDKG / CSNEDKG ED

Diversified Key Generate - single
length or same halves

CSNBDKG / CSNEDKG ED

Diversified Key Generate -
DKYGENKY - DALL

CSNBDKG / CSNEDKG DD, SC

ECC Diffie-Hellman CSNDEDH / CSNFEDH ED

ECC Diffie-Hellman – Allow Prime
Curve 192

CSNDEDH / CSNFEDH ED

ECC Diffie-Hellman – Allow Prime
Curve 224

CSNDEDH / CSNFEDH ED

ECC Diffie-Hellman – Allow Prime
Curve 256

CSNDEDH / CSNFEDH ED

ECC Diffie-Hellman – Allow Prime
Curve 384

CSNDEDH / CSNFEDH ED

ECC Diffie-Hellman – Allow Prime
Curve 521

CSNDEDH / CSNFEDH ED

ECC Diffie-Hellman – Allow BP
Curve 160

CSNDEDH / CSNFEDH ED

ECC Diffie-Hellman – Allow BP
Curve 192

CSNDEDH / CSNFEDH ED

ECC Diffie-Hellman – Allow BP
Curve 224

CSNDEDH / CSNFEDH ED

ECC Diffie-Hellman – Allow BP
Curve 256

CSNDEDH / CSNFEDH ED

ECC Diffie-Hellman – Allow BP
Curve 320

CSNDEDH / CSNFEDH ED

ECC Diffie-Hellman – Allow BP
Curve 384

CSNDEDH / CSNFEDH ED

ECC Diffie-Hellman – Allow BP
Curve 512

CSNDEDH / CSNFEDH ED

ECC Diffie-Hellman – Allow
PASSTHRU

CSNDEDH / CSNFEDH ED

ECC Diffie-Hellman – Allow key
wrap override

CSNDEDH / CSNFEDH ED

ECC Diffie-Hellman – Prohibit
weak key generate

CSNDEDH / CSNFEDH DD, SC

Encipher - DES CSNBENC / CSNEENC ED

Encrypted PIN Generate - 3624 CSNBEPG / CSNEEPG ED

926 z/OS ICSF Application Programmer's Guide

|
|
||

Table 403. Access control points – Callable Services (continued)

Name Callable Service Usage

Encrypted PIN Generate - GBP CSNBEPG / CSNEEPG ED

Encrypted PIN Generate -
Interbank

CSNBEPG / CSNEEPG ED

Encrypted PIN Translate -
Translate

CSNBPTR / CSNEPTR ED

Encrypted PIN Translate -
Reformat

CSNBPTR / CSNEPTR ED

Encrypted PIN Verify - 3624 CSNBPVR / CSNEPVR ED

Encrypted PIN Verify - GPB CSNBPVR / CSNEPVR ED

Encrypted PIN Verify - VISA PVV CSNBPVR / CSNEPVR ED

Encrypted PIN Verify - Interbank CSNBPVR / CSNEPVR ED

HMAC Generate – SHA-1 CSNBHMG / CSNBHMG1 and CSNEHMG / CSNEHMG1 ED

HMAC Generate – SHA-224 CSNBHMG / CSNBHMG1 and CSNEHMG / CSNEHMG1 ED

HMAC Generate – SHA-256 CSNBHMG / CSNBHMG1 and CSNEHMG / CSNEHMG1 ED

HMAC Generate – SHA-384 CSNBHMG / CSNBHMG1 and CSNEHMG / CSNEHMG1 ED

HMAC Generate – SHA-512 CSNBHMG / CSNBHMG1 and CSNEHMG / CSNEHMG1 ED

HMAC Verify – SHA-1 CSNBHMV / CSNBHMV1 and CSNEHMV / CSNEHMV1 ED

HMAC Verify – SHA-224 CSNBHMV / CSNBHMV1 and CSNEHMV / CSNEHMV1 ED

HMAC Verify – SHA-256 CSNBHMV / CSNBHMV1 and CSNEHMV / CSNEHMV1 ED

HMAC Verify – SHA-384 CSNBHMV / CSNBHMV1 and CSNEHMV / CSNEHMV1 ED

HMAC Verify – SHA-512 CSNBHMV / CSNBHMV1 and CSNEHMV / CSNEHMV1 ED

Key Export CSNBKEX / CSNEKEX ED

Key Export - Unrestricted CSNBKEX / CSNEKEX ED

Key Generate – OP CSNBKGN / CSNEKGN ED

Key Generate – Key set CSNBKGN / CSNEKGN ED

Key Generate – Key set extended CSNBKGN / CSNEKGN ED

Key Generate - SINGLE-R CSNBKGN / CSNEKGN ED

Key Generate2 – OP CSNBKGN2 / CSNEKGN2 ED

Key Generate2 – Key set CSNBKGN2 / CSNEKGN2 ED

Key Generate2 – Key set extended CSNBKGN2 / CSNEKGN2 ED

Key Import CSNBKIM / CSNEKIM ED

Key Import - Unrestricted CSNBKIM / CSNEKIM ED

Key Part Import - First key part CSNBKPI / CSNEKPI ED

Key Part Import - Middle and final CSNBKPI / CSNEKPI ED

Key Part Import - ADD-PART CSNBKPI / CSNEKPI ED

Key Part Import - COMPLETE CSNBKPI / CSNEKPI ED

Key Part Import - Allow wrapping
override keywords

CSNBKPI / CSNEKPI ED

Key Part Import - Unrestricted CSNBKPI / CSNEKPI ED

Key Part Import2 – Load first key
part, require 3 key parts

CSNBKPI2 / CSNEKPI2 ED

Appendix G. Access Control Points and Callable Services 927

Table 403. Access control points – Callable Services (continued)

Name Callable Service Usage

Key Part Import2 – Load first key
part, require 2 key parts

CSNBKPI2 / CSNEKPI2 ED

Key Part Import2 - Load first key
part, require 1 key parts

CSNBKPI2 / CSNEKPI2 ED

Key Part Import2 - Add second of
3 or more key parts

CSNBKPI2 / CSNEKPI2 ED

Key Part Import2 - Add last
required key part

CSNBKPI2 / CSNEKPI2 ED

Key Part Import2 - Add optional
key part

CSNBKPI2 / CSNEKPI2 ED

Key Part Import2 – Complete key CSNBKPI2 / CSNEKPI2 ED

Key Test and Key Test2 CSNBKYT / CSNEKYT and CSNBKYT2 / CSNEKYT2 AE

Key Test2 – AES, ENC-ZERO CSNBKYT2 / CSNEKYT2 AE

Key Test - Warn when keyword
inconsistent with key length

CSNBKYTX / CSNFKYTX DD

Key Translate CSNBKTR / CSNEKTR ED

Key Translate2 CSNBKTR2 / CSNEKTR2 ED

Key Translate2 - Allow use of
REFORMAT

CSNBKTR2 / CSNEKTR2 ED

Key Translate2 - Allow wrapping
override keywords

CSNBKTR2 / CSNEKTR2 ED

Key Translate2 - Disallow AES ver
5 to ver 4 conversion

CSNBKTR2 / CSNEKTR2 DD

Key Translate2 – Translate fixed to
variable payload

CSNBKTR2 / CSNEKTR2 DD

MAC Generate CSNBMGN / CSNEMGN ED

MAC Verify CSNBMVR / CSNEMVR ED

Multiple Clear Key Import /
Multiple Secure Key Import - AES

CSNBCKM / CSNECKM and CSNBSKM / CSNESKM ED

Multiple Clear Key Import - Allow
wrapping override keywords

CSNBCKM / CSNECKM ED

Multiple Secure Key Import -
Allow wrapping override
keywords

CSNBSKM / CSNESKM ED

Operational Key Load CSNBOKL / CSNEOKL ED

Operational Key Load -
Variable-Length Tokens

CSNBOKL / CSNEOKL ED

PIN Change/Unblock - change
EMV PIN with OPINENC

CSNBPCU / CSNEPCU ED

PIN Change/Unblock - change
EMV PIN with IPINENC

CSNBPCU / CSNEPCU ED

PKA Decrypt CSNDPKD / CSNFPKD ED

PKA Encrypt CSNDPKE / CSNFPKE ED

PKA Key Generate CSNDPKG / CSNFPKG ED

928 z/OS ICSF Application Programmer's Guide

|
|
||

|
|
||

Table 403. Access control points – Callable Services (continued)

Name Callable Service Usage

PKA Key Generate – Clear RSA
keys

CSNDPKG / CSNFPKG ED

PKA Key Generate – Clear ECC
keys

CSNDPKG / CSNFPKG ED

PKA Key Generate - Clone CSNDPKG / CSNFPKG ED

PKA Key Generate - Permit
Regeneration Data

CSNDPKG / CSNFPKG ED

PKA Key Generate - Permit
Regeneration Data Retain

CSNDPKG / CSNFPKG ED

PKA Key Import CSNDPKI / CSNFPKI ED

PKA Key Import - Import an
External Trusted Key Block to
internal form

CSNDPKI / CSNFPKI ED

PKA Key Token Change RTCMK CSNDKTC / CSNFKTC ED

PKA Key Translate - from CCA
RSA to SC Visa Format

CSNDPKT / CSNFPKT ED

PKA Key Translate - from CCA
RSA to SC ME Format

CSNDPKT / CSNFPKT ED

PKA Key Translate - from CCA
RSA to SC CRT Format

CSNDPKT / CSNFPKT ED

PKA Key Translate – Translate
internal key token

CSNDPKT / CSNFPKT ED

PKA Key Translate – Translate
external key token

CSNDPKT / CSNFPKT ED

PKA Key Translate - from source
EXP KEK to target EXP KEK

CSNDPKT / CSNFPKT ED

PKA Key Translate - from source
IMP KEK to target EXP KEK

CSNDPKT / CSNFPKT ED

PKA Key Translate - from source
IMP KEK to target IMP KEK

CSNDPKT / CSNFPKT ED

Prohibit Export CSNBPEX / CSNEPEX ED

Prohibit Export Extended CSNBPEXX /CSNEPEXX ED

Recover PIN From Offset CSNBPFO / CSNEPFO ED

Remote Key Export - Generate or
export a key for use by a non-CCA
node

CSNDRKX / CSNFRKX ED

Remote Key Export – Include RKX
in Default Key-Wrapping
Configuration

CSNDRKX / CSNFRKX DD

Remote Key Export - Allow
wrapping override keywords

CSNDRKX / CSNFRKX DD

RKX/TBC – Disallow triple-length
MAC key

CSNDRKX / CSNFRKX and CSNDTBC / CSNFTBC DD, SC

Restrict Key Attribute – Export
Control

CSNBRKA / CSNERKA ED

Restrict Key Attribute - Permit
setting the TR-31 export bit

CSNBRKA / CSNERKA ED

Appendix G. Access Control Points and Callable Services 929

|||

|
|
|

||

|
|
||

Table 403. Access control points – Callable Services (continued)

Name Callable Service Usage

Retained Key Delete CSNDRKD / CSNFRKD ED

Retained Key List CSNDRKL / CSNFRKL ED

Secure Key Import – DES, IM CSNBSKI / CSNESKI and CSNBSKM / CSNESKM ED

Secure Key Import – DES, OP CSNBSKI / CSNESKI and CSNBSKM / CSNESKM ED

Secure Key Import2 - OP CSNBSKI2 / CSNESKI2 ED

Secure Key Import2 - IM CSNBSKI2 / CSNESKI2 ED

Secure Messaging for Keys CSNBSKY / CSNESKY ED

Secure Messaging for PINs CSNBSPN / CSNESPN ED

SET Block Compose CSNDSBC / CSNFSBC ED

SET Block Decompose CSNDSBD / CSNFSBD ED

SET Block Decompose - PIN ext
IPINENC

CSNDSBD / CSNFSBD ED

SET Block Decompose - PIN ext
OPINENC

CSNDSBD / CSNFSBD ED

Symmetric Algorithm Decipher -
Secure AES

CSNBSAD / CSNESAD and CSNBSAD1 / CSNESAD1 ED

Symmetric Algorithm Encipher -
Secure AES

CSNBSAE / CSNESAE and CSNBSAE1 / CSNESAE1 ED

Symmetric Key Encipher/Decipher
- Encrypted DES keys

CSNBSYD / CSNBSYE and CSNBSYD1 / CSNESYD1 ED

Symmetric Key Encipher/Decipher
- Encrypted AES keys

CSNBSYD / CSNBSYE and CSNBSYD1 / CSNESYD1 ED

Symmetric Key Export with Data CSNDSXD / CSNFSXD DD

Symmetric Key Export with Data -
Special

CSNDSXD / CSNFSXD DD

Symmetric Key Export - AES,
PKCSOAEP, PKCS-1.2

CSNDSYX / CSNFSYX ED

Symmetric Key Export - AES,
PKOAEP2

CSNDSYX / CSNFSYX ED

Symmetric Key Export - AES,
ZERO-PAD

CSNDSYX / CSNFSYX ED

Symmetric Key Export - AESKW CSNDSYX / CSNFSYX ED

Symmetric Key Export -
AESKWCV

CSNDSYX / CSNFSYX ED

Symmetric Key Export - DES,
PKCS-1.2

CSNDSYX / CSNFSYX ED

Symmetric Key Export - DES,
ZERO-PAD

CSNDSYX / CSNFSYX ED

Symmetric Key Export –
HMAC,PKOAEP2

CSNDSYX / CSNFSYX ED

Symmetric Key Generate - AES,
PKCSOAEP, PKCS-1.2

CSNDSYG / CSNFSYG ED

Symmetric Key Generate - AES,
ZERO-PAD

CSNDSYG / CSNFSYG ED

930 z/OS ICSF Application Programmer's Guide

|||

|
|
||

|
|
||

Table 403. Access control points – Callable Services (continued)

Name Callable Service Usage

Symmetric Key Generate - DES,
PKCS-1.2

CSNDSYG / CSNFSYG ED

Symmetric Key Generate - DES,
ZERO-PAD

CSNDSYG / CSNFSYG ED

Symmetric Key Generate - DES,
PKA92

CSNDSYG / CSNFSYG ED

Symmetric Key Generate - Allow
wrapping override keywords

CSNDSYG / CSNFSYG ED

Symmetric Key Import - AES,
PKCSOAEP, PKCS-1.2

CSNDSYI / CSNFSYI ED

Symmetric Key Import - AES,
ZERO-PAD

CSNDSYI / CSNFSYI ED

Symmetric Key Import - DES,
PKCS-1.2

CSNDSYI / CSNFSYI ED

Symmetric Key Import - DES,
ZERO-PAD

CSNDSYI / CSNFSYI ED

Symmetric Key Import - DES,
PKA92 KEK

CSNDSYI / CSNFSYI ED

Symmetric Key Import - Allow
wrapping override keywords

CSNDSYI / CSNFSYI ED

Symmetric Key Import2 –
AES,PKOAEP2

CSNDSYI2 / CSNFSYI2 ED

Symmetric Key Import2 - AESKW CSNDSYI2 / CSNFSYI2 ED

Symmetric Key Import2 -
AESKWCV

CSNDSYI2 / CSNFSYI2 ED

Symmetric Key Import2 - Allow
wrapping override keywords

CSNDSYI2 / CSNFSYI2 ED

Symmetric Key Import2 - disallow
weak import

CSNDSYI2 / CSNFSYI2 DD, SC

Symmetric Key Import2 –
HMAC,PKOAEP2

CSNDSYI2 / CSNFSYI2 ED

TR31 Export – Permit version A
TR-31 key blocks

CSNBT31X / CSNET31X ED

TR31 Export – Permit version B
TR-31 key blocks

CSNBT31X / CSNET31X ED

TR31 Export – Permit version C
TR-31 key blocks

CSNBT31X / CSNET31X ED

TR31 Export – Permit any CCA
key if INCL-CV is specified

CSNBT31X / CSNET31X ED

TR31 Export – Permit
KEYGENKY:UKPT to B0

CSNBT31X / CSNET31X ED

TR31 Export – Permit
MAC/MACVER:AMEXCSC to
C0:G/C/V

CSNBT31X / CSNET31X DD

TR31 Export – Permit
MAC/MACVER:CVVKEYA to
C0:G/C/V

CSNBT31X / CSNET31X DD

Appendix G. Access Control Points and Callable Services 931

|
|
||

|
|
||

Table 403. Access control points – Callable Services (continued)

Name Callable Service Usage

TR31 Export – Permit
MAC/MACVER:ANYMAC to
C0:G/C/V

CSNBT31X / CSNET31X ED

TR31 Export – Permit DATA to
C0:G/C

CSNBT31X / CSNET31X ED

TR31 Export – Permit
ENCIPHER/DECIPHER/CIPHER
to D0:E/D/B

CSNBT31X / CSNET31X ED

TR31 Export – Permit DATA to
D0:B

CSNBT31X / CSNET31X ED

TR31 Export – Permit
EXPORTER/OKEYXLAT to K0:E

CSNBT31X / CSNET31X DD

TR31 Export – Permit
IMPORTER/IKEYXLAT to K0:D

CSNBT31X / CSNET31X DD

TR31 Export – Permit
EXPORTER/OKEYXLAT to K1:E

CSNBT31X / CSNET31X DD

TR31 Export – Permit
IMPORTER/IKEYXLAT to K1:D

CSNBT31X / CSNET31X DD

TR31 Export – Permit
MAC/DATA/DATAM to M0:G/C

CSNBT31X / CSNET31X DD

TR31 Export – Permit
MACVER/DATAMV to M0:V

CSNBT31X / CSNET31X ED

TR31 Export – Permit
MAC/DATA/DATAM to M1:G/C

CSNBT31X / CSNET31X ED

TR31 Export – Permit
MACVER/DATAMV to M1:V

CSNBT31X / CSNET31X ED

TR31 Export – Permit
MAC/DATA/DATAM to M3:G/C

CSNBT31X / CSNET31X ED

TR31 Export – Permit
MACVER/DATAMV to M3:V

CSNBT31X / CSNET31X ED

TR31 Export – Permit OPINENC to
P0/E

CSNBT31X / CSNET31X ED

TR31 Export – Permit IPINENC to
P0/D

CSNBT31X / CSNET31X ED

TR31 Export – Permit
PINVER:NO-SPEC to V0

CSNBT31X / CSNET31X DD

TR31 Export – Permit
PINGEN:NO-SPEC to V0

CSNBT31X / CSNET31X DD

TR31 Export – Permit
PINVER:NO-SPEC/IBM-PIN/IBM-
PINO to V1

CSNBT31X / CSNET31X ED

TR31 Export – Permit
PINGEN:NO-SPEC/IBM-PIN/
IBM-PINO to V1

CSNBT31X / CSNET31X ED

TR31 Export – Permit
PINVER:NO-SPEC/VISA-PVV to
V2

CSNBT31X / CSNET31X ED

932 z/OS ICSF Application Programmer's Guide

Table 403. Access control points – Callable Services (continued)

Name Callable Service Usage

TR31 Export – Permit
PINGEN:NO-SPEC/VISA-PVV to
V2

CSNBT31X / CSNET31X ED

TR31 Export – Permit
DKYGENKY:DKYL0+DMAC to E0

CSNBT31X / CSNET31X DD

TR31 Export – Permit
DKYGENKY:DKYL0+DMV to E0

CSNBT31X / CSNET31X DD

TR31 Export – Permit
DKYGENKY:DKYL0+DALL to E0

CSNBT31X / CSNET31X DD

TR31 Export – Permit
DKYGENKY:DKYL1+DMAC to E0

CSNBT31X / CSNET31X DD

TR31 Export – Permit
DKYGENKY:DKYL1+DMV to E0

CSNBT31X / CSNET31X DD

TR31 Export – Permit
DKYGENKY:DKYL1+DALL to E0

CSNBT31X / CSNET31X DD

TR31 Export – Permit
DKYGENKY:DKYL0+DDATA to E1

CSNBT31X / CSNET31X DD

TR31 Export – Permit
DKYGENKY:DKYL0+DMPIN to E1

CSNBT31X / CSNET31X DD

TR31 Export – Permit
DKYGENKY:DKYL0+DALL to E1

CSNBT31X / CSNET31X DD

TR31 Export – Permit
DKYGENKY:DKYL1+DDATA to E1

CSNBT31X / CSNET31X DD

TR31 Export – Permit
DKYGENKY:DKYL1+DMPIN to E1

CSNBT31X / CSNET31X DD

TR31 Export – Permit
DKYGENKY:DKYL1+DALL to E1

CSNBT31X / CSNET31X DD

TR31 Export – Permit
DKYGENKY:DKYL0+DMAC to E2

CSNBT31X / CSNET31X DD

TR31 Export – Permit
DKYGENKY:DKYL0+DALL to E2

CSNBT31X / CSNET31X DD

TR31 Export – Permit
DKYGENKY:DKYL1+DMAC to E2

CSNBT31X / CSNET31X DD

TR31 Export – Permit
DKYGENKY:DKYL1+DALL to E2

CSNBT31X / CSNET31X DD

TR31 Export – Permit
DATA/MAC/CIPHER/ENCIPHER
to E3

CSNBT31X / CSNET31X DD

TR31 Export – Permit
DKYGENKY:DKYL0+DDATA to E4

CSNBT31X / CSNET31X ED

TR31 Export – Permit
DKYGENKY:DKYL0+DALL to E4

CSNBT31X / CSNET31X ED

TR31 Export – Permit
DKYGENKY:DKYL0+DEXP to E5

CSNBT31X / CSNET31X DD

TR31 Export – Permit
DKYGENKY:DKYL0+DMAC to E5

CSNBT31X / CSNET31X DD

TR31 Export – Permit
DKYGENKY:DKYL0+DDATA to E5

CSNBT31X / CSNET31X DD

Appendix G. Access Control Points and Callable Services 933

Table 403. Access control points – Callable Services (continued)

Name Callable Service Usage

TR31 Export – Permit
DKYGENKY:DKYL0+DALL to E5

CSNBT31X / CSNET31X ED

TR31 Export – Permit
PINGEN/PINVER to V0/V1/V2:N

CSNBT31X / CSNET31X DD

TR31 Import – Permit version A
TR-31 key blocks

CSNBT31I / CSNET31I ED

TR31 Import – Permit version B
TR-31 key blocks

CSNBT31I / CSNET31I ED

TR31 Import – Permit version C
TR-31 key blocks

CSNBT31I / CSNET31I ED

TR31 Import – Permit override of
default wrapping method

CSNBT31I / CSNET31I ED

TR31 Import – Permit C0 to
MAC/MACVER:CVVKEY-A

CSNBT31I / CSNET31I DD

TR31 Import – Permit C0 to
MAC/MACVER:AMEX-CSC

CSNBT31I / CSNET31I DD

TR31 Import – Permit K0:E to
EXPORTER/OKEYXLAT

CSNBT31I / CSNET31I DD

TR31 Import – Permit K0:D to
IMPORTER/IKEYXLAT

CSNBT31I / CSNET31I DD

TR31 Import – Permit K0:B to
EXPORTER/OKEYXLAT

CSNBT31I / CSNET31I DD

TR31 Import – Permit K0:B to
IMPORTER/IKEYXLAT

CSNBT31I / CSNET31I DD

TR31 Import – Permit K1:E to
EXPORTER/OKEYXLAT

CSNBT31I / CSNET31I DD

TR31 Import – Permit K1:D to
IMPORTER/IKEYXLAT

CSNBT31I / CSNET31I DD

TR31 Import – Permit K1:B to
EXPORTER/OKEYXLAT

CSNBT31I / CSNET31I DD

TR31 Import – Permit K1:B to
IMPORTER/IKEYXLAT

CSNBT31I / CSNET31I DD

TR31 Import – Permit M0/M1/M3
to MAC/MACVER:ANY-MAC

CSNBT31I / CSNET31I ED

TR31 Import – Permit P0:E to
OPINENC

CSNBT31I / CSNET31I ED

TR31 Import – Permit P0:D to
IPINENC

CSNBT31I / CSNET31I ED

TR31 Import – Permit V0 to
PINGEN:NO-SPEC

CSNBT31I / CSNET31I DD

TR31 Import – Permit V0 to
PINVER:NO-SPEC

CSNBT31I / CSNET31I DD

TR31 Import – Permit V1 to
PINGEN:IBM-PIN/IBM-PINO

CSNBT31I / CSNET31I ED

TR31 Import – Permit V1 to
PINVER:IBM-PIN/IBM-PINO

CSNBT31I / CSNET31I ED

934 z/OS ICSF Application Programmer's Guide

Table 403. Access control points – Callable Services (continued)

Name Callable Service Usage

TR31 Import – Permit V2 to
PINGEN:VISA-PVV

CSNBT31I / CSNET31I ED

TR31 Import – Permit V2 to
PINVER:VISA-PVV

CSNBT31I / CSNET31I ED

TR31 Import – Permit E0 to
DKYGENKY:DKYL0+DMAC

CSNBT31I / CSNET31I DD

TR31 Import – Permit E0 to
DKYGENKY:DKYL0+DMV

CSNBT31I / CSNET31I DD

TR31 Import – Permit E0 to
DKYGENKY:DKYL1+DMAC

CSNBT31I / CSNET31I DD

TR31 Import – Permit E0 to
DKYGENKY:DKYL1+DMV

CSNBT31I / CSNET31I DD

TR31 Import – Permit E1 to
DKYGENKY:DKYL0+DMPIN

CSNBT31I / CSNET31I DD

TR31 Import – Permit E1 to
DKYGENKY:DKYL0+DDATA

CSNBT31I / CSNET31I DD

TR31 Import – Permit E1 to
DKYGENKY:DKYL1+DMPIN

CSNBT31I / CSNET31I DD

TR31 Import – Permit E1 to
DKYGENKY:DKYL1+DDATA

CSNBT31I / CSNET31I DD

TR31 Import – Permit E2 to
DKYGENKY:DKYL0+DMAC

CSNBT31I / CSNET31I DD

TR31 Import – Permit E2 to
DKYGENKY:DKYL1+DMAC

CSNBT31I / CSNET31I DD

TR31 Import – Permit E3 to
ENCIPHER

CSNBT31I / CSNET31I DD

TR31 Import – Permit E4 to
DKYGENKY:DKYL0+DDATA

CSNBT31I / CSNET31I ED

TR31 Import – Permit E5 to
DKYGENKY:DKYL0+DMAC

CSNBT31I / CSNET31I DD

TR31 Import – Permit E5 to
DKYGENKY:DKYL0+DDATA

CSNBT31I / CSNET31I DD

TR31 Import – Permit E5 to
DKYGENKY:DKYL0+DEXP

CSNBT31I / CSNET31I DD

TR31 Import – Permit
V0/V1/V2:N to PINGEN/PINVER

CSNBT31I / CSNET31I DD

Transaction Validation – Generate CSNBTRV / CSNETRV ED

Transaction Validation - Verify
CSC-3

CSNBTRV / CSNETRV ED

Transaction Validation - Verify
CSC-4

CSNBTRV / CSNETRV ED

Transaction Validation - Verify
CSC-5

CSNBTRV / CSNETRV ED

Trusted Block Create - Activate an
Inactive Trusted Key Block

CSNDTBC / CSNFTBC ED

Trusted Block Create - Create
Trusted Key Block in Inactive Form

CSNDTBC / CSNFTBC ED

Appendix G. Access Control Points and Callable Services 935

Table 403. Access control points – Callable Services (continued)

Name Callable Service Usage

Unique Key Derive CSNBUKD / CSNEUKD ED

Unique Key Derive - Allow
PIN-DATA processing

CSNBUKD / CSNEUKD DD

Unique Key Derive - K3IPEK CSNBUKD / CSNEUKD DD

Unique Key Derive - Override
default wrapping

CSNBUKD / CSNEUKD ED

VISA CVV Generate CSNBCSG / CSNECSG ED

VISA CVV Verify CSNBCSV / CSNECSV ED

There are relationships between certain access control points. A controlling access
control point is required to be enabled before subordinate access control points can
enabled. The TKE workstation will enable the controlling access control point
when a subordinate access control point is enabled.
v To use Data Key Export - Unrestricted, the Data Key Export access control point

must be enabled.
v To use Data Key Import - Unrestricted, the Data Key Import access control point

must be enabled.
v Diversified Key Generate - single length or same halves requires either

Diversified Key Generate - TDES-ENC or Diversified Key Generate - TDES-DEC
be enabled.

v To use Key Export - Unrestricted, the Key Export access control point must be
enabled.

v To use Key Import - Unrestricted, the Key Import access control point must be
enabled.

v To use Key Part Import – Unrestricted, the Key Part Import - First key part and
Key Part Import - Middle and final access control points must be enabled.

v To use TR31 Export - Permit PINGEN/PINVER to V0/V1/V2:N, the TR31
Export - Permit version A TR-31 key blocks access control point must be
enabled.

v To use Unique Key Derive - Allow PIN-DATA processing or Unique Key Derive
- Override default wrapping access control points, Unique Key Derive access
control point must be enabled.

v To use SET Block Decompose - PIN ext IPINENC or PIN ex OPINENC, the SET
Block Decompose access control point must be enabled.

v To use PKA Key Generate - Permit Regeneration Data, the PKA Key Generate
access control point must be enabled.

v To use PKA Key Generate - Permit Regeneration Data Retain, the PKA Key
Generate and PKA Key Generate – Clone access control points must be enabled.

v To use PKA Key Generate - Clear or PKA Key Generate - Clone, the PKA Key
Generate access control point must be enabled.

v To use any of the following access control points, the ECC Diffie-Hellman access
control point must be enabled:
– ECC Diffie-Hellman - Allow PASSTHRU
– ECC Diffie-Hellman - Allow key wrap override
– ECC Diffie-Hellman - Allow Prime Curve 192
– ECC Diffie-Hellman - Allow Prime Curve 224

936 z/OS ICSF Application Programmer's Guide

|||

– ECC Diffie-Hellman - Allow Prime Curve 256
– ECC Diffie-Hellman - Allow Prime Curve 384
– ECC Diffie-Hellman - Allow Prime Curve 521
– ECC Diffie-Hellman - Allow BP Curve 160
– ECC Diffie-Hellman - Allow BP Curve 192
– ECC Diffie-Hellman - Allow BP Curve 224
– ECC Diffie-Hellman - Allow BP Curve 256
– ECC Diffie-Hellman - Allow BP Curve 320
– ECC Diffie-Hellman - Allow BP Curve 384
– ECC Diffie-Hellman - Allow BP Curve 512
– ECC Diffie-Hellman - Prohibit weak key generate

Appendix G. Access Control Points and Callable Services 937

938 z/OS ICSF Application Programmer's Guide

Appendix H. Accessibility

Accessible publications for this product are offered through the z/OS® Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM® Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 1997, 2013 939

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

940 z/OS ICSF Application Programmer's Guide

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix H. Accessibility 941

942 z/OS ICSF Application Programmer's Guide

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1997, 2013 943

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS™, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

944 z/OS ICSF Application Programmer's Guide

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming Interface Information
This book documents intended Programming Interfaces that allow the customer to
write programs to obtain the services of z/OS Integrated Cryptographic Service
Facility.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 945

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

946 z/OS ICSF Application Programmer's Guide

Glossary

This glossary defines terms and abbreviations
used in Integrated Cryptographic Service Facility
(ICSF). If you do not find the term you are
looking for, refer to the index of the appropriate
Integrated Cryptographic Service Facility
document or view IBM Terminology located at:
IBM Glossary of Computing Terms
(http://www.ibm.com/software/globalization/
terminology/)

This glossary includes terms and definitions from:
v IBM Terminology definitions are identified by

the symbol (D) after the definition.
v The American National Standard Dictionary for

Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies can be
purchased from the American National
Standards Institute, 11 West 42nd Street, New
York, New York 10036. Definitions are
identified by the symbol (A) after the
definition.

v The Information Technology Vocabulary,
developed by Subcommittee 1, Joint Technical
Committee 1, of the International Organization
for Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions of published parts of
this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after
the definition, indicating that final agreement
has not yet been reached among the
participating National Bodies of SC1.

Definitions specific to the Integrated
Cryptographic Services Facility are labeled “In
ICSF.”

access method services (AMS)
The facility used to define and reproduce
VSAM key-sequenced data sets (KSDS).
(D)

Advanced Encryption Standard (AES)
In computer security, the National
Institute of Standards and Technology
(NIST) Advanced Encryption Standard
(AES) algorithm. The AES algorithm is

documented in a draft Federal
Information Processing Standard.

AES Advanced Encryption Standard.

American National Standard Code for
Information Interchange (ASCII)

The standard code using a coded
character set consisting of 7-bit characters
(8 bits including parity check) that is used
for information exchange among data
processing systems, data communication
systems, and associated equipment. The
ASCII set consists of control characters
and graphic characters.

ANSI X9.19
An ANSI standard that specifies an
optional double-MAC procedure which
requires a double-length MAC key.

application program
A program written for or by a user that
applies to the user's work, such as a
program that does inventory control or
payroll.

A program used to connect and
communicate with stations in a network,
enabling users to perform
application-oriented activities. (D)

application program interface (API)
A functional interface supplied by the
operating system or by a separately
orderable licensed program that allows an
application program written in a
high-level language to use specific data or
functions of the operating system or the
licensed program. (D)

In ICSF, a callable service.

asymmetric cryptography
Synonym for public key cryptography. (D)

authentication pattern
An 8-byte pattern that ICSF calculates
from the master key when initializing the
cryptographic key data set. ICSF places
the value of the authentication pattern in
the header record of the cryptographic
key data set.

© Copyright IBM Corp. 1997, 2013 947

http://www.ibm.com/software/globalization/terminology/
http://www.ibm.com/software/globalization/terminology/
http://www.ibm.com/software/globalization/terminology/

authorized program facility (APF)
A facility that permits identification of
programs authorized to use restricted
functions. (D)

callable service
A predefined sequence of instructions
invoked from an application program,
using a CALL instruction. In ICSF,
callable services perform cryptographic
functions and utilities.

CBC Cipher block chaining.

CCA Common Cryptographic Architecture.

CCF Cryptographic Coprocessor Feature.

CDMF
Commercial Data Masking Facility.

CEDA A CICS transaction that defines resources
online. Using CEDA, you can update both
the CICS system definition data set (CSD)
and the running CICS system.

CEX2A
Crypto Express2 Accelerator

CEX2C
Crypto Express2 Coprocessor

CEX3A
Crypto Express3 Accelerator

CEX3C
Crypto Express3 Coprocessor

checksum
The sum of a group of data associated
with the group and used for checking
purposes. (T)

In ICSF, the data used is a key part. The
resulting checksum is a two-digit value
you enter when you enter a master key
part.

Chinese Remainder Theorem (CRT)
A mathematical theorem that defines a
format for the RSA private key that
improves performance.

CICS Customer Information Control System.

cipher block chaining (CBC)
A mode of encryption that uses the data
encryption algorithm and requires an
initial chaining vector. For encipher, it
exclusively ORs the initial block of data
with the initial control vector and then
enciphers it. This process results in the
encryption both of the input block and of

the initial control vector that it uses on
the next input block as the process
repeats. A comparable chaining process
works for decipher.

ciphertext
In computer security, text produced by
encryption.

Synonym for enciphered data. (D)

CKDS Cryptographic Key Data Set.

clear key
Any type of encryption key not protected
by encryption under another key.

CMOS
Complementary metal oxide
semiconductor.

coexistence mode
An ICSF method of operation during
which CUSP or PCF can run
independently and simultaneously on the
same ICSF system. A CUSP or PCF
application program can run on ICSF in
this mode if the application program has
been reassembled.

Commercial Data Masking Facility (CDMF)
A data-masking algorithm using a
DES-based kernel and a key that is
shortened to an effective key length of 40
DES key-bits. Because CDMF is not as
strong as DES, it is called a masking
algorithm rather than an encryption
algorithm. Implementations of CDMF,
when used for data confidentiality, are
generally exportable from the USA and
Canada.

Common Cryptographic Architecture:
Cryptographic Application Programming
Interface

Defines a set of cryptographic functions,
external interfaces, and a set of key
management rules that provide a
consistent, end-to-end cryptographic
architecture across different IBM
platforms.

compatibility mode
An ICSF method of operation during
which a CUSP or PCF application
program can run on ICSF without
recompiling it. In this mode, ICSF cannot
run simultaneously with CUSP or PCF.

complementary keys
A pair of keys that have the same clear

948 z/OS ICSF Application Programmer's Guide

|
|
|
|

key value, are different but
complementary types, and usually exist
on different systems.

console
A part of a computer used for
communication between the operator or
maintenance engineer and the computer.
(A)

control-area split
In systems with VSAM, the movement of
the contents of some of the control
intervals in a control area to a newly
created control area in order to facilitate
insertion or lengthening of a data record
when there are no remaining free control
intervals in the original control area. (D)

control block
A storage area used by a computer
program to hold control information. (I)
Synonymous with control area.

The circuitry that performs the control
functions such as decoding
microinstructions and generating the
internal control signals that perform the
operations requested. (A)

control interval
A fixed-length area of direct-access
storage in which VSAM stores records
and creates distributed free space. Also, in
a key-sequenced data set or file, the set of
records pointed to by an entry in the
sequence-set index record. The control
interval is the unit of information that
VSAM transmits to or from direct access
storage. A control interval always
comprises an integral number of physical
records. (D)

control interval split
In systems with VSAM, the movement of
some of the stored records in a control
interval to a free control interval to
facilitate insertion or lengthening of a
record that does not fit in the original
control interval. (D)

control statement input data set
A key generator utility program data set
containing control statements that a
particular key generator utility program
job will process.

control statement output data set
A key generator utility program data set
containing control statements to create the

complements of keys created by the key
generator utility program.

control vector
In ICSF, a mask that is exclusive ORed
with a master key or a transport key
before ICSF uses that key to encrypt
another key. Control vectors ensure that
keys used on the system and keys
distributed to other systems are used for
only the cryptographic functions for
which they were intended.

CPACF
CP Assist for Cryptographic Functions

CP Assist for Cryptographic Functions
Implemented on all z890, z990, z9 EC, z9
BC, z10 EC and z10 BC processors to
provide SHA-1 secure hashing.

cross memory mode
Synchronous communication between
programs in different address spaces that
permits a program residing in one
address space to access the same or other
address spaces. This synchronous transfer
of control is accomplished by a calling
linkage and a return linkage.

CRT Chinese Remainder Theorem.

Crypto Express2 Coprocessor
An asynchronous cryptographic
coprocessor available on the z890, z990,
z9 EC, z9 BC, z10 EC and z10 BC.

Crypto Express3 Coprocessor
An asynchronous cryptographic
coprocessor available on z10 EC and z10
BC.

cryptographic adapter (4755 or 4758)
An expansion board that provides a
comprehensive set of cryptographic
functions for the network security
processor and the workstation in the TSS
family of products.

cryptographic coprocessor
A tamper responding, programmable,
cryptographic PCI card, containing CPU,
encryption hardware, RAM, persistent
memory, hardware random number
generator, time of day clock,
infrastructure firmware, and software.

cryptographic key data set (CKDS)
A data set that contains the encrypting
keys used by an installation. (D)

Glossary 949

|
|
|
|
|
|

In ICSF, a VSAM data set that contains all
the cryptographic keys. Besides the
encrypted key value, an entry in the
cryptographic key data set contains
information about the key.

cryptography
The transformation of data to conceal its
meaning.

In computer security, the principles,
means, and methods for encrypting
plaintext and decrypting ciphertext. (D)

In ICSF, the use of cryptography is
extended to include the generation and
verification of MACs, the generation of
MDCs and other one-way hashes, the
generation and verification of PINs, and
the generation and verification of digital
signatures.

CUSP (Cryptographic Unit Support Program)
The IBM cryptographic offering, program
product 5740-XY6, using the
channel-attached 3848. CUSP is no longer
in service.

CUSP/PCF conversion program
A program, for use during migration from
CUSP or PCF to ICSF, that converts a
CUSP or PCF cryptographic key data set
into a ICSF cryptographic key data set.

Customer Information Control System (CICS)
An IBM licensed program that enables
transactions entered at remote terminals
to be processed concurrently by user
written application programs. It includes
facilities for building, using, and
maintaining databases.

CVC Card verification code used by
MasterCard.

CVV Card verification value used by VISA.

data encryption algorithm (DEA)
In computer security, a 64-bit block cipher
that uses a 64-bit key, of which 56 bits are
used to control the cryptographic process
and 8 bits are used for parity checking to
ensure that the key is transmitted
properly. (D)

data encryption standard (DES)
In computer security, the National
Institute of Standards and Technology
(NIST) Data Encryption Standard,
adopted by the U.S. government as
Federal Information Processing Standard

(FIPS) Publication 46, which allows only
hardware implementations of the data
encryption algorithm. (D)

data key or data-encrypting key
A key used to encipher, decipher, or
authenticate data. (D)

In ICSF, a 64-bit encryption key used to
protect data privacy using the DES
algorithm. AES data keys are now
supported by ICSF.

data set
The major unit of data storage and
retrieval, consisting of a collection of data
in one of several prescribed arrangements
and described by control information to
which the system has access. (D)

data-translation key
A 64-bit key that protects data transmitted
through intermediate systems when the
originator and receiver do not share the
same key.

DEA Data encryption algorithm.

decipher
To convert enciphered data in order to
restore the original data. (T)

In computer security, to convert ciphertext
into plaintext by means of a cipher
system.

To convert enciphered data into clear
data. Contrast with encipher. Synonymous
with decrypt. (D)

decode
To convert data by reversing the effect of
some previous encoding. (I) (A)

In ICSF, to decipher data by use of a clear
key.

decrypt
See decipher.

DES Data Encryption Standard.

diagnostics data set
A key generator utility program data set
containing a copy of each input control
statement followed by a diagnostic
message generated for each control
statement.

digital signature
In public key cryptography, information
created by using a private key and
verified by using a public key. A digital

950 z/OS ICSF Application Programmer's Guide

|
|
|
|

signature provides data integrity and
source nonrepudiation.

Digital Signature Algorithm (DSA)
A public key algorithm for digital
signature generation and verification used
with the Digital Signature Standard.

Digital Signature Standard (DSS)
A standard describing the use of
algorithms for digital signature purposes.
One of the algorithms specified is DSA
(Digital Signature Algorithm).

domain
That part of a network in which the data
processing resources are under common
control. (T)

In ICSF, an index into a set of master key
registers.

double-length key
A key that is 128 bits long. A key can be
either double- or single-length. A
single-length key is 64 bits long.

DSA Digital Signature Algorithm.

DSS Digital Signature Standard.

ECB Electronic codebook.

ECI Eurochèque International S.C., a financial
institution consortium that has defined
three PIN block formats.

EID Environment Identification.

electronic codebook (ECB) operation
A mode of operation used with block
cipher cryptographic algorithms in which
plaintext or ciphertext is placed in the
input to the algorithm and the result is
contained in the output of the algorithm.
(D)

A mode of encryption using the data
encryption algorithm, in which each block
of data is enciphered or deciphered
without an initial chaining vector. It is
used for key management functions and
the encode and decode callable services.

electronic funds transfer system (EFTS)
A computerized payment and withdrawal
system used to transfer funds from one
account to another and to obtain related
financial data. (D)

encipher
To scramble data or to convert data to a
secret code that masks the meaning of the

data to any unauthorized recipient.
Synonymous with encrypt.

Contrast with decipher. (D)

enciphered data
Data whose meaning is concealed from
unauthorized users or observers. (D)

encode
To convert data by the use of a code in
such a manner that reconversion to the
original form is possible. (T)

In computer security, to convert plaintext
into an unintelligible form by means of a
code system. (D)

In ICSF, to encipher data by use of a clear
key.

encrypt
See encipher.

exit To execute an instruction within a portion
of a computer program in order to
terminate the execution of that portion.
Such portions of computer programs
include loops, subroutines, modules, and
so on. (T)

In ICSF, a user-written routine that
receives control from the system during a
certain point in processing—for example,
after an operator issues the START
command.

exportable form
A condition a key is in when enciphered
under an exporter key-encrypting key. In
this form, a key can be sent outside the
system to another system. A key in
exportable form cannot be used in a
cryptographic function.

exporter key-encrypting key
A 128-bit key used to protect keys sent to
another system. A type of transport key.

file A named set of records stored or
processed as a unit. (T)

GBP German Bank Pool.

German Bank Pool (GBP)
A German financial institution consortium
that defines specific methods of PIN
calculation.

hashing
An operation that uses a one-way
(irreversible) function on data, usually to
reduce the length of the data and to

Glossary 951

provide a verifiable authentication value
(checksum) for the hashed data.

header record
A record containing common, constant, or
identifying information for a group of
records that follows. (D)

ICSF Integrated Cryptographic Service Facility.

importable form
A condition a key is in when it is
enciphered under an importer
key-encrypting key. A key is received
from another system in this form. A key
in importable form cannot be used in a
cryptographic function.

importer key-encrypting key
A 128-bit key used to protect keys
received from another system. A type of
transport key.

initial chaining vector (ICV)
A 64-bit random or pseudo-random value
used in the cipher block chaining mode of
encryption with the data encryption
algorithm.

initial program load (IPL)
The initialization procedure that causes an
operating system to commence operation.

The process by which a configuration
image is loaded into storage at the
beginning of a work day or after a system
malfunction.

The process of loading system programs
and preparing a system to run jobs. (D)

input PIN-encrypting key
A 128-bit key used to protect a PIN block
sent to another system or to translate a
PIN block from one format to another.

installation exit
See exit.

Integrated Cryptographic Service Facility (ICSF)
A licensed program that runs under
MVS/System Product 3.1.3, or higher, or
OS/390 Release 1, or higher, or z/OS, and
provides access to the hardware
cryptographic feature for programming
applications. The combination of the
hardware cryptographic feature and ICSF
provides secure high-speed cryptographic
services.

International Organization for Standardization
An organization of national standards

bodies from many countries, established
to promote the development of standards
to facilitate the international exchange of
goods and services and to develop
cooperation in intellectual, scientific,
technological, and economic activity. ISO
has defined certain standards relating to
cryptography and has defined two PIN
block formats.

ISO International Organization for
Standardization.

job control language (JCL)
A control language used to identify a job
to an operating system and to describe
the job's requirements. (D)

key-encrypting key (KEK)
In computer security, a key used for
encryption and decryption of other keys.
(D)

In ICSF, a master key or transport key.

key generator utility program (KGUP)
A program that processes control
statements for generating and maintaining
keys in the cryptographic key data set.

key output data set
A key generator utility program data set
containing information about each key
that the key generator utility program
generates except an importer key for file
encryption.

key part
A 32-digit hexadecimal value that you
enter for ICSF to combine with other
values to create a master key or clear key.

key part register
A register in a cryptographic coprocessor
that accumulates key parts as they are
entered via TKE.

key store policy
Ensures that only authorized users and
jobs can access secure key tokens that are
stored in one of the ICSF key stores - the
CKDS or the PKDS.

key store policy controls
Resources that are defined in the
XFACILIT class. A control can verify the
caller has authority to use a secure token
and identify the action to take when the
secure token is not stored in the CKDS or
PKDS.

952 z/OS ICSF Application Programmer's Guide

|
|
|

linkage
The coding that passes control and
parameters between two routines.

load module
All or part of a computer program in a
form suitable for loading into main
storage for execution. A load module is
usually the output of a linkage editor. (T)

LPAR mode
The central processor mode that enables
the operator to allocate the hardware
resources among several logical partitions.

MAC generation key
A 64-bit or 128-bit key used by a message
originator to generate a message
authentication code sent with the message
to the message receiver.

MAC verification key
A 64-bit or 128-bit key used by a message
receiver to verify a message
authentication code received with a
message.

magnetic tape
A tape with a magnetizable layer on
which data can be stored. (T)

master key
In computer security, the top-level key in
a hierarchy of key-encrypting keys.

ICSF uses master keys to encrypt
operational keys. Master keys are known
only to the cryptographic coprocessors
and are maintained in tamper proof
cryptographic coprocessors.

master key concept
The idea of using a single cryptographic
key, the master key, to encrypt all other
keys on the system.

master key register
A register in the cryptographic
coprocessors that stores the master key
that is active on the system.

master key variant
A key derived from the master key by use
of a control vector. It is used to force
separation by type of keys on the system.

MD4 Message Digest 4. A hash algorithm.

MD5 Message Digest 5. A hash algorithm.

message authentication code (MAC)
The cryptographic result of block cipher

operations on text or data using the
cipher block chain (CBC) mode of
operation. (D)

In ICSF, a MAC is used to authenticate
the source of the message, and verify that
the message was not altered during
transmission or storage.

modification detection code (MDC)
A 128-bit value that interrelates all bits of
a data stream so that the modification of
any bit in the data stream results in a new
MDC.

In ICSF, an MDC is used to verify that a
message or stored data has not been
altered.

multiple encipherment
The method of encrypting a key under a
double-length key-encrypting key.

new master key register
A register in a cryptographic coprocessor
that stores a master key before you make
it active on the system.

NIST U.S. National Institute of Science and
Technology.

NOCV processing
Process by which the key generator utility
program or an application program
encrypts a key under a transport key
itself rather than a transport key variant.

noncompatibility mode
An ICSF method of operation during
which CUSP or PCF can run
independently and simultaneously on the
same z/OS, OS/390, or MVS system. You
cannot run a CUSP or PCF application
program on ICSF in this mode.

nonrepudiation
A method of ensuring that a message was
sent by the appropriate individual.

OAEP Optimal asymmetric encryption padding.

offset The process of exclusively ORing a
counter to a key.

old master key register
A register in a cryptographic coprocessor
that stores a master key that you replaced
with a new master key.

operational form
The condition of a key when it is

Glossary 953

|
|
|
|
|

|
|
|

|
|
|

encrypted under the master key so that it
is active on the system.

output PIN-encrypting key
A 128-bit key used to protect a PIN block
received from another system or to
translate a PIN block from one format to
another.

PAN Personal Account Number.

parameter
Data passed between programs or
procedures. (D)

parmlib
A system parameter library, either
SYS1.PARMLIB or an installation-supplied
library.

partitioned data set (PDS)
A data set in direct access storage that is
divided into partitions, called members,
each of which can contain a program, part
of a program, or data. (D)

PCICA
PCI Cryptographic Accelerator.

PCI X Cryptographic Coprocessor
An asynchronous cryptographic
coprocessor available on the IBM eServer
zSeries 990 and IBM eServer zSeries 800.

PCIXCC
PCI X Cryptographic Coprocessor.

Personal Account Number (PAN)
A Personal Account Number identifies an
individual and relates that individual to
an account at a financial institution. It
consists of an issuer identification
number, customer account number, and
one check digit.

personal identification number (PIN)
The 4- to 12-digit number entered at an
automatic teller machine to identify and
validate the requester of an automatic
teller machine service. Personal
identification numbers are always
enciphered at the device where they are
entered, and are manipulated in a secure
fashion.

Personal Security card
An ISO-standard “smart card” with a
microprocessor that enables it to perform
a variety of functions such as identifying
and verifying users, and determining
which functions each user can perform.

PIN block
A 64-bit block of data in a certain PIN
block format. A PIN block contains both a
PIN and other data.

PIN generation key
A 128-bit key used to generate PINs or
PIN offsets algorithmically.

PIN key
A 128-bit key used in cryptographic
functions to generate, transform, and
verify the personal identification
numbers.

PIN offset
For 3624, the difference between a
customer-selected PIN and an
institution-assigned PIN. For German
Bank Pool, the difference between an
institution PIN (generated with an
institution PIN key) and a pool PIN
(generated with a pool PIN key).

PIN verification key
A 128-bit key used to verify PINs
algorithmically.

PKA Public Key Algorithm.

PKCS Public Key Cryptographic Standards (RSA
Data Security, Inc.)

PKDS Public key data set (PKA cryptographic
key data set).

plaintext
Data in normal, readable form.

primary space allocation
An area of direct access storage space
initially allocated to a particular data set
or file when the data set or file is defined.
See also secondary space allocation. (D)

private key
In computer security, a key that is known
only to the owner and used with a public
key algorithm to decrypt data or generate
digital signatures. The data is encrypted
and the digital signature is verified using
the related public key.

processor complex
A configuration that consists of all the
machines required for operation.

Processor Resource/Systems Manager
Enables logical partitioning of the
processor complex, may provide
additional byte-multiplexer channel

954 z/OS ICSF Application Programmer's Guide

capability, and supports the VM/XA
System Product enhancement for Multiple
Preferred Guests.

Programmed Cryptographic Facility (PCF)
An IBM licensed program that provides
facilities for enciphering and deciphering
data and for creating, maintaining, and
managing cryptographic keys. (D)

The IBM cryptographic offering, program
product 5740-XY5, using software only for
encryption and decryption. This product
is no longer in service; ICSF is the
replacement product.

PR/SM
Processor Resource/Systems Manager.

public key
In computer security, a key made
available to anyone who wants to encrypt
information using the public key
algorithm or verify a digital signature
generated with the related private key.
The encrypted data can be decrypted only
by use of the related private key.

public key algorithm (PKA)
In computer security, an asymmetric
cryptographic process in which a public
key is used for encryption and digital
signature verification and a private key is
used for decryption and digital signature
generation.

public key cryptography
In computer security, cryptography in
which a public key is used for encryption
and a private key is used for decryption.
Synonymous with asymmetric
cryptography.

RACE Integrity Primitives Evaluatiuon Message
Digest A hash algorithm.

RDO Resource definition online.

record chaining
When there are multiple cipher requests
and the output chaining vector (OCV)
from the previous encipher request is
used as the input chaining vector (ICV)
for the next encipher request.

Resource Access Control Facility (RACF)
An IBM licensed program that provides
for access control by identifying and
verifying the users to the system,
authorizing access to protected resources,
logging the detected unauthorized

attempts to enter the system, and logging
the detected accesses to protected
resources. (D)

retained key
A private key that is generated and
retained within the secure boundary of
the PCI Cryptographic Coprocessor.

return code
A code used to influence the execution of
succeeding instructions. (A)

A value returned to a program to indicate
the results of an operation requested by
that program. (D)

Rivest-Shamir-Adleman (RSA) algorithm
A process for public key cryptography
that was developed by R. Rivest, A.
Shamir, and L. Adleman.

RMF Resource Manager Interface.

RMI Resource Measurement Facility.

RSA Rivest-Shamir-Adleman.

SAF Security Authorization Facility.

save area
Area of main storage in which contents of
registers are saved. (A)

secondary space allocation
In systems with VSAM, area of direct
access storage space allocated after
primary space originally allocated is
exhausted. See also primary space
allocation. (D)

Secure Electronic Transaction
A standard created by Visa International
and MasterCard for safe-guarding
payment card purchases made over open
networks.

secure key
A key that is encrypted under a master
key. When ICSF uses a secure key, it is
passed to a cryptographic coprocessor
where the coprocessor decrypts the key
and performs the function. The secure key
never appears in the clear outside of the
cryptographic coprocessor.

Secure Sockets Layer
A security protocol that provides
communications privacy over the Internet
by allowing client/server applications to

Glossary 955

communicate in a way that is designed to
prevent eavesdropping, tampering, or
message forgery.

sequential data set
A data set whose records are organized
on the basis of their successive physical
positions, such as on magnetic tape. (D)

SET Secure Electronic Transaction.

SHA (Secure Hash Algorithm, FIPS 180)
(Secure Hash Algorithm, FIPS 180) The
SHA (Secure Hash Algorithm) family is a
set of related cryptographic hash
functions designed by the National
Security Agency (NSA) and published by
the National Institute of Standards and
Technology (NIST). The first member of
the family, published in 1993, is officially
called SHA. However, today, it is often
unofficially called SHA-0 to avoid
confusion with its successors. Two years
later, SHA-1, the first successor to SHA,
was published. Four more variants, have
since been published with increased
output ranges and a slightly different
design: SHA-224, SHA-256, SHA-384, and
SHA-512 (all are sometimes referred to as
SHA-2).

SHA-1 (Secure Hash Algorithm 1, FIPS 180)
A hash algorithm required for use with
the Digital Signature Standard.

SHA-2 (Secure Hash Algorithm 2, FIPS 180)
Four additional variants to the SHA
family, with increased output ranges and
a slightly different design: SHA-224,
SHA-256, SHA-384, and SHA-512 (all are
sometimes referred to as SHA-2).

SHA-224
One of the SHA-2 algorithms.

SHA-256
One of the SHA-2 algorithms.

SHA-384
One of the SHA-2 algorithms.

SHA-512
One of the SHA-2 algorithms.

single-length key
A key that is 64 bits long. A key can be
single- or double-length. A double-length
key is 128 bits long.

smart card
A plastic card that has a microchip
capable of storing data or process
information.

special secure mode
An alternative form of security that
allows you to enter clear keys with the
key generator utility program or generate
clear PINs.

SSL Secure Sockets Layer.

supervisor state
A state during which a processing unit
can execute input/output and other
privileged instructions. (D)

System Authorization Facility (SAF)
An interface to a system security system
like the Resource Access Control Facility
(RACF).

system key
A key that ICSF creates and uses for
internal processing.

System Management Facility (SMF)
A base component of z/OS that provides
the means for gathering and recording
information that can be used to evaluate
system usage. (D)

TDEA Triple Data Encryption Algorithm.

TKE Trusted key entry.

Transaction Security System
An IBM product offering including both
hardware and supporting software that
provides access control and basic
cryptographic key-management functions
in a network environment. In the
workstation environment, this includes
the 4755 Cryptographic Adapter, the
Personal Security Card, the 4754 Security
Interface Unit, the Signature Verification
feature, the Workstation Security Services
Program, and the AIX Security Services
Program/6000. In the host environment,
this includes the 4753 Network Security
Processor and the 4753 Network Security
Processor MVS Support Program.

transport key
A 128-bit key used to protect keys
distributed from one system to another. A
transport key can either be an exporter
key-encrypting key, an importer
key-encrypting key, or an ANSI
key-encrypting key.

956 z/OS ICSF Application Programmer's Guide

transport key variant
A key derived from a transport key by
use of a control vector. It is used to force
separation by type for keys sent between
systems.

TRUE Task-related User Exit (CICS). The
CICS-ICSF Attachment Facility provides a
CSFATRUE and CSFATREN routine.

UAT UDX Authority Table.

UDF User-defined function.

UDK User-derived key.

UDP User Developed Program.

UDX User Defined Extension.

verification pattern
An 8-byte pattern that ICSF calculates
from the key parts you enter when you
enter a master key or clear key. You can
use the verification pattern to verify that
you have entered the key parts correctly
and specified a certain type of key.

Virtual Storage Access Method (VSAM)
An access method for indexed or
sequential processing of fixed and
variable-length records on direct-access
devices. The records in a VSAM data set
or file can be organized in logical
sequence by means of a key field (key
sequence), in the physical sequence in
which they are written on the data set or
file (entry-sequence), or by means of
relative-record number.

Virtual Telecommunications Access Method
(VTAM)

An IBM licensed program that controls
communication and the flow of data in an
SNA network. It provides single-domain,
multiple-domain, and interconnected
network capability. (D)

VISA A financial institution consortium that has
defined four PIN block formats and a
method for PIN verification.

VISA PIN Verification Value (VISA PVV)
An input to the VISA PIN verification
process that, in practice, works similarly
to a PIN offset.

3621 A model of an IBM Automatic Teller
Machine that has a defined PIN block
format.

3624 A model of an IBM Automatic Teller

Machine that has a defined PIN block
format and methods of PIN calculation.

4753 The Network Security processor. The IBM
4753 is a processor that uses the Data
Encryption Algorithm and the RSA
algorithm to provide cryptograpic support
for systems requiring secure transaction
processing (and other cryptographic
services) at the host computer. The NSP
includes a 4755 cryptographic adapter in
a workstation which is channel attached
to a S/390 host computer.

4758 The IBM PCI Cryptographic processor
provides a secure programming and
hardware environment where DES and
RSA processes are performed.

Glossary 957

958 z/OS ICSF Application Programmer's Guide

Index

Numerics
3621 PIN block format 453, 894
3624 PIN block format 453, 894
4700-PAD processing rule 356, 365
4704-EPP PIN block format 453

A
accessibility 939

contact IBM 939
features 939

accessing
callable service 9
invocation requirements 9

affinity (IEAAFFN callable service) 10
ALET (alternate entry point)

format 5
algorithm

3624 PIN generation 896
3624 PIN verification 899
GBP PIN generation 897
GBP PIN verification 901
GBP-PIN 491
GBP-PINO 491
IBM-PIN 491
IBM-PINO 491
PIN offset generation 898
PIN, detailed 896
PIN, general 52
PVV generation 902
PVV verification 903
VISA PIN 902
VISA-PVV 470, 491
VISAPVV4 491

ANSI 9.9-1 algorithm 405
ANSI X3.106 processing rule 904
ANSI X9.19 optional double MAC

procedure 405
ANSI X9.23 processing rule 356, 365,

905
ANSI X9.8 487
ANSI X9.8 PIN block format 893
ASCII to EBCDIC conversion

table 919
assistive technologies 939
asym_encrypted_key parameter

remote key export callable
service 239

asym_encrypted_key_length parameter
remote key export callable

service 239
authenticating messages 405
Authentication Parameter Generate

(CSNBAPG)
format 539
syntax 539

Authentication Parameter Generate
callable service (CSNBAPG) 539

parameters 540

C
c-variable encrypting key identifier

parameter
cryptographic variable encipher

callable service 105
call

successful 11
unsuccessful 11

callable service 662
Authentication Parameter Generate

(CSNBAPG and CSNEAPG) 54
Authentication Parameter Generate

(CSNBAPG) 539
character/nibble conversion

(CSNBXBC and CSNBXCB) 627
Ciphertext Translate2 (CSNBCTT2,

CSNBCTT3, CSNECTT2,
CSNECTT3) 340

CKDS key record create
(CSNBKRC) 46, 595

CKDS key record create2 (CSNBKRC2
and CSNEKRC2) 46

CKDS Key Record Create2
(CSNBKRC2 and CSNEKRC2) 597

CKDS key record delete
(CSNBKRD) 46, 599

CKDS key record read
(CSNBKRR) 46, 602

CKDS key record read2 (CSNBKRR2
and CSNEKRR2) 46

CKDS Key Record Read2 (CSNBKRR2
and CSNEKRR2) 604

CKDS key record write
(CSNBKRW) 47, 606

CKDS key record write2 (CSNBKRW2
and CSNEKRW2) 47

CKDS Key Record Write2
(CSNBKRW2 and CSNEKRW2) 608

clear key import (CSNBCKI) 25, 94
clear PIN encrypt (CSNBCPE) 53,

458
clear PIN generate (CSNBPGN) 53,

462
clear PIN generate alternate

(CSNBCPA) 53, 466
code conversion (CSNBXAE) 57
code conversion (CSNBXBC) 57
code conversion (CSNBXCB) 57
code conversion (CSNBXEA and

CSNBXAE) 629
code conversion (CSNBXEA) 57
coding examples 881

Assembler H 886
C 881
COBOL 884
PL/1 888

control vector generate
(CSNBCVG) 25, 96

control vector translate callable service
(CSNBCVT) 25, 101

callable service (continued)
coordinated KDS administration

(CSFCRC and CSFCRC6) 611
coordinated KDS administration

callable services (CSFCRC and
CSFCRC6) 47

cryptographic variable encipher
(CSNBCVE) 25, 104

CSFxxxx format 4
CSNBxxxx format 4
CVV Key Combine (CSNBCKC and

CSNECKC) 472
data key export (CSNBDKX) 26, 107
data key import (CSNBDKM) 26, 110
decipher (CSNBDEC or

CSNBDEC1) 352
decode (CSNBDCO) 359
definition 3, 13
digital signature generate

(CSNDDSG) 76, 545
digital signature verify

(CSNDDSV) 76, 551
diversified key generate

(CSNBDKG) 26, 113
ECC Diffie-Hellman (CSNDEDH and

CSNFEDH) 119
encipher (CSNBENC or

CSNBENC1) 361
encode (CSNBECO) 368
encrypted PIN generate

(CSNBEPG) 53, 477
encrypted PIN translate

(CSNBPTR) 54, 482
encrypted PIN verification

(CSNBPVR) 54
encrypted PIN verify

(CSNBPVR) 488
format 667
get attribute value (CSFPGAV) 691
HMAC Generate (CSNBHMG,

CSNEHMG, CSNBHMG1 and
CSNEHMG1) 407

HMAC generation (CSNBHMG or
CSNBHMG1 and CSNEHMG or
CSNEHMG1) 50

HMAC verification (CSNBHMV or
CSNBHMV1 and CSNEHMV or
CSNEHMV1) 50

HMAC Verify (CSNBHMV,
CSNEHMV, CSNBHMV1 and
CSNEHMV1) 412

ICSF Query Algorithm (CSFIQA) 57,
632

ICSF Query Facility (CSFIQF) 57
ICSF Query Facility2 (CSFIQF2) 57
ICSF Query Service (CSFIQF) 636
ICSF Query Service (CSFIQF2) 659
IEAAFFN (affinity) 10
installation-defined 13
invoking a 3
key export (CSNBKEX) 26, 128

© Copyright IBM Corp. 1997, 2013 959

callable service (continued)
key generate (CSNBKGN) 26, 58, 132
Key Generate (CSNBKGN) 29
key generate2 (CSNBKGN2 and

CSNEKGN2) 29, 30
Key Generate2 (CSNBKGN2 and

CSNEKGN2) 143
key import (CSNBKIM) 26, 154
key part import (CSNBKPI) 26, 158
key part import2 (CSNBKPI2 and

CSNEKPI2) 29, 30, 31
Key Part Import2 (CSNBKPI2 and

CSNEKPI2) 162
key test (CSNBKYT) 166
key test (CSNBKYT and

CSNBKYTX) 27
key test extended (CSNBKYTX) 175
Key Test2 (CSNBKYT2 and

CSNEKYT2) 170
key token build (CSNBKTB) 27, 179
Key Token Build2 (CSNBKTB2 and

CSNEKTB2) 189
key translate (CSNBKTR) 27, 196
Key Translate2 (CSNBKTR2 and

CSNEKTR2) 199
link edit step 12
MAC generate (CSNBMGN or

CSNBMGN1) 416
MAC generation (CSNBMGN or

CSNBMGN1) 50
MAC verification (CSNBMVR or

CSNBMVR1) 50
MAC verify (CSNBMVR or

CSNBMVR1) 421
MDC generate (CSNBMDG or

CSNBMDG1) 427
MDC generation (CSNBMDG or

CSNBMDG1) 52
multiple clear key import

(CSNBCKM) 27, 206
multiple secure key import

(CSNBSKM) 27, 210
one-way hash generate (CSNBOWH

and CSNBOWH1) 51
one-way hash generate (CSNBOWH,

CSNEOWH and CSNBOWH1) 431
overview 3
PCI interface (CSFPCI) 667
PIN change/unblock (CSNBPCU) 54
PIN Change/Unblock

(CSNBPCU) 494
PKA decrypt (CSNDPKD) 47
PKA encrypt (CSNDPKE) 48
PKA key generate (CSNDPKG) 77,

557
PKA key import (CSNDPKI) 77, 563
PKA key token build

(CSNDPKB) 77, 567
PKA key token change (CSNDKTC

and CSNFKTC) 77
PKA key token change

(CSNDKTC) 578
PKA keyTranslate (CSNDPKT) 581
PKA public key extract

(CSNDPKX) 77, 586
PKCS #11 Derive key

(CSFPDVK) 685

callable service (continued)
PKCS #11 Derive multiple keys

(CSFPDMK) 677
PKCS #11 Generate HMAC

(CSFPHMG) 699
PKCS #11 Generate secret key

(CSFPGSK) 696
PKCS #11 One-way hash, sign, or

verify (CSFPOWH) 707
PKCS #11 Private key sign

(CSFPPKS) 713
PKCS #11 Pseudo-random function

(CSFPPRF) 719
PKCS #11 Public key verify

(CSFPPKV) 716
PKCS #11 Secret key decrypt

(CSFPSKD) 724
PKCS #11 Secret key encrypt

(CSFPSKE) 729
PKCS #11 Unwrap key

(CSFPUWK) 746
PKCS #11 Verify HMAC

(CSFPHMV) 703
PKCS #11 wrap key (CSFPWPK) 749
PKDS key record create

(CSNDKRC) 615
PKDS key record delete

(CSNDKRD) 618
PKDS key record read

(CSNDKRR) 620
PKDS key record write

(CSNDKRW) 622
PPKCS #11 Generate key pair

(CSFPGKP) 693
prohibit export (CSNBPEX) 27, 225
prohibit export extended

(CSNBPEXX) 27, 227
random number generate

(CSNBRNG) 28, 229
random number generate

(CSNBRNGL) 229
Recover PIN from Offset

(CSNBPFO) 501
Recover PIN From Offset

(CSNBPFO) 54
remote key export (CSNDRKX) 28,

233
restrict key attribute (CSNBRKA and

CSNERKA) 28, 29, 30
Restrict Key Attribute (CSNBRKA and

CSNERKA) 243
retained key delete (CSNDRKD) 589
retained key list (CSNDRKL) 591
secure key import (CSNBSKI) 28, 247
Secure Key Import2 (CSNBSKI2 and

CSNESKI2) 251
secure messaging for keys

(CSNBSKY) 505
secure messaging for PINs

(CSNBSPN) 509
security considerations 9
sequences 58
set attribute value (CSFPSAV) 722
SET block compose (CSNDSBC) 80,

514
SET block decompose

(CSNDSBD) 80, 520

callable service (continued)
symmetric algorithm decipher

(CSNBSAD, CSNBSAD1, CSNESAD
and CSNESAD1) 370

symmetric key decipher (CSNBSYD
and CSNBSYD1) 384

symmetric key encipher (CSNBSAE,
CSNBSAE1, CSNESAE, and
CSNESAE1) 377

symmetric key encipher (CSNBSYE,
CSNBSYE1, CSNESYE and
CSNESYE1) 394

symmetric key export
(CSNDSYX) 28, 256

Symmetric Key Export with Data
(CSNDSXD) 262

symmetric key generate
(CSNDSYG) 28, 266

symmetric key import
(CSNDSYI) 28, 273

Symmetric Key Import2 (CSNDSYI2
and CSNFSYI2) 278

Symmetric MAC generate (CSNBSMG,
CSNBSMG1, CSNESMG, and
CSNESMG1) 436

Symmetric MAC Generate Callable
Service (CSNBSMG, CSNBSMG1,
CSNESMG and CSNESMG1) 51

Symmetric MAC verify (CSNBSMV,
CSNBSMV1, CSNESMV, and
CSNESMV1) 441

Symmetric MAC Verify Callable
Service (CSNBSMV, CSNBSMV1,
CSNESMV and CSNESMV1) 51

syntax 3
token record create (CSFPTRC) 735
token record delete (CSFPTRD) 739
token record list (CSFPTRL) 741
TR-31 export (CSNBT31X and

CSNET31X) 287
TR-31 import (CSNBT31I and

CSNET31I) 301
TR-31 Optional Data Build

(CSNBT31O and CSNET31O) 315
TR-31 Optional Data Read

(CSNBT31R and CSNET31R) 318
TR-31 Parse (CSNBT31P and

CSNET31P) 322
transaction validation 54
Transaction Validation

(CSNBTRV) 526
translating ciphertext 49
trusted block create (CSNDTBC) 28,

283
Unique Key Derive (CSNBUKD and

CSNEUKD) 326
using key types and key forms 10
VISA CVV service generate

(CSNBCSG) 530
VISA CVV service verify

(CSNBCSV) 535
with ALETs (alternate entry point) 5
X9.9 data editing (CSNB9ED) 57, 664

CBC processing rule 356, 365
certificate length parameter

remote key export callable
service 236

960 z/OS ICSF Application Programmer's Guide

certificate parameter
remote key export callable

service 236
certificate_parms parameter

remote key export callable
service 236

certificate_parms_length parameter
remote key export callable

service 236
chaining vector length parameter

one-way hash generate callable
service 434

Symmetric MAC generate callable
service 439

Symmetric MAC verify callable
service 444

chaining vector parameter
decipher callable service 357
encipher callable service 367
MAC generate callable service 420
MAC verify callable service 425
MDC generate callable service 430
one-way hash generate callable

service 434
symmetric MAC generate callable

service 439
Symmetric MAC verify callable

service 444
changing control vectors 875
character/nibble conversion callable

service (CSNBXBC and CSNBXCB)
format 627
parameters 627
syntax 627

character/nibble conversion callable
services (CSNBXBC and CSNBXCB)

overview 57
choosing between

CSNBCTT2 and CSNBCTT3 340
CSNBDEC and CSNBDEC1 353
CSNBENC and CSNBENC1 362
CSNBMDG and CSNBMDG1 427
CSNBMGN and CSNBMGN1 417
CSNBMVR and CSNBMVR1 422
CSNBSYD and CSNBSYD1 385, 436
CSNBSYE and CSNBSYE1 395
CSNESAE and CSNESAE1 377

CIPHER
keys 19

cipher block chaining (CBC) 337
mode 338

cipher feedback (CFB)
mode 338

cipher text id parameter
decipher callable service 376
encipher callable service 383

ciphertext
cryptographic variable encipher

callable service 106
deciphering 49, 337
encoding 368
field 393, 403
translating 49, 340

ciphertext id parameter
decipher callable service 357, 392
encipher callable service 367, 402

ciphertext parameter
decipher callable service 355
decode callable service 360
encipher callable service 367
encode callable service 370

Ciphertext Translate2 Callable Service
(CSNBCTT or CSNBCTT1)

using 61
CKDS (cryptographic key data set)

record format 819
CKDS key record create callable service

(CSNBKRC)
format 595
overview 46
parameters 595
syntax 595

CKDS key record delete callable service
(CSNBKRD)

format 599
parameters 599
syntax 599

CKDS key record read callable service
(CSNBKRR)

format 602
overview 46
parameters 602
syntax 602

CKDS key record write callable service
(CSNBKRW)

format 606
overview 47
parameters 606
syntax 606

clear key
deciphering data with 359
definition 22
enciphering 247
enciphering data with 368
encoding and decoding data with 48
protecting 337

clear key import callable service
(CSNBCKI)

format 94
overview 25
parameters 94
syntax 94

clear key length parameter
multiple clear key import callable

service 208, 212
clear key parameter

clear key import callable service 95
decode callable service 360
encode callable service 370
multiple clear key import callable

service 208, 212
secure key import callable

service 248
clear PIN encrypt callable service

(CSNBCPE)
format 459
syntax 459

clear PIN encrypt service (CSNBCPE)
parameters 459

clear PIN generate alternate callable
service (CSNBCPA)

format 466
overview 53

clear PIN generate alternate callable
service (CSNBCPA) (continued)

parameters 466
syntax 466

clear PIN generate callable service
(CSNBPGN)

format 462
parameters 462
syntax 462

clear PIN generate key identifier
parameter 468

clear PIN generate callable
service 463

clear text id parameter
decipher callable service 358, 376,

392
encipher callable service 367, 383,

402
clear text parameter

decipher callable service 357
decode callable service 360
encipher callable service 365
encode callable service 370

code conversion callable service
(CSNBXEA and CSNBXAE)

format 629
parameters 629
syntax 629

code conversion callable services
(CSNBXEA and CSNBXAE)

overview 57
code table parameter

character/nibble conversion callable
service 628

code conversion callable service 631
coding examples 881

Assembler H 886
C 881
COBOL 884
PL/1 888

control information
for digital signature generate 547
for digital signature verify 553
for diversified key generate 115
for key test 168
for key test extended 177
for MAC generate 419
for MAC verify 424, 443
for MDC generate 429
for multiple clear key import 207
for multiple secure key import 211,

289, 303, 320, 473
for one-way hash generate 433
for PKA key token build 569
for symmetric algorithm encipher 3,

373, 379
for symmetric key encipher 387, 397
for symmetric key generate 268
for symmetric key import 274, 280
for symmetric MAC generate 438
random number generate callable

service 231
control vector

description 865
value 865

control vector generate (CSNBCVG)
parameters 96

Index 961

control vector generate callable service
(CSNBCVG)

format 96
overview 25
syntax 96

control vector parameter
control vector generate callable

service 100
control vector translate callable service

(CSNBCVT)
format 101
overview 25
parameters 101, 408, 413, 598, 604,

609
syntax 101

control vector, description of 14, 18
control vectors, changing 875
coordinated KDS administration callable

service (CSFCRC and CSFCRC6) 611
coordinated KDS administration callable

services (CSFCRC and CSFCRC6)
overview 47

cryptographic feature
description xxi

cryptographic key data set (CKDS)
held keys 20
storing keys 25, 45, 93

cryptographic variable encipher
(CSNBCVE)

parameters 105
cryptographic variable encipher callable

service (CSNBCVE)
format 105
overview 25
syntax 105

CSFACEE callable service 662
CSFCRC callable service 611
CSFCRC6 callable service 611
CSFIQA callable service 632
CSFIQF callable service 636
CSFIQF2 637, 659, 662
CSFIQF2 callable service 659
CSFPCI callable service 667
CSFPDMK callable service 677
CSFPDVK callable service 685
CSFPGAV callable service 691
CSFPGKP callable service 693
CSFPGSK callable service 696
CSFPHMG callable service 699
CSFPHMV callable service 703
CSFPOWH callable service 707
CSFPPKS callable service 713
CSFPPKV callable service 716
CSFPPRF callable service 719
CSFPSAV callable service 722
CSFPSKD callable service 724
CSFPSKE callable service 729
CSFPTRC callable service 735
CSFPTRD callable service 739
CSFPTRL callable service 741
CSFPUWK callable service 746
CSFPWPK callable service 749
CSFxxxx format 4
CSNB9ED callable service 664
CSNBAPG callable service 539
CSNBCKC and CSNECKC callable

services 472

CSNBCKI callable service 94
CSNBCKM callable service 206
CSNBCPA callable service 466
CSNBCPE callable service 458
CSNBCSG callable service 530
CSNBCSV callable service 535
CSNBCTT2, CSNBCTT3, CSNECTT2, or

CSNECTT3 callable service 340
CSNBCVE callable service 104
CSNBCVG callable service 96
CSNBCVT callable service 101
CSNBDCO callable service 359
CSNBDEC or CSNBDEC1 callable

service 352
CSNBDKG callable service 113
CSNBDKM callable service 110
CSNBDKX callable service 107
CSNBECO callable service 368
CSNBENC or CSNBENC1 callable

service 361
CSNBEPG callable service 477
CSNBHMG, CSNEHMG, CSNBHMG1

and CSNEHMG1 callable services 407
CSNBHMV, CSNEHMV, CSNBHMV1 and

CSNEHMV1 callable services 412
CSNBKEX callable service 128
CSNBKGN callable service 132
CSNBKGN2 and CSNEKGN2 callable

services 143
CSNBKIM callable service 154
CSNBKPI callable service 158
CSNBKPI2 and CSNEKPI2 callable

services 162
CSNBKRC callable service 595
CSNBKRC2 and CSNEKRC2 callable

services 597
CSNBKRD callable service 599
CSNBKRR callable service 602
CSNBKRR2 and CSNEKRR2 callable

services 604
CSNBKRW callable service 606
CSNBKRW2 and CSNEKRW2 callable

services 608
CSNBKTB callable service 179
CSNBKTB2 and CSNEKTB2 callable

services 189
CSNBKTR callable service 196
CSNBKTR2 and CSNEKTR2 callable

services 199
CSNBKYT callable service 166
CSNBKYT2 and CSNEKYT2 callable

services 170
CSNBKYTX callable service 175
CSNBMDG or CSNBMDG1 callable

service 427
CSNBMGN or CSNBMGN1 callable

service 416
CSNBMVR or CSNBMVR1 callable

service 421
CSNBOWH, CSNEOWH and

CSNBOWH1 callable services 431
CSNBPCU callable service 494
CSNBPEX callable service 225
CSNBPEXX callable service 227
CSNBPFO callable service 501
CSNBPGN callable service 462
CSNBPTR callable service 482

CSNBPVR callable service 488
CSNBRKA and CSNERKA callable

services 243
CSNBRNG callable service 229
CSNBRNGL callable service 229
CSNBSAD or CSNBSAD1 and CSNESAD

or CSNESAD1 370
CSNBSAE, CSNBSAE1, CSNESAE, and

CSNESAE1 callable service 377
CSNBSKI callable service 247
CSNBSKI2 and CSNESKI2 callable

services 251
CSNBSKM callable service 210
CSNBSKY callable service 505
CSNBSMG, CSNBSMG1, CSNESMG, and

CSNESMG1 callable service 436
CSNBSMV, CSNBSMV1, CSNESMV, and

CSNESMV1 callable service 441
CSNBSPN callable service 509
CSNBSYD and CSNBSYD1 callable

service 384
CSNBSYE and CSNBSYE1 callable

service 394
CSNBT31I and CSNET31I callable

services 301
CSNBT31O and CSNET31O callable

services 315
CSNBT31P and CSNET31P callable

services 322
CSNBT31R and CSNET31R callable

services 318
CSNBT31X and CSNET31X callable

services 287
CSNBTRV callable service 526
CSNBUKD and CSNEUKD callable

service 326
CSNBXAE callable service 629
CSNBXBC callable service 627
CSNBXCB callable service 627
CSNBXEA callable service 629
CSNBxxxx format 4
CSNDDSG callable service 545
CSNDDSV callable service 551
CSNDEDH and CSNFEDH callable

services 119
CSNDKRC callable service 615
CSNDKRD callable service 618
CSNDKRR callable service 620
CSNDKRW callable service 622
CSNDKTC callable service 578
CSNDPKB callable service 567
CSNDPKD callable service 216
CSNDPKE callable service 221
CSNDPKG callable service 557
CSNDPKI callable service 563
CSNDPKT callable service 581
CSNDPKX callable service 586
CSNDRKD callable service 589
CSNDRKL callable service 591
CSNDSBC callable service 514
CSNDSBD callable service 520
CSNDSXD callable service 262
CSNDSYG callable service 266
CSNDSYI callable service 273
CSNDSYI2 callable service 278
CSNDSYX callable service 256
CSNDTBC callable service 283

962 z/OS ICSF Application Programmer's Guide

CSNECKI 94
CSNECKM 206
CSNEKGN 132
CSNEOWH 431
CSNERNG 229
CSNFKRC 615
CSNFKRD 618
CSNFPKB 568
CSNFPKD 216
CSNFPKE 221
CSNFPKG 558
CSNFPKX 586
CSNFRKD 589
CSNFRKL 591
CSNFSYI2 callable service 278
CUSP processing rule 356, 365, 906
CVV Key Combine callable service

(CSNBCKC and CSNECKC) 472

D
data

deciphering 352
enciphering 361
enciphering and deciphering 48
encoding and decoding 48
protecting 337

data array parameter
clear PIN generate alternate callable

service 470
clear PIN generate callable

service 464
encrypted PIN generate callable

service 480
encrypted PIN verify callable

service 492
data integrity

ensuring 49
verifying 405

data key
exporting 107
importing 94
reenciphering 107

data key export callable service
(CSNBDKX)

format 107
overview 26
parameters 107
syntax 107

data key import callable service
(CSNBDKM)

format 110
overview 26
parameters 110
syntax 110

DATA key type 21
data length parameter

diversified key generate callable
service 117

data space
callable services that use data in data

spaces 5
data-encrypting key 18
DATAM key type 21
DATAMV key type 22

decipher callable service (CSNBDEC or
CSNBDEC1)

format 354
syntax 354

deciphering
data 337, 352
data with clear key 359

decode callable service (CSNBDCO)
format 359
parameters 359
syntax 359

DES algorithm 337
DES external key token format 804
DES internal key token format 802
digital signature generate callable service

(CSNDDSG)
format 545
overview 76
parameters 545
syntax 545

digital signature verify callable service
(CSNDDSV)

format 551
overview 76
parameters 551
syntax 551

diversified key generate callable service
(CSNBDKG)

format 113
overview 26
parameters 113
syntax 113

double-length key
using 20

dynamic CKDS update callable services
description 45

E
EBCDIC to ASCII conversion

table 919
ECC token

associated data format for 847
ECDSA algorithm 73
ECI-1 487
ECI-2 PIN block format 453, 895
ECI-3 PIN block format 453, 895
ECI-4 487
electronic code book (ECB) 337

mode 338
Elliptic Curve Digital Signature

Algorithm (ECDSA) 73
encipher callable service (CSNBENC or

CSNBENC1)
format 363
parameters 363
syntax 363

enciphered
key 132, 249, 337
under master key 154

enciphering
data 337, 361
string with clear key 368

encode callable service (CSNBECO)
format 368
parameters 368
syntax 368

encrypted PIN block parameter
clear PIN generate alternate callable

service 469
encrypted PIN verify callable

service 491
encrypted PIN generate callable service

(CSNBEPG)
format 478
syntax 478

encrypted PIN generate service
(CSNBEPG)

parameters 478
encrypted PIN translate callable service

(CSNBPTR) 482
extraction rules 895
format 483
parameters 483
syntax 483

encrypted PIN verification callable
service (CSNBPVR)

extraction rules 895
encrypted PIN verify callable service

(CSNBPVR)
format 488
parameters 489
syntax 488

ensuring data integrity and
authenticity 49

EX key form 59
examples of callable services 881
EXEX key form 61
exit data 7
exit data length 7
exit, installation 8
exportable key form 15

definition 15
generating 59
value 133

exporter key identifier parameter
data key export callable service 108
key export callable service 130

EXPORTER key type 22
exporter key-encrypting key 20

any DES key 128
enciphering data key 107

exporting keys
trusted blocks 39

external key token 8, 16, 82
DES 804
PKA 83

RSA private 820
extra_data parameter

remote key export callable
service 240

extra_data_length parameter
remote key export callable

service 240
extraction rules, PIN 895

F
FEATURE=CRYPTO keyword

SCHEDULE macro 10
form parameter

random number generate callable
service 230

format control 456

Index 963

formats, PIN 52
functions of

cryptographic keys 13
ICSF 13

G
GBP-PIN algorithm 491
GBP-PINO algorithm 491
generated key identifier 1 parameter

key generate callable service 138
generated key identifier 2 parameter

key generate callable service 139
generated key identifier parameter

diversified key generate callable
service 117

generating encrypted keys 132
generating key identifier parameter

diversified key generate callable
service 117

generating keys
remote key export 41

German Banking Pool PIN
algorithm 897

get attribute value callable service
(CSFPGAV)

format 691
parameters 691
syntax 691

H
hash length parameter

digital signature generate callable
service 548

digital signature verify callable
service 554

one-way hash generate callable
service 434

hash parameter
digital signature generate callable

service 548
digital signature verify callable

service 554
one-way hash generate callable

service 435
HEXDIGIT PIN extraction method

keyword 454
high-level languages 4
HMAC

keys 19

I
IBM 3624 462, 488
IBM 4700 processing rule 905
IBM GBP 462, 488
IBM-4700 PIN block format 894
IBM-PIN algorithm 491
IBM-PINO algorithm 491
ICSF

functions 13
overview 13

ICSF Query Algorithm (CSFIQA)
parameters 632
syntax 632

ICSF Query Algorithm (CSFIQA))
format 632

ICSF Query Algorithm Service (CSFIQA)
overview 57

ICSF Query Facility (CSFIQF)
parameters 636
syntax 636

ICSF Query Facility (CSFIQF))
format 636

ICSF Query Facility Service (CSFIQF)
overview 57

ICSF Query Facility2 (CSFIQF2)
overview 57
parameters 659
syntax 659

ICSF Query Facility2(CSFIQF2)
format 659

IEAAFFN callable service (affinity) 10
IM key form 59
IMEX key form 61
IMIM key form 60
importable key form 15

definition 15
generating 59
value 133

imported key identifier length parameter
multiple secure key import callable

service 213
imported key identifier parameter

multiple secure key import callable
service 213

importer key identifier parameter
key import callable service 155
secure key import callable

service 249
IMPORTER key type 22
importer key-encrypting key 20

enciphering clear key 247, 249
importer_key_identifier parameter

remote key export callable
service 238

importer_key_length parameter
remote key export callable

service 238, 239, 240
importing a non-exportable key 227
INBK PIN 450, 462
INBK-PIN 488
Information Protection System (IPS) 906
initial chaining vector (ICV)

description 338, 904
initialization vector parameter

cryptographic variable encipher
callable service 106

decipher callable service 356
encipher callable service 365
key token build callable service 185

input KEK key identifier parameter
key translate callable service 197

input PIN profile parameter
clear PIN generate alternate callable

service 468
encrypted PIN translate callable

service 484
encrypted PIN verify callable

service 490

input PIN-encrypting key identifier
parameter

encrypted PIN translate callable
service 484

encrypted PIN verify callable
service 490

input_block parameter
trusted block create callable

service 285
input_block_identifier parameter

trusted block create callable
service 285

installation exit
post-processing 8
preprocessing 8

installation-defined callable service 13
Integrated Cryptographic Service Facility

(ICSF)
description xxi

Integrity 850
Interbank PIN 70, 450, 462, 488
internal key token 8, 15, 82, 83

aes; 802
DES 802, 803
PKA

RSA private 836, 837, 838, 845,
848

invocation requirements 9
IPINENC key type 22, 484
IPS processing rule 356, 365, 906
ISO-0 PIN block format 453
ISO-1 PIN block format 453, 894
ISO-2 PIN block format 453, 894
ISO-3 PIN block format 453, 894

J
JCL statements, sample 12

K
KEK key identifer parameter

control vector translate callable
service 102

KEK key identifier 1 parameter
key generate callable service 137

KEK key identifier 2 parameter
key generate callable service 138

KEK key identifier parameter
key test extended callable service 178
prohibit export extended callable

service 228
key array parameter

control vector translate callable
service 102

key array right parameter
control vector translate callable

service 102
Key Data Set management 595

callable services 595
key encrypting key identifier

parameter 269
key export callable service (CSNBKEX)

format 128
overview 26
parameters 128

964 z/OS ICSF Application Programmer's Guide

key export callable service (CSNBKEX)
(continued)

syntax 128
key flow 15
key form

combinations for a key pair 140
combinations with key type 140
definition 14
exportable 15
importable 15
operational 14, 15
value 133

key form parameter
key generate callable service 133
secure key import callable

service 249
key generate callable service (CSNBKGN)

format 132
overview 25
parameters 132
syntax 132
using 58

key generator utility program (KGUP)
description 25

key identifier 8
PKA keys 82

key identifier length parameter
multiple clear key import callable

service 208
Symmetric MAC generate callable

service 438
symmetric MAC verify callable

service 442
key identifier parameter

clear key import callable service 95
decipher callable service 355
diversified key generate callable

service 117
encipher callable service 364
key test callable service 169
key test extended callable service 177
MAC generate callable service 418
MAC generation callable service 423
multiple clear key import callable

service 208
secure key import callable

service 249
Symmetric MAC generate callable

service 438
symmetric MAC verify callable

service 443
key import callable service (CSNBKIM)

format 154
overview 26
parameters 154
syntax 154

key label 8, 82
security considerations 9

key length parameter
key generate callable service 134

key pair 140
key part import callable service

(CSNBKPI)
format 158
overview 26
parameters 158
syntax 158

key record delete callable service
(CSNBKRD)

overview 46
key test callable service (CSNBKYT and

CSNBKYTX)
overview 27

key test callable service (CSNBKYT)
parameters 166

key test callable services (CSNBKYT)
format 166
syntax 166

key test extended callable service
(CSNBKYTX)

parameters 175
key test extended callable services (

CSNBKYTX)
syntax 175

key test extended callable services
(CSNBKYTX)

format 175
key token 15, 83

aes; internal 802
DES

internal 802
null 806

DES internal 803
external 16
internal 15, 83
null 16
PKA 80

null 819
RSA 1024-bit modulus-exponent

private external 829
RSA 1024-bit private internal 837,

838
RSA 2048-bit Chinese remainder

theorem private internal 843
RSA 4096-bit Chinese remainder

theorem private external 834
RSA 4096-bit modulus-exponent

private external 829
RSA private external 820
RSA private internal 836, 845, 848
RSA public 819

PKA external 83
key token build callable service

(CSNBKTB and CSNEKTB)
overview 29

key token build callable service
(CSNBKTB)

format 179
overview 27
parameters 179
syntax 179

key translate (CSNBKTR)
parameters 197

key translate callable service (CSNBKTR)
format 196
overview 27
syntax 196

Key Translate2 callable service
(CSNBKTR2 and CSNEKTR2)

format 200
parameters 200
syntax 200

key type 1 60, 61

key type 1 parameter
key generate callable service 136

key type 2 60, 61
key type 2 parameter

key generate callable service 137
key type parameter

key export callable service 129
key import callable service 155
key token build callable service 180
secure key import callable

service 249
key value structure length

parameter 570
key value structure parameter 570
key_check_length parameter

remote key export callable
service 241

key_check_parameters parameter
remote key export callable

service 241
key_check_parameters_length parameter

remote key export callable
service 240

key_check_value parameter
remote key export callable

service 241
key-encrypting key 20

definition 14
description 20
exporter 107, 128
importer 247

keyboard
navigation 939
PF keys 939
shortcut keys 939

keys
CIPHER 19
clear 22, 247
control vector 14, 18
create

values for keys 28
creating 10
cryptographic, functions of 13
data key

exporting 107
importing 94
reenciphering 107

data-encrypting 18
double-length 60, 61
enciphered 249
export

values for keys 28
exporter key-encrypting 20
forms 15
generating

encrypted 132
values for keys 28

held in applications 20
held in CKDS 20
HMAC 19
importer key-encrypting 20
key-encrypting 20
MAC 19
managing 93
master key variant 14
master, DES 18
master,AES 18

Index 965

keys (continued)
pair 60, 61
parity 94
PIN 19
PIN-encrypting key 482
PKA master 73

Key Management Master Key
(KMMK) 73

Signature Master Key (SMK) 73
possible forms 26
protecting 337
reenciphered 154
reenciphering 128
separation 13
single-length 59, 60
transport 20
transport key variant 14
types of 18
using 10
VISA PVV

generating 466

L
languages, high-level 4
large data object 905
linking callable services 12
local enciphered key token

parameter 270

M
MAC

generation callable service 50
keys 19
length keywords 419, 424, 438, 443
managing 49
verification callable service 50

MAC generate callable service
(CSNBMGN or CSNBMGN1)

format 417
parameters 417
syntax 417

mac length parameter
Symmetric MAC generate callable

service 440
symmetric MAC verify callable

service 445
mac parameter

MAC generate callable service 420
MAC verify callable service 425
Symmetric MAC generate callable

service 440
symmetric MAC verify callable

service 445
MAC verify callable service (CSNBMVR

or CSNBMVR1)
format 422
parameters 422
syntax 422

managing keys 93
mask array left parameter

control vector translate callable
service 102

mask array preparation 875

mask array right parameter
control vector translate callable

service 102
master key

AES 18
changing

possible effect on internal key
tokens 16

enciphered key 154
master key variant 14
master key, DES 18
MDC

generate callable service 52
length keywords 429
managing 51

mdc parameter
MDC generate callable service 430

message authentication
definition 49, 50

message authentication code (MAC)
description 405
generating 405, 416, 436
verifying 405, 421, 441

messages
authenticating 405

migration consideration
return codes from PCF macros 7

mode, special secure 10
modes of operation 337
modification detection

definition 51, 52
modification detection code (MDC)

generating 406, 427
verifying 406

multiple clear key import callable service
(CSNBCKM) 206

format 206
overview 27, 29
parameters 206
syntax 206

multiple secure key import callable
service (CSNBSKM and CSNESKM)

overview 29
multiple secure key import callable

service (CSNBSKM) 210
format 210
overview 27
parameters 210
syntax 210

N
navigation

keyboard 939
Notices 943
null key token 16

format 806, 819
number, generated 229

O
object ion key (OPK) 860
one-way hash generate callable service

(CSNBOWH and CSNBOWH1)
overview 51

one-way hash generate callable service
(CSNBOWH, CSNEOWH and
CSNBOWH1)

format 431
parameters 431
syntax 431

OP key form 59
operational key form 14

definition 15
generating 58
value 133

OPEX key form 60
OPIM key form 60
OPINENC key type 22, 484
OPK, object protection key 860
OPOP key form 60
output chaining vector (OCV)

description 904
output KEK key identifier parameter

key translate callable service 198
output PIN profile parameter

encrypted PIN translate callable
service 486

output PIN-encrypt translation key
identifier parameter

encrypted PIN translate callable
service 484

overview of callable services 3

P
pad character parameter

encipher callable service 366
key token build callable service 185

pad digit 457
format 456

PADDIGIT PIN extraction method
keyword 454

padding schemes 353, 362
PADEXIST PIN extraction method

keyword 454
pair of keys 60, 61
PAN data in parameter

encrypted PIN translate callable
service 485

PAN data out parameter
encrypted PIN translate callable

service 487
PAN data parameter

clear PIN encrypt callable
service 460

clear PIN generate alternate callable
service 468

encrypted PIN generate callable
service 480

encrypted PIN verify callable
service 490

parameter
attribute definitions 5
definitions 6
direction 6
exit data 7
exit data length 7
reason code 7
return code 7
type 6

parity of key 94, 247

966 z/OS ICSF Application Programmer's Guide

parity of key (continued)
adjusting 168, 177
EVEN 231
ODD 231

Payload Format 17
PCF

key separation 14
keys 20
macros 7
migration consideration 7

PCI interface callable service (CSFPCI)
parameters 667
syntax 667

performance considerations 10
personal account number (PAN)

for encrypted PIN translate 485
for encrypted PIN verify 490

personal authentication
definition 52

personal identification number (PIN)
3624 PIN generation algorithm 896
3624 PIN verification algorithm 899
algorithm value 470, 491
algorithms 52, 450, 462
block format 450, 482
clear PIN encrypt callable service 53
clear PIN generate alternate callable

service 53, 466
definition 52
description 447
detailed algorithms 896
encrypted generation callable

service 53
encrypting key 450, 482
extraction rules 895
formats 52
GBP PIN verification algorithm 901
generating 449, 462

from encrypted PIN block 449
generation callable service 53, 462
German Banking Pool PIN

algorithm 897
keys 19
managing 52
PIN offset generation algorithm 898
PVV generation algorithm 902
PVV verification algorithm 903
translating 449
translation callable service 54, 482
translation of, in networks 448
using 447
verification callable service 54, 488
verifying 449, 488
VISA PIN algorithm 902

PIN block format
3621 894
3624 894
additional names 487
ANSI X9.8 893
detail 893
ECI-2 895
ECI-3 895
format values 453
IBM-4700 894
ISO-1 894
ISO-2 894
ISO-3 894

PIN block format (continued)
PIN extraction method keywords 454
VISA-2 894
VISA-3 894

PIN block in parameter
encrypted PIN translate callable

service 485
PIN block out parameter

encrypted PIN translate callable
service 487

PIN Change/Unblock
format 495
syntax 495

PIN Change/Unblock (CSNBPCU) 494
parameters 495

PIN check length parameter 470
clear PIN encrypt callable

service 460
clear PIN generate callable

service 464
PIN verify callable service 492

PIN encryption key identifier
parameter 468

PIN encryting key identifier parameter
clear PIN encrypt callable

service 459
PIN generating key identifier parameter

encrypted PIN generate callable
service 479

PIN keys 19
PIN length parameter

clear PIN generate callable
service 460, 464

encrypted PIN generate callable
service 479

PIN notation 893
PIN profile 453

description 484, 490
PIN profile parameter 468

encrypted PIN generate callable
service 480

PIN validation value (PVV) 462
PIN verifying key identifier parameter

encrypted PIN verify callable
service 490

PINBLOCK PIN extraction method
keyword 454

PINGEN key type 22
PINLEN04 PIN extraction method

keyword 454
PINLEN12 PIN extraction method

keyword 454
PINVER key type 22
PKA decrypt callable service (CSNDPKD)

overview 47
PKA decrypt callable servicec 216
PKA encrypt callable service (CSNDPKE)

overview 48
PKA encrypt callable servicec 221
PKA external key token 83
PKA key generate callable service

(CSNDPKG)
format 557
parameters 557
syntax 557

PKA key import callable service
(CSNDPKI)

format 563
overview 77
parameters 563
syntax 563

PKA key token 80
external 83
record format

RSA 1024-bit modulus-exponent
private external 829

RSA 1024-bit private internal 837,
838

RSA 2048-bit Chinese remainder
theorem private internal 843

RSA 4096-bit Chinese remainder
theorem private external 834

RSA 4096-bit modulus-exponent
private external 829

RSA private external 820
RSA private internal 836, 845, 848
RSA public 819

PKA key token build callable service
(CSNDPKB)

format 567
overview 77
parameters 567
syntax 567

PKA key token change (CSNDKTC)
parameters 579

PKA key token change callable service
(CSNDKTC and CSNFKTC)

overview 77
PKA key token change callable service

(CSNDKTC) 578
PKA key translate callable service

(CSNDPKT)
format 581
parameters 581
syntax 581

PKA master key 74
PKA private key identifier length

parameter 547
PKA private key identifier

parameter 548
PKA public key extract callable service

(CSNDPKX)
format 586
overview 77
parameters 586
syntax 586

PKA public key identifier length
parameter 553

PKA public key identifier parameter 553
PKA92 key format and encryption

process 911
pkcs #11

using 87
PKCS #11

callable services 87, 677
objects 677
tokens 677
using 677

PKDS key record create callable service
(CSNDKRC) 615

format 615
parameters 615

Index 967

PKDS key record create callable service
(CSNDKRC) (continued)

syntax 615
PKDS key record delete callable service

(CSNDKRD) 618
format 618
parameters 618
syntax 618

PKDS key record read callable service
(CSNDKRR) 620

format 620
parameters 620
syntax 620

PKDS key record write callable service
(CSNDKRW) 622

format 623
parameters 623
syntax 623

plaintext
enciphering 337
encoding 368
field 393, 403

plaintext parameter
cryptographic variable encipher

callable service 106
post-processing exit 8
preprocessing exit 8
privacy 48
private external key token

RSA 820
private internal key token

RSA 836, 837, 838, 845, 848
private key name length parameter 575
private key name parameter 576
processing rule

4700-PAD 356, 365
ANSI X3.106 904
ANSI X9.23 356, 365, 905
CBC 356, 365
cipher 904
cipher last block 905
CUSP 906
CUSP/IPS 356, 365
decipher 356
encipher 365
GBP-PIN 463
GBP-PINO 463
IBM 4700 905
IBM-PIN 463
IBM-PINO 463
INBK-PIN 463
IPS 906
segmenting 905
VISA-PVV 463

prohibit export (CSNBPEX) 225
prohibit export callable service

(CSNBPEX)
format 225
overview 27
syntax 225

prohibit export extended callable service
(CSNBPEXX)

format 227
overview 27
parameters 227
syntax 227

protecting data and keys 337

public key token
RSA 819

R
RACF authorization 9
random number generate callable service

(CSNBRNG)
format 229
overview 28
parameters 229
syntax 229

random number generate callable service
(CSNBRNGL)

format 229
parameters 229
syntax 229

random number parameter
key test callable service 169
key test extended callable service 177
random number generate callable

service 232
random_number_length

random number generate callable
service 232

reason codes 7, 11
reason codes for ICSF

for return code 0 (0) 756
for return code 10 (16) 798
for return code 4 (4) 757
for return code 8 (8) 759
for return code C (12) 788

record chaining 906
Recover PIN from Offset (CSNBPFO)

format 501
parameters 502
syntax 501

reenciphered
key 154

reenciphering
data-encrypting key 107
PIN block 482

remote key distribution 32
benefits 44
scenario 43

remote key export
exporting keys 39
generating keys 41

remote key export callable service
(CSNDRKX)

format 233
overview 28
parameters 233
syntax 233

remote key loading 32
example 32
new method 32

remote key-loading
CCA API changes 37

reserved
random number generate callable

service 232
reserved data length parameter

symmetric MAC generate callable
service 440

symmetric MAC verify callable
service 444

reserved data parameter
Symmetric MAC generate callable

service 440
symmetric MAC verify callable

service 445
reserved parameter

control vector generate callable
service 100, 198

reserved_length
random number generate callable

service 231
retained key delete callable service

(CSNDRKD)
format 589
overview 79
parameters 589
syntax 589

retained key list callable service
(CSNDRKL)

format 591
overview 79
parameters 591
syntax 591

retained private keys
overview 78

return codes 7, 11
from PCF macros

migration consideration 7
returned PVV parameter 471
returned result parameter

clear PIN generate callable
service 465

Rivest-Shamir-Adleman (RSA)
algorithm 73

RKX key token 37
RKX key-token 805
RSA 1024-bit private internal key

token 837, 838
RSA algorithm 73
RSA enciphered key length parameter

symmetric key generate callable
service 270

symmetric key import callable
service 275

RSA enciphered key parameter
symmetric key generate callable

service 270
symmetric key import callable

service 275
RSA private external Chinese remainder

theorem key token 834
RSA private external key token 820
RSA private external modulus-exponent

key token 829
RSA private internal Chinese remainder

theorem key token 843
RSA private internal key token 836, 845,

848
RSA private key identifier 276
RSA private key identifier length 275
RSA public key identifier length

parameter
for symmetric key generate 270

RSA public key identifier parameter 270
RSA public token 819
rule array count parameter 235

968 z/OS ICSF Application Programmer's Guide

rule array count parameter (continued)
clear PIN encrypt callable

service 460
Clear PIN encrypt callable

service 102, 479
clear PIN generate alternate callable

service 469
clear PIN generate callable

service 463
control vector translate callable

service 103
decipher callable service 356
digital signature generate callable

service 546
digital signature verify callable

service 552
diversified key generate callable

service 114
encipher callable service 365
encrypted PIN translate callable

service 485
encrypted PIN verify callable

service 491
key test callable service 168
key test extended callable service 176
key token build callable service 182
MAC generate callable service 419
MAC generation callable service 424
MDC generate callable service 429
one-way hash generate callable

service 433
PKA key generate callable

service 558, 583
PKA key import callable service 564
PKA key token build callable

service 569
PKA public key extract callable

service 587
symmetric key export callable

service 257
symmetric key generate callable

service 267
symmetric key import callable

service 274
Symmetric MAC generate callable

service 438
Symmetric MAC verify callable

service 443
trusted block create callable

service 284
rule array parameter 235

clear PIN encrypt callable
service 460

clear PIN generate alternate callable
service 469

clear PIN generate callable
service 463

control vector generate callable
service 98

control vector translate callable
service 103, 121

decipher callable service 356
digital signature generate callable

service 547
digital signature verify callable

service 552

rule array parameter (continued)
diversified key generate callable

service 115
encipher callable service 365
encrypted PIN generate callable

service 479
encrypted PIN translate callable

service 485
encrypted PIN verify callable

service 491
key test callable service 168
key test extended callable service 177
key token build callable service 182
MAC generate callable service 419
MAC generation callable service 424
MDC generate callable service 429
one-way hash generate callable

service 433
PKA key generate callable

service 559, 583
PKA key token build callable

service 569
PKA public key extract callable

service 587
random number generate callable

service 231
symmetric key export callable

service 257
symmetric key generate callable

service 267
symmetric key import callable

service 274
Symmetric MAC generate callable

service 438
symmetric MAC verify callable

service 443
trusted block create callable

service 285
rule_array_count

ICSF query service callable
service 633, 638, 660

random number generate callable
service 231

rule_id parameter
remote key export callable

service 238
rule_id_length parameter

remote key export callable
service 238

S
SAF ACEE Selection (CSFACEE)

format 662
parameters 662

SAF ACEE Selection (CSFACEE2)
syntax 662

sample JCL statements 12
SCHEDULE macro

FEATURE=CRYPTO keyword 10
SCSFMOD0 module 12
section sequence, trusted block 849
secure key import callable service

(CSNBSKI)
format 247
overview 28
parameters 247

secure key import callable service
(CSNBSKI) (continued)

syntax 247
secure messaging

overview 56
secure messaging for keys callable service

(CSNBSKY)
format 506, 579
parameters 506, 527
syntax 506, 579

Secure messaging for keys callable service
(CSNBSKY) 505

secure messaging for PINs callable
service (CSNBSPN)

format 510
parameters 510
syntax 510

Secure messaging for PINs callable
service (CSNBSPN) 509

Secure Sockets Layer (SSL) 47
security considerations 9
segmenting

control keywords 419, 424, 429, 438,
443

definition 905
rule, large data object 905

sending comments to IBM xxv
sequence number parameter

encrypted PIN translate callable
service 487

sequences of callable service 58
set attribute value callable service

(CSFPSAV)
format 722
parameters 722
syntax 722

SET block compose callable service
(CSNDSBC) 514

format 515
overview 80
parameters 515
syntax 515

SET block decompose callable service
(CSNDSBD) 520

format 520
overview 80
paramters 521
syntax 520

SET protocol 79
SET Secure Electronic Transaction 79
short blocks 362
shortcut keys 939
signature bit length parameter 549
signature field length parameter

digital signature generate callable
service 548

digital signature verify callable
service 554

signature field parameter
digital signature generate callable

service 549
digital signature verify callable

service 554
single-length key

purpose 59, 60
using 20

Index 969

source key identifier length parameter
PKA key import callable service 564
PKA public key extract callable

service 587
source key identifier parameter

data key export callable service 108
key export callable service 129
key import callable service 155
PKA key import callable service 565
PKA public key extract callable

service 588
source key token length parameter

prohibit export extended callable
service 228

source text parameter
character/nibble conversion callable

service 628
code conversion callable service 630
X9.9 data editing callable service 665

source_key_length parameter
remote key export callable

service 239
special secure mode 10
SRB, scheduling 10
SSL support 47
sym_encrypted_key_length parameter

remote key export callable
service 240

symmetric algorithm decipher callable
service (CSNBSAD, CSNBSAD1,
CSNESAD and CSNESAD1)

format 370
parameters 370
syntax 370

symmetric algorithm encipher callable
service (CSNBSAE, CSNBSAE1,
CSNESAE, and CSNESAE1)

format 377
syntax 377

symmetric algorithm encipher callable
service CSNBSAE, CSNBSAE1,
CSNESAE, and CSNESAE1)

parameters 377
symmetric key decipher callable service

(CSNBSYD and CSNBSYD1)
format 384
parameters 384
syntax 384

symmetric key encipher callable service
(CSNBSYE, CSNBSYE1, CSNESYE and
CSNESYE1)

format 394
parameters 394
syntax 394

symmetric key export callable service
(CSNDSYX and CSNFSYX)

overview 30
symmetric key export callable service

(CSNDSYX)
format 256
overview 28
parameters 256
syntax 256

Symmetric Key Export with Data callable
service(CSNDSXD)

format 262
syntax 262

symmetric key generate callable service
(CSNDSYG and CSNFSYG)

overview 30
symmetric key generate callable service

(CSNDSYG)
format 266
overview 28
parameters 266
syntax 266

symmetric key import callable service
(CSNDSYI and CSNFSYI)

overview 30
symmetric key import callable service

(CSNDSYI)
format 273
overview 28
parameters 273
syntax 273

Symmetric MAC
generation callable service 51
verify callable service 51

Symmetric MAC generate callable service
(CSNBSMG, CSNBSMG1, CSNESMG,
and CSNESMG1)

format 436
parameters 437
syntax 436
usage notes 440, 445

Symmetric MAC verify callable service
(CSNBSMV, CSNBSMV1, CSNESMV,
and CSNESMV1)

format 441
parameters 442
syntax 441

syntax for callable service 3

T
target key identifier length

parameter 565
target key identifier parameter 565

data key export callable service 108
key export callable service 130
key import callable service 156
symmetric key import callable

service 276
target key token parameter

encrypted PIN generate callable
service 103

target public key token length
parameter 588

target public key token parameter 588
target text parameter

character/nibble conversion callable
service 628, 634, 635, 658, 662

code conversion callable service 631
ICSF query facility callable

service 639, 660
X9.9 data editing callable service 665

text id in parameter
MAC generate callable service 420
MAC verify callable service 425
MDC generate callable service 430
one-way hash generate callable

service 435
symmetric MAC verify callable

service 445

text length parameter
character/nibble conversion callable

service 628
code conversion callable service 630
cryptographic variable encipher

callable service 106
decipher callable service 355
encipher callable service 364
MAC generate callable service 418
MAC generation callable service 423
MDC generate callable service 428
one-way hash generate callable

service 434
Symmetric MAC generate callable

service 438
Symmetric MAC verify callable

service 443
X9.9 data editing callable service 665

text parameter
MAC generate callable service 418
MAC generation callable service 423
MDC generate callable service 429
one-way hash generate callable

service 434
Symmetric MAC generate callable

service 438
symmetric MAC verify callable

service 443
text, translating 340
TKE

overview 56
token record create callable service

(CSFPTRC)
format 735
parameters 735
syntax 735

token record delete callable service
(CSFPTRD)

format 739
parameters 739
syntax 739

token record list callable service
(CSFPTRL)

format 741
parameters 741
syntax 741

token validation value (TVV) 802
TR-31 export callable service (CSNBT31X

and CSNET31X) 287
TR-31 import callable service (CSNBT31I

and CSNET31I) 301
TR-31 Optional Data Build callable

services (CSNBT31O and
CSNET31O) 315

TR-31 Optional Data Read callable
services (CSNBT31R and
CSNET31R) 318

TR-31 Parse callable service (CSNBT31P
and CSNET31P) 322

trailing short blocks 362
transaction validation callable service

(CSNBSKY)
format 526
syntax 526

transaction validation callable service
(CSNBTRV) 526

transport key 20

970 z/OS ICSF Application Programmer's Guide

transport key variant 14
transport_key_identifier parameter

remote key export callable
service 237

trusted block create callable
service 286

transport_key_length parameter
remote key export callable

service 237
trusted block 33
trusted block create

callable service 283
trusted block create callable service

(CSNDTBC)
format 283
overview 28
parameters 283
syntax 283

trusted block key token
trusted block key token

trusted block key token 848
trusted block sections 849

format of 850
trusted blocks

CCA API changes 37
creating 38
exporting keys 39
using 38

Trusted Key Entry
overview 56

trusted_block_identifier parameter
trusted block create callable

service 236, 286
trusted_block_length parameter

remote key export callable
service 235

trusted block create callable
service 286

types of keys 18

U
UKPT

format 457
user interface

ISPF 939
TSO/E 939

utilities
character/nibble conversion 627
code conversion 629
ICSF Query Algorithm 632
ICSF Query Facility 636
ICSF Query Facility2 659
key token build 179
PKA key token build 567
SAF ACEE Selection 662
X9.9 data editing 664

V
V1R13 changed information xxxi
V1R13 new information FMID

HCR7790 xxx
V1R13, FMID HCR77A0 changed

information xxix

V1R13, FMID HCR77A0 new
information xxix

V2R1 changed information FMID
HCR77A1 xxvii

V2R1 deleted information FMID
HCR77A1 xxviii

V2R1 new information FMID
HCR77A1 xxvii

verification pattern parameter 169, 178
verification pattern, generating and

verifying 166, 175
verifying data integrity and

authenticity 405
VISA CVV service generate callable

service (CSNBCSG) 530
format 531
parameters 531
syntax 531

VISA CVV service verify callable service
(CSNBCSV) 535

format 535
parameters 535
syntax 535

VISA PVV 462
generating 466

VISA-1 487
VISA-2 PIN block format 453, 894
VISA-3 PIN block format 453, 894
VISA-4 PIN block format 453
VISA-PVV algorithm 470, 491
VISAPVV4 algorithm 491

X
X9.9 data editing callable service

(CSNB9ED)
format 664
overview 57
parameters 664
syntax 664

X9.9-1 keyword 419, 424

Index 971

972 z/OS ICSF Application Programmer's Guide

����

Product Number: 5650-ZOS

Printed in USA

SC14-7508-00

	Contents
	Figures
	Tables
	About this information
	Who should use this information
	How to use this information
	Where to find more information
	Related Publications

	How to send your comments to IBM
	If you have a technical problem

	Summary of Changes
	Changes made in Cryptographic Support for z/OS V1R13-V2R1 (FMID HCR77A1)
	Changes made in Cryptographic Support for z/OS V1R12-R13 (FMID HCR77A0)
	Changes made in Cryptographic Support for z/OS V1R11-R13 (FMID HCR7790)

	Part 1. IBM CCA Programming
	Chapter 1. Introducing Programming for the IBM CCA
	ICSF Callable Services Naming Conventions
	Callable Service Syntax
	Callable Services with ALET Parameters
	Rules for Defining Parameters and Attributes
	Parameter Definitions
	Return and Reason Codes
	Exit Data Length and Exit Data
	Key Identifier for Key Token

	Invocation Requirements
	Security Considerations

	Performance Considerations
	Special Secure Mode
	Using the Callable Services
	When the Call Succeeds
	When the Call Does Not Succeed

	Linking a Program with the ICSF Callable Services

	Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services
	Functions of the Symmetric Cryptographic Keys
	Key Separation
	Master Key Variant for Fixed-length Tokens
	Transport Key Variant for Fixed-length Tokens
	Key Forms
	DES Key Flow

	Key Token
	Key Wrapping
	Payload Format
	Control Vector for DES Keys
	Types of Keys
	Other Considerations
	Clear Keys

	Key Strength and Wrapping of Key
	Key Strength and Key Wrapping Access Control Points
	DES Master Key

	Generating and Managing Symmetric Keys
	Key Generator Utility Program
	Common Cryptographic Architecture DES Key Management Services
	Clear Key Import Callable Service (CSNBCKI and CSNECKI)
	Control Vector Generate Callable Service (CSNBCVG and CSNECVG)
	Control Vector Translate Callable Service (CSNBCVT and CSNECVT)
	Cryptographic Variable Encipher Callable Service (CSNBCVE and CSNECVE)
	Data Key Export Callable Service (CSNBDKX and CSNEDKX)
	Data Key Import Callable Service (CSNBDKM and CSNEDKM)
	Diversified Key Generate Callable Service (CSNBDKG and CSNEDKG)
	Key Export Callable Service (CSNBKEX and CSNEKEX)
	Key Generate Callable Service (CSNBKGN and CSNEKGN)
	Key Import Callable Service (CSNBKIM and CSNEKIM)
	Key Part Import Callable Service (CSNBKPI and CSNEKPI)
	Key Test Callable Service (CSNBKYT, CSNEKYT, CSNBKYTX, and CSNEKYTX)
	Key Token Build Callable Service (CSNBKTB and CSNEKTB)
	Key Translate Callable Service (CSNBKTR and CSNEKTR)
	Key Translate2 Callable Service (CSNBKTR2 and CSNEKTR2)
	Multiple Clear Key Import Callable Service (CSNBCKM and CSNECKM)
	Multiple Secure Key Import Callable Service (CSNBSKM and CSNESKM)
	Prohibit Export Callable Service (CSNBPEX and CSNEPEX)
	Prohibit Export Extended Callable Service (CSNBPEXX and CSNEPEXX)
	Random Number Generate Callable Service (CSNBRNG, CSNERNG, CSNBRNGL, and CSNERNGL)
	Remote Key Export Callable Service (CSNDRKX and CSNFRKX)
	Restrict Key Attribute Callable Service (CSNBRKA and CSNERKA)
	Secure Key Import Callable Service (CSNBSKI and CSNESKI)
	Symmetric Key Export Callable Service (CSNDSYX, CSNFSYX and CSNDSXD)
	Symmetric Key Generate Callable Service (CSNDSYG, CSNFSYG)
	Symmetric Key Import Callable Service (CSNDSYI and CSNFSYI)
	Trusted Block Create Callable Service (CSNDTBC and CSNFTBC)
	Unique Key Derive Callable Service (CSFBUKD and CSFEUKD)

	Common Cryptographic Architecture AES Key Management Services
	Key Generate Callable Service (CSNBKGN and CSNEKGN)
	Key Generate2 Callable Service (CSNBKGN2 and CSNEKGN2)
	Key Part Import2 Callable Service (CSNBKPI2 and CSNEKPI2)
	Key Test2 Callable Service (CSNBKYT2 and CSNEKYT2)
	Key Token Build Callable Service (CSNBKTB and CSNEKTB)
	Multiple Clear Key Import Callable Service (CSNBCKM and CSNECKM)
	Multiple Secure Key Import Callable Service (CSNBSKM and CSNESKM)
	Restrict Key Attribute Callable Service (CSNBRKA and CSNERKA)
	Secure Key Import2 Callable Service (CSNBSKI2 and CSNESKI2)
	Symmetric Key Export Callable Service (CSNDSYX, CSNFSYX, and CSNDSXD)
	Symmetric Key Generate Callable Service (CSNDSYG and CSNFSYG)
	Symmetric Key Import Callable Service (CSNDSYI and CSNFSYI)
	Symmetric Key Import2 Callable Service (CSNDSYI2 and CSNFSYI2)

	Common Cryptographic Architecture HMAC Key Management Services
	Key Generate2 callable service (CSNBKGN2 and CSNEKGN2)
	Key Part Import2 callable service (CSNBKPI2 and CSNEKPI2)
	Key Test2 callable service (CSNBKYT2 and CSNEKYT2)
	Key Token Build2 callable service (CSNBKTB2 and CSNEKTB2)
	Restrict Key Attribute callable service (CSNBRKA and CSNERKA)
	Secure Key Import2 callable service (CSNBSKI2 and CSNESKI2)
	Symmetric Key Export Callable Service (CSNDSYX and CSNFSYX)
	Symmetric Key Import2 Callable Service (CSNDSYI2 and CSNFSYI2)

	ECC Diffie-Hellman Key Agreement Models
	Token Agreement Scheme
	Obtaining the Raw “Z” value

	Improved remote key distribution
	Remote Key Loading
	Trusted block
	Changes to the CCA API
	The RKX key token
	Using trusted blocks
	Remote key distribution scenario
	Remote key distribution benefits

	Diversifying keys
	Callable Services for Dynamic CKDS Update
	CKDS Key Record Create Callable Service (CSNBKRC and CSNEKRC)
	CKDS Key Record Create2 Callable Service (CSNBKRC2 and CSNEKRC2)
	CKDS Key Record Delete Callable Service (CSNBKRD and CSNEKRD)
	CKDS Key Record Read Callable Service (CSNBKRR and CSNEKRR)
	CKDS Key Record Read2 Callable Service (CSNBKRR2 and CSNEKRR2)
	CKDS Key Record Write Callable Service (CSNBKRW and CSNEKRW)
	CKDS Key Record Write2 Callable Service (CSNBKRW2 and CSNEKRW2)
	Coordinated KDS Administration Callable Service (CSFCRC and CSFCRC6)

	Callable Services that Support Secure Sockets Layer (SSL)
	PKA Decrypt Callable Service (CSNDPKD)
	PKA Encrypt Callable Service (CSNDPKE)

	Enciphering and Deciphering Data
	Encoding and Decoding Data (CSNBECO, CSNEECO, CSNBDCO, and CSNEDCO)
	Translating Ciphertext (CSNBCTT2 or CSNBCTT3 and CSNECTT2 or CSNECTT3)
	Managing Data Integrity and Message Authentication
	Message Authentication Code Processing
	HMAC Generation Callable Service (CSNBHMG or CSNBHMG1 and CSNEHMG or CSNEHMG1)
	HMAC Verification Callable Service (CSNBHMV or CSNBHMV1 and CSNEHMV or CSNEHMV1)
	MAC Generation Callable Service (CSNBMGN or CSNBMGN1 and CSNEMGN or CSNEMGN1)
	MAC Verification Callable Service (CSNBMVR or CSNBMVR1 and CSNEMVR or CSNEMVR1)
	Symmetric MAC Generate Callable Service (CSNBSMG, CSNBSMG1, CSNESMG and CSNESMG1)
	Symmetric MAC Verify Callable Service (CSNBSMV, CSNBSMV1, CSNESMV and CSNESMV1)

	Hashing Functions
	One-Way Hash Generate Callable Service (CSNBOWH or CSNBOWH1 and CSNEOWH or CSNEOWH1)
	MDC Generation Callable Service (CSNBMDG or CSNBMDG1 and CSNEMDG or CSNEMDG1)

	Managing Personal Authentication
	Verifying Credit Card Data
	Clear PIN Encrypt Callable Service (CSNBCPE and CSNECPE)
	Clear PIN Generate Alternate Callable Service (CSNBCPA and CSNECPA)
	Clear PIN Generate Callable Service (CSNBPGN and CSNEPGN)
	CVV Key Combine Callable Service (CSNBCKC and CSNECKC)
	Encrypted PIN Generate Callable Service (CSNBEPG and CSNEEPG)
	Encrypted PIN Translate Callable Service (CSNBPTR and CSNEPTR)
	Encrypted PIN Verify Callable Service (CSNBPVR and CSNEPVR)
	PIN Change/Unblock Callable Service (CSNBPCU and CSNEPCU)
	Transaction Validation Callable Service (CSNBTRV and CSNETRV)
	Recover PIN From Offset (CSNBPFO and CSNEPFO)
	Authentication Parameter Generate (CSNBAPG and CSNEAPG)

	ANSI TR-31 key block support
	TR-31 Export Callable Service (CSNBT31X and CSNET31X)
	TR-31 Import Callable Service (CSNBT31I and CSNET31I)
	TR-31 Parse Callable Service (CSNBT31P and CSNET31P)
	TR-31 Optional Data Read Callable Service (CSNBT31R and CSNET31R)
	TR-31 Optional Data Build Callable Service (CSNBT31O and CSNET31O)

	Secure Messaging
	Trusted Key Entry (TKE) Support
	Utilities
	Character/Nibble Conversion Callable Services (CSNBXBC and CSNBXCB)
	Code Conversion Callable Services (CSNBXEA and CSNBXAE)
	X9.9 Data Editing Callable Service (CSNB9ED)
	ICSF Query Algorithm Callable Service (CSFIQA)
	ICSF Query Facility Callable Service (CSFIQF)
	ICSF Query Facility2 Callable Service (CSFIQF2)

	Typical Sequences of ICSF Callable Services
	Key Forms and Types Used in the Key Generate Callable Service
	Generating an Operational Key
	Generating an Importable Key
	Generating an Exportable Key
	Examples of Single-Length Keys in One Form Only
	Examples of OPIM Single-Length, Double-Length, and Triple-Length Keys in Two Forms
	Examples of OPEX Single-Length, Double-Length, and Triple-Length Keys in Two Forms
	Examples of IMEX Single-Length and Double-Length Keys in Two Forms
	Examples of EXEX Single-Length and Double-Length Keys in Two Forms

	Using the Ciphertext Translate2 Callable Service
	Summary of Callable Services

	Chapter 3. Introducing PKA Cryptography and Using PKA Callable Services
	PKA Key Algorithms
	PKA Master Keys
	Operational private keys

	Key Strength and Wrapping of Key
	Key Strength and Key Wrapping Access Control Points
	RSA Private Key Tokens

	PKA Callable Services
	Callable Services Supporting Digital Signatures
	Digital Signature Generate Callable Service (CSNDDSG and CSNFDSG)
	Digital Signature Verify Callable Service (CSNDDSV and CSNFDSG)

	Callable Services for PKA Key Management
	PKA Key Generate Callable Service (CSNDPKG and CSNFPKG)
	PKA Key Import Callable Service (CSNDPKI and CSNFPKI)
	PKA Key Token Build Callable Service (CSNDPKB and CSNFPKB)
	PKA Key Token Change Callable Service (CSNDKTC and CSNFKTC)
	PKA Key Translate (CSNDPKT and CSNFPKT)
	PKA Public Key Extract Callable Service (CSNDPKX and CSNFPKX)

	Callable Services to Update the Public Key Data Set (PKDS)
	Coordinated KDS Administration Callable Service (CSFCRC and CSFCRC6)
	PKDS Key Record Create Callable Service (CSNDKRC and CSNFKRC)
	PKDS Key Record Delete Callable Service (CSNDKRD and CSNFKRD)
	PKDS Key Record Read Callable Service (CSNDKRR and CSNFKRR)
	PKDS Key Record Write Callable Service (CSNDKRW and CSNFKRW)

	Callable Services for Working with Retained Private Keys
	Retained Key Delete Callable Service (CSNDRKD and CSNFRKD)
	Retained Key List Callable Service (CSNDRKL and CSNFKRL)
	Clearing the retained keys on a coprocessor

	Callable Services for SET Secure Electronic Transaction
	SET Block Compose Callable Service (CSNDSBC and CSNFSBC)
	SET Block Decompose Callable Service (CSNDSBD and CSNFSBD)

	PKA Key Tokens
	PKA Key Management
	Security and Integrity of the Token
	Key Identifier for PKA Key Token
	Key Label
	Key Token

	The Transaction Security System and ICSF Portability
	Summary of the PKA Callable Services

	Chapter 4. Introducing PKCS #11 and using PKCS #11 callable services
	PKCS #11 Services
	Attribute List
	Handles

	Part 2. CCA Callable Services
	Chapter 5. Managing Symmetric Cryptographic Keys
	Clear Key Import (CSNBCKI and CSNECKI)
	Format
	Parameters
	Access Control Points
	Required Hardware

	Control Vector Generate (CSNBCVG and CSNECVG)
	Format
	Parameters
	Usage Notes
	Required Hardware

	Control Vector Translate (CSNBCVT and CSNECVT)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Point
	Required Hardware

	Cryptographic Variable Encipher (CSNBCVE and CSNECVE)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Point
	Required Hardware

	Data Key Export (CSNBDKX and CSNEDKX)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Points
	Required Hardware

	Data Key Import (CSNBDKM and CSNEDKM)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Points
	Required Hardware

	Diversified Key Generate (CSNBDKG and CSNEDKG)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Points
	Required Hardware

	ECC Diffie-Hellman (CSNDEDH and CSNFEDH)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Points
	Required Hardware

	Key Export (CSNBKEX and CSNEKEX)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Points
	Required Hardware

	Key Generate (CSNBKGN and CSNEKGN)
	Format
	Parameters
	Restrictions
	Usage Notes
	Usage Notes — Key type and key form combinations
	Access Control Points
	Required Hardware

	Key Generate2 (CSNBKGN2 and CSNEKGN2)
	Format
	Parameters
	Usage Notes
	Access Control Points
	Required Hardware

	Key Import (CSNBKIM and CSNEKIM)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Points
	Required Hardware

	Key Part Import (CSNBKPI and CSNEKPI)
	Format
	Parameters
	Restrictions
	Access Control Points
	Required Hardware
	Related Information

	Key Part Import2 (CSNBKPI2 and CSNEKPI2)
	Format
	Parameters
	Usage Notes
	Access Control Points
	Required Hardware

	Key Test (CSNBKYT and CSNEKYT)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Points
	Required Hardware

	Key Test2 (CSNBKYT2 and CSNEKYT2)
	Format
	Parameters
	Usage Notes
	Access Control Point
	Required Hardware

	Key Test Extended (CSNBKYTX and CSNEKTX)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Point
	Required Hardware

	Key Token Build (CSNBKTB and CSNEKTB)
	Format
	Parameters
	Restrictions
	Usage Notes
	Required Hardware

	Key Token Build2 (CSNBKTB2 and CSNEKTB2)
	Format
	Parameters
	Required Hardware

	Key Translate (CSNBKTR and CSNEKTR)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Points
	Required Hardware

	Key Translate2 (CSNBKTR2 and CSNEKTR2)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Points
	Required Hardware

	Multiple Clear Key Import (CSNBCKM and CSNECKM)
	Format
	Parameters
	Access Control Points
	Required Hardware

	Multiple Secure Key Import (CSNBSKM and CSNESKM)
	Format
	Parameters
	Usage Notes
	Access Control Points
	Required Hardware

	PKA Decrypt (CSNDPKD and CSNFPKD)
	Format
	Parameters
	Restrictions
	Authorization
	Usage Notes
	Access Control Points
	Required Hardware

	PKA Encrypt (CSNDPKE and CSNFPKE)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Point
	Required Hardware

	Prohibit Export (CSNBPEX and CSNEPEX)
	Format
	Parameters
	Usage Notes
	Access Control Point
	Required Hardware

	Prohibit Export Extended (CSNBPEXX and CSNEPEXX)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Point
	Required Hardware

	Random Number Generate (CSNBRNG, CSNERNG, CSNBRNGL and CSNERNGL)
	Format
	Parameters
	Usage Notes
	Required Hardware

	Remote Key Export (CSNDRKX and CSNFRKX)
	Format
	Parameters
	Usage Notes
	Access Control Points
	Required Hardware

	Restrict Key Attribute (CSNBRKA and CSNERKA)
	Format
	Parameters
	Access Control Points
	Required Hardware

	Secure Key Import (CSNBSKI and CSNESKI)
	Format
	Parameters
	Usage Notes
	Access Control Points
	Required Hardware

	Secure Key Import2 (CSNBSKI2 and CSNESKI2)
	Format
	Parameters
	Access Control Points
	Required Hardware

	Symmetric Key Export (CSNDSYX and CSNFSYX)
	Format
	Parameters
	Usage Notes
	Access Control Points
	Required Hardware

	Symmetric Key Export with Data (CSNDSXD and CSNFSXD)
	Format
	Parameters
	Usage Notes
	Access Control Points
	Required Hardware

	Symmetric Key Generate (CSNDSYG and CSNFSYG)
	Format
	Parameters
	Usage Notes
	Access Control Points
	Required Hardware

	Symmetric Key Import (CSNDSYI and CSNFSYI)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Points
	Required Hardware

	Symmetric Key Import2 (CSNDSYI2 and CSNFSYI2)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Points
	Required Hardware

	Trusted Block Create (CSNDTBC and CSNFTBC)
	Format
	Parameters
	Usage Notes
	Access Control Points
	Required Hardware

	TR-31 Export (CSNBT31X and CSNET31X)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Points
	Required Hardware

	TR-31 Import (CSNBT31I and CSNET31I)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Points
	Required Hardware

	TR-31 Optional Data Build (CSNBT31O and CSNET31O)
	Format
	Parameters
	Restrictions
	Usage Notes
	Required Hardware

	TR-31 Optional Data Read (CSNBT31R and CSNET31R)
	Format
	Parameters
	Restrictions
	Usage Notes
	Required Hardware

	TR-31 Parse (CSNBT31P and CSNET31P)
	Format
	Parameters
	Restrictions
	Usage Notes
	Required Hardware

	Unique Key Derive (CSNBUKD and CSNEUKD)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Points
	Required Hardware

	Chapter 6. Protecting Data
	Modes of Operation
	Electronic Code Book (ECB) Mode
	Cipher Block Chaining (CBC) Mode
	Cipher Feedback (CFB) Mode
	Output Feedback (OFB) Mode
	Galois/Counter Mode (GCM)
	Triple DES Encryption

	Ciphertext Translate2 (CSNBCTT2, CSNBCTT3, CSNECTT2, CSNECTT3)
	Choosing Between CSNBCTT2 and CSNBCTT3
	Format
	Parameters
	Usage Notes
	Access Control Points
	Required Hardware

	Decipher (CSNBDEC or CSNBDEC1 and CSNEDEC or CSNEDEC1)
	Choosing Between CSNBDEC and CSNBDEC1
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Point
	Required Hardware

	Decode (CSNBDCO and CSNEDCO)
	Considerations
	Format
	Parameters
	Required Hardware

	Encipher (CSNBENC or CSNBENC1 and CSNEENC or CSNEENC1)
	Choosing between CSNBENC and CSNBENC1
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Point
	Required Hardware

	Encode (CSNBECO and CSNEECO)
	Considerations
	Format
	Parameters
	Required Hardware

	Symmetric Algorithm Decipher (CSNBSAD or CSNBSAD1 and CSNESAD or CSNESAD1)
	Choosing Between CSNBSAD and CSNBSAD1 or CSNESAD and CSNESAD1
	Format
	Parameters
	Usage Notes
	Access Control Point
	Required Hardware

	Symmetric Algorithm Encipher (CSNBSAE or CSNBSAE1 and CSNESAE or CSNESAE1)
	Choosing between CSNBSAE and CSNBSAE1 or CSNESAE and CSNESAE1
	Format
	Parameters
	Usage Notes
	Access Control Point
	Required Hardware

	Symmetric Key Decipher (CSNBSYD or CSNBSYD1 and CSNESYD or CSNESYD1)
	Choosing Between CSNBSYD and CSNBSYD1
	Format
	Parameters
	Usage Notes
	Access Control Points
	Required Hardware
	Related Information

	Symmetric Key Encipher (CSNBSYE or CSNBSYE1 and CSNESYE or CSNESYE1)
	Choosing between CSNBSYE and CSNBSYE1
	Format
	Parameters
	Usage Notes
	Access Control Points
	Required Hardware
	Related Information

	Chapter 7. Verifying Data Integrity and Authenticating Messages
	How MACs are Used
	How Hashing Functions Are Used
	How MDCs Are Used

	HMAC Generate (CSNBHMG or CSNBHMG1 and CSNEHMG or CSNEHMG1)
	Choosing Between CSNBHMG and CSNBHMG1
	Format
	Parameters
	Access Control Points
	Required Hardware

	HMAC Verify (CSNBHMV or CSNBHMV1 and CSNEHMV or CSNEHMV1)
	Choosing Between CSNBHMV and CSNBHMV1
	Format
	Parameters
	Access Control Points
	Required Hardware

	MAC Generate (CSNBMGN or CSNBMGN1 and CSNEMGN or CSNEMGN1)
	Choosing Between CSNBMGN and CSNBMGN1
	Format
	Parameters
	Usage Notes
	Access Control Point
	Required Hardware
	Related Information

	MAC Verify (CSNBMVR or CSNBMVR1 and CSNEMVR or CSNEMVR1)
	Choosing Between CSNBMVR and CSNBMVR1
	Format
	Parameters
	Usage Notes
	Access Control Point
	Required Hardware
	Related Information

	MDC Generate (CSNBMDG or CSNBMDG1 and CSNEMDG or CSNEMDG1)
	Choosing Between CSNBMDG and CSNBMDG1
	Format
	Parameters
	Usage Notes
	Required Hardware

	One-Way Hash Generate (CSNBOWH or CSNBOWH1 and CSNEOWH or CSNEOWH1)
	Format
	Parameters
	Usage Notes
	Required Hardware

	Symmetric MAC Generate (CSNBSMG or CSNBSMG1 and CSNESMG or CSNESMG1)
	Choosing Between CSNBSMG and CSNBSMG1 or CSNESMG and CSNESMG1
	Format
	Parameters
	Usage notes
	Required Hardware

	Symmetric MAC Verify (CSNBSMV or CSNBSMV1 and CSNESMV or CSNESMV1)
	Choosing Between CSNBSMV and CSNBSMV1 or CSNESMV and CSNESMV1
	Format
	Parameters
	Usage notes
	Required Hardware

	Chapter 8. Financial Services
	How Personal Identification Numbers (PINs) are Used
	How VISA Card Verification Values Are Used
	Translating Data and PINs in Networks
	Working with Europay–MasterCard–Visa smart cards
	PIN Callable Services
	Generating a PIN
	Encrypting a PIN
	Generating a PIN Validation Value from an Encrypted PIN Block
	Verifying a PIN
	Translating a PIN
	Algorithms for Generating and Verifying a PIN
	Using PINs on Different Systems
	PIN-Encrypting Keys
	Derived Unique Key Per Transaction Algorithms
	Encrypted PIN Translate
	Encrypted PIN Verify
	For more information

	ANSI X9.8 PIN Restrictions
	ANSI X9.8 PIN - Enforce PIN block restrictions
	ANSI X9.8 PIN - Allow modification of PAN
	ANSI X9.8 PIN - Allow only ANSI PIN blocks
	ANSI X9.8 PIN – Use stored decimalization tables only

	The PIN Profile
	PIN Block Format
	PIN Block Format and PIN Extraction Method Keywords

	Enhanced PIN Security Mode
	Format Control
	Pad Digit
	Recommendations for the Pad Digit

	Current Key Serial Number
	Decimalization Tables

	Clear PIN Encrypt (CSNBCPE and CSNECPE)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Point
	Required Hardware

	Clear PIN Generate (CSNBPGN and CSNEPGN)
	Format
	Parameters
	Usage Notes
	Access Control Points
	Required Hardware
	Related Information

	Clear PIN Generate Alternate (CSNBCPA and CSNECPA)
	Format
	Parameters
	Usage Notes
	Access Control Points
	Required Hardware

	CVV Key Combine (CSNBCKC and CSNECKC)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Points
	Required Hardware

	Encrypted PIN Generate (CSNBEPG and CSNEEPG)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Points
	Required Hardware

	Encrypted PIN Translate (CSNBPTR and CSNEPTR)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Points
	Required Hardware

	Encrypted PIN Verify (CSNBPVR and CSNEPVR)
	Format
	Parameters
	Usage Notes
	Access Control Points
	Required Hardware
	Related Information

	PIN Change/Unblock (CSNBPCU and CSNEPCU)
	Format
	Parameters
	Usage Notes
	Access Control Points
	Required Hardware

	Recover PIN from Offset (CSNBPFO and CSNEPFO)
	Format
	Parameters
	Usage Notes
	Access Control Point
	Required Hardware

	Secure Messaging for Keys (CSNBSKY and CSNESKY)
	Format
	Parameters
	Usage Notes
	Access Control Point
	Required Hardware

	Secure Messaging for PINs (CSNBSPN and CSNESPN)
	Format
	Parameters
	Usage Notes
	Access Control Point
	Required Hardware

	SET Block Compose (CSNDSBC and CSNFSBC)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Point
	Required Hardware

	SET Block Decompose (CSNDSBD and CSNFSBD)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Points
	Required Hardware

	Transaction Validation (CSNBTRV and CSNETRV)
	Format
	Parameters
	Usage Notes
	Access Control Points
	Required Hardware

	VISA CVV Service Generate (CSNBCSG and CSNECSG)
	Format
	Parameters
	Usage Notes
	Access Control Point
	Required Hardware

	VISA CVV Service Verify (CSNBCSV and CSNECSV)
	Format
	Parameters
	Usage Notes
	Access Control Points
	Required Hardware

	Authentication Parameter Generate (CSNBAPG and CSNEAPG)
	Format
	Parameters
	Usage Notes
	Access Control Points
	Required Hardware

	Chapter 9. Using Digital Signatures
	Digital Signature Generate (CSNDDSG and CSNFDSG)
	Format
	Parameters
	Restrictions
	Authorization
	Usage Notes
	Access Control Points
	Required Hardware

	Digital Signature Verify (CSNDDSV and CSNFDSV)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Point
	Required Hardware

	Chapter 10. Managing PKA Cryptographic Keys
	PKA Key Generate (CSNDPKG and CSNFPKG)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Points
	Required Hardware

	PKA Key Import (CSNDPKI and CSNFPKI)
	Format
	Parameters
	Restrictions
	Usage Notes
	Access Control Points
	Required Hardware

	PKA Key Token Build (CSNDPKB and CSNFPKB)
	Format
	Parameters
	Usage Notes
	Required Hardware

	PKA Key Token Change (CSNDKTC and CSNFKTC)
	Format
	Parameters
	Usage Notes
	Access Control Points
	Required Hardware

	PKA Key Translate (CSNDPKT and CSNFPKT)
	Format
	Parameters
	Restrictions
	Access Control Points
	Required Hardware

	PKA Public Key Extract (CSNDPKX and CSNFPKX)
	Format
	Parameters
	Usage Notes
	Required Hardware

	Retained Key Delete (CSNDRKD and CSNFRKD)
	Format
	Parameters
	Usage Notes
	Access Control Point
	Required Hardware

	Retained Key List (CSNDRKL and CSNFRKL)
	Format
	Parameters
	Usage Notes
	Access Control Points
	Required Hardware

	Chapter 11. Key Data Set Management
	CKDS Key Record Create (CSNBKRC and CSNEKRC)
	Format
	Parameters
	Restrictions
	Usage Notes
	Required Hardware

	CKDS Key Record Create2 (CSNBKRC2 and CSNEKRC2)
	Format
	Parameters
	Required Hardware

	CKDS Key Record Delete (CSNBKRD and CSNEKRD)
	Format
	Parameters
	Restrictions
	Usage Notes
	Required Hardware

	CKDS Key Record Read (CSNBKRR and CSNEKRR)
	Format
	Parameters
	Restrictions
	Usage Notes
	Required Hardware

	CKDS Key Record Read2 (CSNBKRR2 and CSNEKRR2)
	Format
	Parameters
	Required Hardware

	CKDS Key Record Write (CSNBKRW and CSNEKRW)
	Format
	Parameters
	Restrictions
	Usage Notes
	Required Hardware

	CKDS Key Record Write2 (CSNBKRW2 and CSNEKRW2)
	Format
	Parameters
	Usage Notes
	Required Hardware

	Coordinated KDS Administration (CSFCRC and CSFCRC6)
	Format
	Parameters
	Usage Notes
	Required Hardware

	PKDS Key Record Create (CSNDKRC and CSNFKRC)
	Format
	Parameters
	Usage Notes
	Required Hardware

	PKDS Key Record Delete (CSNDKRD and CSNFKRD)
	Format
	Parameters
	Restrictions
	Usage Notes
	Required Hardware

	PKDS Key Record Read (CSNDKRR and CSNFKRR)
	Format
	Parameters
	Usage Notes
	Required Hardware

	PKDS Key Record Write (CSNDKRW and CSNFKRW)
	Format
	Parameters
	Restrictions
	Usage Notes
	Required Hardware

	Chapter 12. Utilities
	Character/Nibble Conversion (CSNBXBC and CSNBXCB)
	Format
	Parameters
	Usage Notes
	Required Hardware

	Code Conversion (CSNBXEA and CSNBXAE)
	Format
	Parameters
	Usage Notes
	Required Hardware

	ICSF Query Algorithm (CSFIQA and CSFIQA6)
	Format
	Parameters
	Usage Notes
	Required Hardware

	ICSF Query Facility (CSFIQF and CSFIQF6)
	Format
	Parameters
	Usage Notes
	Required Hardware

	ICSF Query Facility2 (CSFIQF2 and CSFIQF26)
	Format
	Parameters
	Required Hardware

	SAF ACEE Selection (CSFACEE and CSFACEE6)
	Format
	Parameters
	Usage Notes
	Required Hardware

	X9.9 Data Editing (CSNB9ED)
	Format
	Parameters
	Usage Notes
	Required Hardware

	Chapter 13. Trusted Key Entry Workstation Interfaces
	PCI Interface Callable Service (CSFPCI and CSFPCI6)
	Format
	Parameters
	Usage Notes
	Required Hardware

	Part 3. PKCS #11 Callable Services
	Chapter 14. Using PKCS #11 Tokens and Objects
	PKCS #11 Derive multiple keys (CSFPDMK and CSFPDMK6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Derive key (CSFPDVK and CSFPDVK6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Get attribute value (CSFPGAV and CSFPGAV6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Generate key pair (CSFPGKP and CSFPGKP6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Generate secret key (CSFPGSK and CSFPGSK6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Generate HMAC (CSFPHMG and CSFPHMG6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Verify HMAC (CSFPHMV and CSFPHMV6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 One-way hash, sign, or verify (CSFPOWH and CSFPOWH6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Private key sign (CSFPPKS and CSFPPKS6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Public key verify (CSFPPKV and CSFPPKV6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Pseudo-random function (CSFPPRF and CSFPPRF6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Set attribute value (CSFPSAV and CSFPSAV6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Secret key decrypt (CSFPSKD and CSFPSKD6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Secret key encrypt (CSFPSKE and CSFPSKE6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Token record create (CSFPTRC and CSFPTRC6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Token record delete (CSFPTRD and CSFPTRD6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Token record list (CSFPTRL and CSFPTRL6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Unwrap key (CSFPUWK and CSFPUWK6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Wrap key (CSFPWPK and CSFPWPK6)
	Format
	Parameters
	Authorization
	Usage Notes

	Part 4. Appendixes
	Appendix A. ICSF and TSS Return and Reason Codes
	Return Codes and Reason Codes
	Return Codes
	Reason Codes for Return Code 0 (0)
	Reason Codes for Return Code 4 (4)
	Reason Codes for Return Code 8 (8)
	Reason Codes for Return Code C (12)
	Reason Codes for Return Code 10 (16)

	Appendix B. Key Token Formats
	AES Key Token Formats
	AES Internal Key Token
	Token Validation Value

	DES Key Token Formats
	DES Internal Key Token
	DES External Key Token
	External RKX DES Key Token
	DES Null Key Token

	Variable-length Symmetric Key Token Formats
	Variable-length Symmetric Key Token
	Variable-length Symmetric Null Key Token

	PKA Key Token Formats
	PKA Null Key Token
	RSA Key Token Formats
	RSA Public Key Token
	RSA Private External Key Token
	RSA Private Internal Key Token

	ECC Key Token Format
	Associated Data Format for ECC Token
	AESKW Wrapped Payload Format for ECC Private Key Token

	Trusted Block Key Token
	Trusted block sections
	Trusted block integrity
	Number representation in trusted blocks
	Format of trusted block sections

	Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service
	Control Vector Table
	Specifying a Control-Vector-Base Value

	Changing Control Vectors with the Control Vector Translate Callable Service
	Providing the Control Information for Testing the Control Vectors
	Mask Array Preparation
	Selecting the Key-Half Processing Mode
	When the Target Key Token CV Is Null
	Control Vector Translate Example

	Appendix D. Coding Examples
	C
	COBOL
	Assembler H
	PL/1

	Appendix E. Cryptographic Algorithms and Processes
	PIN Formats and Algorithms
	PIN Notation
	PIN Block Formats
	ANSI X9.8
	ISO Format 1
	ISO Format 2
	ISO Format 3
	VISA Format 2
	VISA Format 3
	IBM 4700 Encrypting PINPAD Format
	IBM 3624 Format
	IBM 3621 Format
	ECI Format 2
	ECI Format 3

	PIN Extraction Rules
	Encrypted PIN Verify Callable Service
	Clear PIN Generate Alternate Callable Service
	Encrypted PIN Translate Callable Service
	PIN Change/Unblock Callable Service

	IBM PIN Algorithms
	3624 PIN Generation Algorithm
	German Banking Pool PIN Generation Algorithm
	PIN Offset Generation Algorithm
	3624 PIN Verification Algorithm
	German Banking Pool PIN Verification Algorithm

	VISA PIN Algorithms
	PVV Generation Algorithm
	PVV Verification Algorithm
	Interbank PIN Generation Algorithm

	Cipher Processing Rules
	CBC and ANSI X3.106
	ANSI X9.23 and IBM 4700
	Segmenting
	Cipher Last-Block Rules

	CUSP
	The Information Protection System (IPS)
	PKCS Padding Method
	PKCS Padding Method (Example 1)
	PKCS Padding Method (Example 2)

	Wrapping Methods for Symmetric Key Tokens
	ECB Wrapping of DES Keys (Original Method)
	CBC Wrapping of AES Keys
	Enhanced CBC Wrapping of DES Keys (Enhanced Method)
	Wrapping key derivation for enhanced wrapping of DES keys
	Variable length token (AESKW method)

	PKA92 Key Format and Encryption Process
	Formatting Hashes and Keys in Public-Key Cryptography
	ANSI X9.31 Hash Format
	PKCS #1 Formats

	Visa and EMV-related smart card formats and processes
	Deriving the smart-card-specific authentication code
	Constructing the PIN-block for transporting an EMV smart-card PIN
	Deriving the CCA TDES-XOR session key
	Deriving the EMV TDESEMVn tree-based session key
	PIN-block self-encryption

	Key Test Verification Pattern Algorithms
	DES Algorithm (single- and double-length keys)
	SHAVP1 Algorithm

	Appendix F. EBCDIC and ASCII Default Conversion Tables
	Appendix G. Access Control Points and Callable Services
	Appendix H. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Numerics
	A
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	X

